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Abstract

We introduce a spectral learning algorithm for latent-variable PCFGs (Matsuzaki et al.,
2005; Petrov et al., 2006). Under a separability (singular value) condition, we prove that
the method provides statistically consistent parameter estimates. Our result rests on three
theorems: the first gives a tensor form of the inside-outside algorithm for PCFGs; the
second shows that the required tensors can be estimated directly from training examples
where hidden-variable values are missing; the third gives a PAC-style convergence bound
for the estimation method.
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1. Introduction

Statistical models with hidden or latent variables are of great importance in natural language
processing, speech, and many other fields. The EM algorithm is a remarkably successful
method for parameter estimation within these models: it is simple, it is often relatively
efficient, and it has well understood formal properties. It does, however, have a major
limitation: it has no guarantee of finding the global optimum of the likelihood function.
From a theoretical perspective, this means that the EM algorithm is not guaranteed to give
statistically consistent parameter estimates. From a practical perspective, problems with
local optima can be difficult to deal with.

Recent work has introduced a polynomial-time learning algorithm for an important case
of hidden-variable models: hidden Markov models (Hsu et al., 2009). This algorithm uses
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a spectral method: that is, an algorithm based on eigenvector decompositions of linear
systems, in particular singular value decomposition (SVD). In the general case, learning of
HMMs is intractable (e.g., see Terwijn, 2002). The spectral method finesses the problem of
intractibility by assuming separability conditions. More precisely, the algorithm of Hsu et al.
(2009) has a sample complexity that is polynomial in 1{σ, where σ is the minimum singular
value of an underlying decomposition. The HMM learning algorithm is not susceptible to
problems with local maxima.

In this paper we derive a spectral algorithm for learning of latent-variable PCFGs (L-
PCFGs) (Petrov et al., 2006; Matsuzaki et al., 2005). L-PCFGs have been shown to be
a very effective model for natural language parsing. Under a condition on singular values
in the underlying model, our algorithm provides consistent parameter estimates; this is in
contrast with previous work, which has used the EM algorithm for parameter estimation,
with the usual problems of local optima.

The parameter estimation algorithm (see Figure 7) is simple and efficient. The first step
is to take an SVD of the training examples, followed by a projection of the training examples
down to a low-dimensional space. In a second step, empirical averages are calculated on
the training examples, followed by standard matrix operations. On test examples, tensor-
based variants of the inside-outside algorithm (Figures 4 and 5) can be used to calculate
probabilities and marginals of interest.

Our method depends on the following results:

• Tensor form of the inside-outside algorithm. Section 6.1 shows that the inside-outside
algorithm for L-PCFGs can be written using tensors and tensor products. Theorem 3
gives conditions under which the tensor form calculates inside and outside terms
correctly.

• Observable representations. Section 7.2 shows that under a singular-value condition,
there is an observable form for the tensors required by the inside-outside algorithm.
By an observable form, we follow the terminology of Hsu et al. (2009) in referring to
quantities that can be estimated directly from data where values for latent variables
are unobserved. Theorem 6 shows that tensors derived from the observable form
satisfy the conditions of Theorem 3.

• Estimating the model. Section 8 gives an algorithm for estimating parameters of the
observable representation from training data. Theorem 8 gives a sample complexity
result, showing that the estimates converge to the true distribution at a rate of 1{

?
M

where M is the number of training examples.

The algorithm is strikingly different from the EM algorithm for L-PCFGs, both in its
basic form, and in its consistency guarantees. The techniques developed in this paper are
quite general, and should be relevant to the development of spectral methods for estimation
in other models in NLP, for example alignment models for translation, synchronous PCFGs,
and so on. The tensor form of the inside-outside algorithm gives a new view of basic
calculations in PCFGs, and may itself lead to new models.

In this paper we derive the basic algorithm, and the theory underlying the algorithm.
In a companion paper (Cohen et al., 2013), we describe experiments using the algorithm to
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learn an L-PCFG for natural language parsing. In these experiments the spectral algorithm
gives models that are as accurate as the EM algorithm for learning in L-PCFGs. It is
significantly more efficient than the EM algorithm on this problem (9h52m of training time
vs. 187h12m), because after an SVD operation it requires a single pass over the data,
whereas EM requires around 20-30 passes before converging to a good solution.

2. Related Work

The most common approach for learning of models with latent variables is the expectation-
maximization (EM) algorithm (Dempster et al., 1977). Under mild conditions, the EM
algorithm is guaranteed to converge to a local maximum of the log-likelihood function. This
is, however, a relatively weak guarantee; there are in general no guarantees of consistency
for the EM algorithm, and no guarantees of sample complexity, for example within the PAC
framework (Valiant, 1984). This has led a number of researchers to consider alternatives to
the EM algorithm, which do have PAC-style guarantees.

One focus of this work has been on the problem of learning Gaussian mixture models.
In early work, Dasgupta (1999) showed that under separation conditions for the underlying
Gaussians, an algorithm with PAC guarantees can be derived. For more recent work in this
area, see for example Vempala and Wang (2004), and Moitra and Valiant (2010). These
algorithms avoid the issues of local maxima posed by the EM algorithm.

Another focus has been on spectral learning algorithms for hidden Markov models
(HMMs) and related models. This work forms the basis for the L-PCFG learning algo-
rithms described in this paper. This line of work started with the work of Hsu et al. (2009),
who developed a spectral learning algorithm for HMMs which recovers an HMM’s param-
eters, up to a linear transformation, using singular value decomposition and other simple
matrix operations. The algorithm builds on the idea of observable operator models for
HMMs due to Jaeger (2000). Following the work of Hsu et al. (2009), spectral learning
algorithms have been derived for a number of other models, including finite state transduc-
ers (Balle et al., 2011); split-head automaton grammars (Luque et al., 2012); reduced rank
HMMs in linear dynamical systems (Siddiqi et al., 2010); kernel-based methods for HMMs
(Song et al., 2010); and tree graphical models (Parikh et al., 2011; Song et al., 2011). There
are also spectral learning algorithms for learning PCFGs in the unsupervised setting (Bailly
et al., 2013).

Foster et al. (2012) describe an alternative algorithm to that of Hsu et al. (2009) for
learning of HMMs, which makes use of tensors. Our work also makes use of tensors, and
is closely related to the work of Foster et al. (2012); it is also related to the tensor-based
approaches for learning of tree graphical models described by Parikh et al. (2011) and Song
et al. (2011). In related work, Dhillon et al. (2012) describe a tensor-based method for
dependency parsing.

Bailly et al. (2010) describe a learning algorithm for weighted (probabilistic) tree au-
tomata that is closely related to our own work. Our approach leverages functions φ and
ψ that map inside and outside trees respectively to feature vectors (see section 7.2): for
example, φptq might track the context-free rule at the root of the inside tree t, or features
corresponding to larger tree fragments. Cohen et al. (2013) give definitions of φ and ψ
used in parsing experiments with L-PCFGs. In the special case where φ and ψ are identity
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functions, specifying the entire inside or outside tree, the learning algorithm of Bailly et al.
(2010) is the same as our algorithm. However, our work differs from that of Bailly et al.
(2010) in several important respects. The generalization to allow arbitrary functions φ and
ψ is important for the success of the learning algorithm, in both a practical and theoretical
sense. The inside-outside algorithm, derived in Figure 5, is not presented by Bailly et al.
(2010), and is critical in deriving marginals used in parsing. Perhaps most importantly, the
analysis of sample complexity, given in theorem 8 of this paper, is much tighter than the
sample complexity bound given by Bailly et al. (2010). The sample complexity bound in
theorem 4 of Bailly et al. (2010) suggests that the number of samples required to obtain
|p̂ptq ´ pptq| ď ε for some tree t of size N , and for some value ε, is exponential in N . In
contrast, we show that the number of samples required to obtain

ř

t |p̂ptq ´ pptq| ď ε where
the sum is over all trees of size N is polynomial in N . Thus our bound is an improvement
in a couple of ways: first, it applies to a sum over all trees of size N , a set of exponential
size; second, it is polynomial in N .

Spectral algorithms are inspired by the method of moments, and there are latent-variable
learning algorithms that use the method of moments, without necessarily resorting to spec-
tral decompositions. Most relevant to this paper is the work in Cohen and Collins (2014)
for estimating L-PCFGs, inspired by the work by Arora et al. (2013).

3. Notation

Given a matrix A or a vector v, we write AJ or vJ for the associated transpose. For any
integer n ě 1, we use rns to denote the set t1, 2, . . . nu.

We use Rmˆ1 to denote the space of m-dimensional column vectors, and R1ˆm to denote
the space of m-dimensional row vectors. We use Rm to denote the space of m-dimensional
vectors, where the vector in question can be either a row or column vector. For any row or
column vector y P Rm, we use diagpyq to refer to the pmˆmq matrix with diagonal elements
equal to yh for h “ 1 . . .m, and off-diagonal elements equal to 0. For any statement Γ, we
use vΓw to refer to the indicator function that is 1 if Γ is true, and 0 if Γ is false. For a
random variable X, we use ErXs to denote its expected value.

We will make use of tensors of rank 3:

Definition 1 A tensor C P Rpmˆmˆmq is a set of m3 parameters Ci,j,k for i, j, k P rms.
Given a tensor C, and vectors y1 P Rm and y2 P Rm, we define Cpy1, y2q to be the m-
dimensional row vector with components

rCpy1, y2qsi “
ÿ

jPrms,kPrms

Ci,j,ky
1
j y

2
k

Hence C can be interpreted as a function C : Rm ˆ Rm Ñ R1ˆm that maps vectors y1 and
y2 to a row vector Cpy1, y2q P R1ˆm.

In addition, we define the tensor Cp1,2q P Rpmˆmˆmq for any tensor C P Rpmˆmˆmq to
be the function Cp1,2q : Rm ˆ Rm Ñ Rmˆ1 defined as

rCp1,2qpy
1, y2qsk “

ÿ

iPrms,jPrms

Ci,j,ky
1
i y

2
j
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Similarly, for any tensor C we define Cp1,3q : Rm ˆ Rm Ñ Rmˆ1 as

rCp1,3qpy
1, y2qsj “

ÿ

iPrms,kPrms

Ci,j,ky
1
i y

2
k

Note that Cp1,2qpy
1, y2q and Cp1,3qpy

1, y2q are both column vectors.

For vectors x, y, z P Rm, xyJzJ is the tensor D P Rmˆmˆm where Di,j,k “ xiyjzk (this
is analogous to the outer product: rxyJsi,j “ xiyj).

We use || . . . ||F to refer to the Frobenius norm for matrices or tensors: for a matrix A,

||A||F “
b

ř

i,jpAi,jq
2, for a tensor C, ||C||F “

b

ř

i,j,kpCi,j,kq
2. For a matrix A we use

||A||2,o to refer to the operator (spectral) norm, ||A||2,o “ maxx‰0 ||Ax||2{||x||2.

4. L-PCFGs

In this section we describe latent-variable PCFGs (L-PCFGs), as used for example by
Matsuzaki et al. (2005) and Petrov et al. (2006). We first give the basic definitions for
L-PCFGs, and then describe the underlying motivation for them.

4.1 Basic Definitions

An L-PCFG is an 8-tuple pN , I,P,m, n, t, q, πq where:

• N is the set of non-terminal symbols in the grammar. I Ă N is a finite set of in-
terminals. P Ă N is a finite set of pre-terminals. We assume that N “ I Y P, and
I X P “ H. Hence we have partitioned the set of non-terminals into two subsets.

• rms is the set of possible hidden states.

• rns is the set of possible words.

• For all a P I, b P N , c P N , h1, h2, h3 P rms, we have a context-free rule aph1q Ñ

bph2q cph3q.

• For all a P P, h P rms, x P rns, we have a context-free rule aphq Ñ x.

• For all a P I, b P N , c P N , and h1, h2, h3 P rms, we have a parameter tpa Ñ
b c, h2, h3|h1, aq.

• For all a P P, x P rns, and h P rms, we have a parameter qpaÑ x|h, aq.

• For all a P I and h P rms, we have a parameter πpa, hq which is the probability of
non-terminal a paired with hidden variable h being at the root of the tree.

Note that each in-terminal a P I is always the left-hand-side of a binary rule a Ñ b c;
and each pre-terminal a P P is always the left-hand-side of a rule aÑ x. Assuming that the
non-terminals in the grammar can be partitioned this way is relatively benign, and makes
the estimation problem cleaner.
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S1

NP2

D3

the

N4

dog

VP5

V6

saw

P7

him

r1 “ S Ñ NP VP

r2 “ NP Ñ D N

r3 “ D Ñ the

r4 “ N Ñ dog

r5 “ VP Ñ V P

r6 “ V Ñ saw

r7 “ P Ñ him

Figure 1: s-tree, and its sequence of rules. (For convenience we have numbered the nodes
in the tree.)

For convenience we define the set of possible “skeletal rules” as R “ taÑ b c : a P I, b P
N , c P N u.

These definitions give a PCFG, with rule probabilities

ppaph1q Ñ bph2q cph3q|aph1qq “ tpaÑ b c, h2, h3|h1, aq

and
ppaphq Ñ x|aphqq “ qpaÑ x|h, aq

Remark 2 In the previous paper on this work (Cohen et al., 2012), we considered an L-
PCFG model where

ppaph1q Ñ bph2q cph3q|aph1qq “ ppaÑ b c|h1, aq ˆ pph2|h1, aÑ b cq ˆ pph3|h1, aÑ b cq

In this model the random variables h2 and h3 are assumed to be conditionally independent
given h1 and aÑ b c.

In this paper we consider a model where

ppaph1q Ñ bph2q cph3q|aph1qq “ tpaÑ b c, h2, h3, |h1, aq (1)

That is, we do not assume that the random variables h2 and h3 are independent when
conditioning on h1 and aÑ b c. This is also the model considered by Matsuzaki et al.
(2005) and Petrov et al. (2006).

Note however that the algorithms in this paper are the same as those in Cohen et al.
(2012): we have simply proved that the algorithms give consistent estimators for the model
form in Eq. 1.

As in usual PCFGs, the probability of an entire tree is calculated as the product of its
rule probabilities. We now give more detail for these calculations.

An L-PCFG defines a distribution over parse trees as follows. A skeletal tree (s-tree) is
a sequence of rules r1 . . . rN where each ri is either of the form a Ñ b c or a Ñ x. The
rule sequence forms a top-down, left-most derivation under a CFG with skeletal rules. See
Figure 1 for an example.

A full tree consists of an s-tree r1 . . . rN , together with values h1 . . . hN . Each hi is the
value for the hidden variable for the left-hand-side of rule ri. Each hi can take any value in
rms.
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Define ai to be the non-terminal on the left-hand-side of rule ri. For any i P rN s such

that ai P I (i.e., ai is an in-terminal, and rule ri is of the form aÑ b c) define h
p2q
i to be the

hidden variable value associated with the left child of the rule ri, and h
p3q
i to be the hidden

variable value associated with the right child. The probability mass function (PMF) over
full trees is then

ppr1 . . . rN , h1 . . . hN q “ πpa1, h1q ˆ
ź

i:aiPI
tpri, h

p2q
i , h

p3q
i |hi, aiq ˆ

ź

i:aiPP
qpri|hi, aiq (2)

The PMF over s-trees is ppr1 . . . rN q “
ř

h1...hN
ppr1 . . . rN , h1 . . . hN q.

In the remainder of this paper, we make use of a matrix form of parameters of an
L-PCFG, as follows:

• For each aÑ b c P R, we define T aÑb c P Rmˆmˆm to be the tensor with values

T aÑb ch1,h2,h3 “ tpaÑ b c, h2, h3|a, h1q

• For each a P P, x P rns, we define qaÑx P R1ˆm to be the row vector with values

rqaÑxsh “ qpaÑ x|h, aq

for h “ 1, 2, . . .m.

‚ For each a P I, we define the column vector πa P Rmˆ1 where rπash “ πpa, hq.

4.2 Application of L-PCFGs to Natural Language Parsing

L-PCFGs have been shown to be a very useful model for natural language parsing (Mat-
suzaki et al., 2005; Petrov et al., 2006). In this section we describe the basic approach.

We assume a training set consisting of sentences paired with parse trees, which are
similar to the skeletal tree shown in Figure 1. A naive approach to parsing would simply
read off a PCFG from the training set: the resulting grammar would have rules such as

S Ñ NP VP

NP Ñ D N

VP Ñ V NP

D Ñ the

N Ñ dog

and so on. Given a test sentence, the most likely parse under the PCFG can be found using
dynamic programming algorithms.

Unfortunately, simple “vanilla” PCFGs induced from treebanks such as the Penn tree-
bank (Marcus et al., 1993) typically give very poor parsing performance. A critical issue
is that the set of non-terminals in the resulting grammar (S, NP, VP, PP, D, N, etc.) is
often quite small. The resulting PCFG therefore makes very strong independence assump-
tions, failing to capture important statistical properties of parse trees.

In response to this issue, a number of PCFG-based models have been developed which
make use of grammars with refined non-terminals. For example, in lexicalized models
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(Collins, 1997; Charniak, 1997), non-terminals such as S are replaced with non-terminals
such as S-sleeps: the non-terminals track some lexical item (in this case sleeps), in addition
to the syntactic category. For example, the parse tree in Figure 1 would include rules

S-saw Ñ NP-dog VP-saw

NP-dog Ñ D-the N-dog

VP-saw Ñ V-saw P-him

D-the Ñ the

N-dog Ñ dog

V-saw Ñ saw

P-him Ñ him

In this case the number of non-terminals in the grammar increases dramatically, but
with appropriate smoothing of parameter estimates lexicalized models perform at much
higher accuracy than vanilla PCFGs.

As another example, Johnson (1998) describes an approach where non-terminals are
refined to also include the non-terminal one level up in the tree; for example rules such as

S Ñ NP VP

are replaced by rules such as

S-ROOT Ñ NP-S VP-S

Here NP-S corresponds to an NP non-terminal whose parent is S; VP-S corresponds to a VP

whose parent is S; S-ROOT corresponds to an S which is at the root of the tree. This simple
modification leads to significant improvements over a vanilla PCFG.

Klein and Manning (2003) develop this approach further, introducing annotations cor-
responding to parents and siblings in the tree, together with other information, resulting
in a parser whose performance is just below the lexicalized models of Collins (1997) and
Charniak (1997).

The approaches of Collins (1997), Charniak (1997), Johnson (1998), and Klein and
Manning (2003) all use hand-constructed rules to enrich the set of non-terminals in the
PCFG. A natural question is whether refinements to non-terminals can be learned auto-
matically. Matsuzaki et al. (2005) and Petrov et al. (2006) addressed this question through
the use of L-PCFGs in conjunction with the EM algorithm. The basic idea is to allow each
non-terminal in the grammar to have m possible latent values. For example, with m “ 8
we would replace the non-terminal S with non-terminals S-1, S-2, . . ., S-8, and we would
replace rules such as

S Ñ NP VP

with rules such as

S-4 Ñ NP-3 VP-2

The latent values are of course unobserved in the training data (the treebank), but they can
be treated as latent variables in a PCFG-based model, and the parameters of the model can
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be estimated using the EM algorithm. More specifically, given training examples consisting

of skeletal trees of the form tpiq “ pr
piq
1 , r

piq
2 , . . . , r

piq
Ni
q, for i “ 1 . . .M , where Ni is the number

of rules in the i’th tree, the log-likelihood of the training data is

M
ÿ

i“1

log ppr
piq
1 . . . r

piq
Ni
q “

M
ÿ

i“1

log
ÿ

h1...hNi

ppr
piq
1 . . . r

piq
Ni
, h1 . . . hNiq

where ppr
piq
1 . . . r

piq
Ni
, h1 . . . hNiq is as defined in Eq. 2. The EM algorithm is guaranteed to

converge to a local maximum of the log-likelihood function. Once the parameters of the
L-PCFG have been estimated, the algorithm of Goodman (1996) can be used to parse test-
data sentences using the L-PCFG: see Section 4.3 for more details. Matsuzaki et al. (2005)
and Petrov et al. (2006) show very good performance for these methods.

4.3 Basic Algorithms for L-PCFGs: Variants of the Inside-Outside Algorithm

Variants of the inside-outside algorithm (Baker, 1979) can be used for basic calculations in
L-PCFGs, in particular for calculations that involve marginalization over the values for the
hidden variables.

To be more specific, given an L-PCFG, two calculations are central:

1. For a given s-tree r1 . . . rN , calculate ppr1 . . . rN q “
ř

h1...hN
ppr1 . . . rN , h1 . . . hN q.

2. For a given input sentence x “ x1 . . . xN , calculate the marginal probabilities

µpa, i, jq “
ÿ

τPT pxq:pa,i,jqPτ
ppτq

for each non-terminal a P N , for each pi, jq such that 1 ď i ď j ď N . Here T pxq
denotes the set of all possible s-trees for the sentence x, and we write pa, i, jq P τ if
non-terminal a spans words xi . . . xj in the parse tree τ .

The marginal probabilities have a number of uses. Perhaps most importantly, for a
given sentence x “ x1 . . . xN , the parsing algorithm of Goodman (1996) can be used to find

arg max
τPT pxq

ÿ

pa,i,jqPτ

µpa, i, jq

This is the parsing algorithm used by Petrov et al. (2006), for example.1 In addition,
we can calculate the probability for an input sentence, ppxq “

ř

τPT pxq ppτq, as ppxq “
ř

aPI µpa, 1, Nq.
Figures 2 and 3 give the conventional (as opposed to tensor) form of inside-outside

algorithms for these two problems. In the next section we describe the tensor form. The
algorithm in Figure 2 uses dynamic programming to compute

ppr1 . . . rN q “
ÿ

h1...hN

ppr1 . . . rN , h1 . . . hN q

1. Note that finding arg maxτPT pxq ppτq, where ppτq “
ř

h1...hN
ppτ, h1 . . . hN q, is NP hard, hence the use

of Goodman’s algorithm. Goodman’s algorithm minimizes a different loss function when parsing: it
minimizes the expected number of spans which are incorrect in the parse tree according to the underlying
L-PCFG. We use it while restricting the output tree to be valid under the PCFG grammar extracted
from the treebank. There are variants of Goodman’s algorithm that do not follow this restriction.
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Inputs: s-tree r1 . . . rN , L-PCFG pN , I,P,m, n, t, q, πq, with parameters

• tpaÑ b c, h2, h3|h1, aq for all aÑ b c P R, h1, h2, h3 P rms.

• qpaÑ x|h, aq for all a P P, x P rns, h P rms

• πpa, hq for all a P I, h P rms.

Algorithm: (calculate the bi terms bottom-up in the tree)

• For all i P rN s such that ai P P, for all h P rms, bih “ qpri|h, aiq

• For all i P rN s such that ai P I, for all h P rms, bih “
ř

h2,h3
tpri, h2, h3|h, aiqb

β
h2
bγh3

where β is the index of the left child of node i in the tree, and γ is the index of the
right child.

Return:
ř

h b
1
hπpa1, hq “ ppr1 . . . rN q

Figure 2: The conventional inside-outside algorithm for calculation of ppr1 . . . rN q.

for a given parse tree r1 . . . rN . The algorithm in Figure 3 uses dynamic programming to
compute marginal terms.

5. Roadmap

The next three sections of the paper derive the spectral algorithm for learning of L-PCFGs.
The structure of these sections is as follows:

• Section 6 introduces a tensor form of the inside-outside algorithms for L-PCFGs. This
is analogous to the matrix form for hidden Markov models (see Jaeger (2000), and in
particular Lemma 1 of Hsu et al. (2009)), and is also related to the use of tensors in
spectral algorithms for directed graphical models (Parikh et al., 2011).

• Section 7.2 derives an observable form for the tensors required by algorithms of Sec-
tion 6. The implication of this result is that the required tensors can be estimated
directly from training data consisting of skeletal trees.

• Section 8 gives the algorithm for estimation of the tensors from a training sample,
and gives a PAC-style generalization bound for the approach.

6. Tensor Form of the Inside-Outside Algorithm

This section first gives a tensor form of the inside-outside algorithms for L-PCFGs, then
give an illustrative example.

6.1 The Tensor-Form Algorithms

Recall the two calculations for L-PCFGs introduced in Section 4.3:
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Inputs: Sentence x1 . . . xN , L-PCFG pN , I,P,m, n, t, q, πq, with parameters

• tpaÑ b c, h2, h3|h1, aq for all aÑ b c P R, h1, h2, h3 P rms.

• qpaÑ x|h, aq for all a P P, x P rns, h P rms

• πpa, hq for all a P I, h P rms.

Data structures:

• Each ᾱa,i,j P R1ˆm for a P N , 1 ď i ď j ď N is a row vector of inside terms.

• Each β̄a,i,j P Rmˆ1 for a P N , 1 ď i ď j ď N is a column vector of outside terms.

• Each µ̄pa, i, jq P R for a P N , 1 ď i ď j ď N is a marginal probability.

Algorithm:
(Inside base case) @a P P, i P rN s, h P rms ᾱa,i,ih “ qpaÑ xi|h, aq
(Inside recursion) @a P I, 1 ď i ă j ď N,h P rms

ᾱa,i,jh “

j´1
ÿ

k“i

ÿ

aÑb c

ÿ

h2Prms

ÿ

h3Prms

tpaÑ b c, h2, h3|h, aq ˆ ᾱ
b,i,k
h2

ˆ ᾱc,k`1,j
h3

(Outside base case) @a P I, h P rms β̄a,1,nh “ πpa, hq
(Outside recursion) @a P N , 1 ď i ď j ď N,h P rms

β̄a,i,jh “

i´1
ÿ

k“1

ÿ

bÑc a

ÿ

h2Prms

ÿ

h3Prms

tpbÑ c a, h3, h|h2, bq ˆ β̄
b,k,j
h2

ˆ ᾱc,k,i´1
h3

`

N
ÿ

k“j`1

ÿ

bÑa c

ÿ

h2Prms

ÿ

h3Prms

tpbÑ a c, h, h3|h2, bq ˆ β̄
b,i,k
h2

ˆ ᾱc,j`1,k
h3

(Marginals) @a P N , 1 ď i ď j ď N,

µ̄pa, i, jq “ ᾱa,i,j β̄a,i,j “
ÿ

hPrms

ᾱa,i,jh β̄a,i,jh

Figure 3: The conventional form of the inside-outside algorithm, for calculation of marginal
terms µ̄pa, i, jq.

1. For a given s-tree r1 . . . rN , calculate ppr1 . . . rN q.

2. For a given input sentence x “ x1 . . . xN , calculate the marginal probabilities

µpa, i, jq “
ÿ

τPT pxq:pa,i,jqPτ
ppτq

11
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Inputs: s-tree r1 . . . rN , L-PCFG pN , I,P,m, nq, parameters

• CaÑb c P Rpmˆmˆmq for all aÑ b c P R

• c8aÑx P Rp1ˆmq for all a P P, x P rns

• c1
a P Rpmˆ1q for all a P I.

Algorithm: (calculate the f i terms bottom-up in the tree)

• For all i P rN s such that ai P P, f i “ c8ri

• For all i P rN s such that ai P I, f i “ Cripfβ, fγq where β is the index of the left child
of node i in the tree, and γ is the index of the right child.

Return: f1c1
a1 “ ppr1 . . . rN q

Figure 4: The tensor form for calculation of ppr1 . . . rN q.

for each non-terminal a P N , for each pi, jq such that 1 ď i ď j ď N , where T pxq
denotes the set of all possible s-trees for the sentence x, and we write pa, i, jq P τ if
non-terminal a spans words xi . . . xj in the parse tree τ .

The tensor form of the inside-outside algorithms for these two problems are shown in
Figures 4 and 5. Each algorithm takes the following inputs:

1. A tensor CaÑb c P Rpmˆmˆmq for each rule aÑ b c.

2. A vector c8aÑx P Rp1ˆmq for each rule aÑ x.

3. A vector c1
a P Rpmˆ1q for each a P I.

The following theorem gives conditions under which the algorithms are correct:

Theorem 3 Assume that we have an L-PCFG with parameters qaÑx, T aÑb c, πa, and that
there exist matrices Ga P Rpmˆmq for all a P N such that each Ga is invertible, and such
that:

1. For all rules aÑ b c, CaÑb cpy1, y2q “
`

T aÑb cpy1Gb, y2Gcq
˘

pGaq´1

2. For all rules aÑ x, c8aÑx “ qaÑxpG
aq´1

3. For all a P I, c1
a “ Gaπa

Then: 1) The algorithm in Figure 4 correctly computes ppr1 . . . rN q under the L-PCFG. 2)
The algorithm in Figure 5 correctly computes the marginals µpa, i, jq under the L-PCFG.

Proof: see Section A.1. The next section (Section 6.2) gives an example that illustrates
the basic intuition behind the proof.

12



Spectral Learning of L-PCFGs: Algorithms and Sample Complexity

Remark 4 It is easily verified (see also the example in Section 6.2), that if the inputs to
the tensor-form algorithms are of the following form (equivalently, the matrices Ga for all
a are equal to the identity matrix):

1. For all rules aÑ b c, CaÑb cpy1, y2q “ T aÑb cpy1, y2q

2. For all rules aÑ x, c8aÑx “ qaÑx

3. For all a P I, c1
a “ πa

then the algorithms in Figures 4 and 5 are identical to the algorithms in Figures 2 and 3
respectively. More precisely, we have the identities

bih “ f ih

for the quantities in Figures 2 and 4, and

ᾱa,i,jh “ αa,i,jh

β̄a,i,jh “ βa,i,jh

for the quantities in Figures 3 and 5.
The theorem shows, however, that it is sufficient2 to have parameters that are equal to

T aÑb c, qaÑx and πa up to linear transforms defined by the matrices Ga for all non-terminals
a. The linear transformations add an extra degree of freedom that is crucial in what follows
in this paper: in the next section, on observable representations, we show that it is possible
to directly estimate values for CaÑb c, c8aÑx and c1

a that satisfy the conditions of the theorem,
but where the matrices Ga are not the identity matrix.

The key step in the proof of the theorem (see Section A.1) is to show that under the
assumptions of the theorem we have the identities

f i “ bipGaq´1

for Figures 2 and 4, and
αa,i,j “ ᾱa,i,jpGaq´1

βa,i,j “ Gaβ̄a,i,j

for Figures 3 and 5. Thus the quantities calculated by the tensor-form algorithms are equiv-
alent to the quantities calculated by the conventional algorithms, up to linear transforms.
The linear transforms and their inverses cancel in useful ways: for example in the output
from Figure 4 we have

µpa, i, jq “ αa,i,jβa,i,j “ ᾱa,i,jpGaq´1Gaβ̄a,i,j “
ÿ

h

ᾱa,i,jh β̄a,i,jh

showing that the marginals calculated by the conventional and tensor-form algorithms are
identical.

2. Assuming that the goal is to calculate ppr1 . . . rN q for any skeletal tree, or marginal terms µpa, i, jq.

13
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Inputs: Sentence x1 . . . xN , L-PCFG pN , I,P,m, nq, parameters CaÑb c P Rpmˆmˆmq for
all aÑ b c P R, c8aÑx P Rp1ˆmq for all a P P, x P rns, c1

a P Rpmˆ1q for all a P I.
Data structures:

• Each αa,i,j P R1ˆm for a P N , 1 ď i ď j ď N is a row vector of inside terms.

• Each βa,i,j P Rmˆ1 for a P N , 1 ď i ď j ď N is a column vector of outside terms.

• Each µpa, i, jq P R for a P N , 1 ď i ď j ď N is a marginal probability.

Algorithm:
(Inside base case) @a P P, i P rN s, αa,i,i “ c8aÑxi
(Inside recursion) @a P I, 1 ď i ă j ď N,

αa,i,j “

j´1
ÿ

k“i

ÿ

aÑb c

CaÑb cpαb,i,k, αc,k`1,jq

(Outside base case) @a P I, βa,1,n “ c1
a

(Outside recursion) @a P N , 1 ď i ď j ď N,

βa,i,j “
i´1
ÿ

k“1

ÿ

bÑc a

CbÑc ap1,2q pβ
b,k,j , αc,k,i´1q

`

N
ÿ

k“j`1

ÿ

bÑa c

CbÑa cp1,3q pβ
b,i,k, αc,j`1,kq

(Marginals) @a P N , 1 ď i ď j ď N,

µpa, i, jq “ αa,i,jβa,i,j “
ÿ

hPrms

αa,i,jh βa,i,jh

Figure 5: The tensor form of the inside-outside algorithm, for calculation of marginal terms
µpa, i, jq.

6.2 An Example

In the remainder of this section we give an example that illustrates how the algorithm in
Figure 4 is correct, and gives the basic intuition behind the proof in Section A.1. While we
concentrate on the algorithm in Figure 4, the intuition behind the algorithm in Figure 5 is
very similar.

Consider the skeletal tree in Figure 6. We will demonstrate how the algorithm in
Figure 4, under the assumptions in the theorem, correctly calculates the probability of
this tree. In brief, the argument involves the following steps:

14
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S1

NP2

D3

the

N4

dog

V5

sleeps

r1 “ S Ñ NP V

r2 “ NP Ñ D N

r3 “ D Ñ the

r4 “ N Ñ dog

r5 “ V Ñ sleeps

Figure 6: An s-tree, and its sequence of rules. (For convenience we have numbered the
nodes in the tree.)

1. We first show that the algorithm in Figure 4, when run on the tree in Figure 6,
calculates the probability of the tree as

CSÑNP V pCNPÑD N pc8DÑthe, c
8
NÑdogq, c

8
VÑsleepsqc

1
S

Note that this expression mirrors the structure of the tree, with c8aÑx terms for the
leaves, CaÑb c terms for each rule production aÑ b c in the tree, and a c1

S term for
the root.

2. We then show that under the assumptions in the theorem, the following identity holds:

CSÑNP V pCNPÑD N pc8DÑthe, c
8
NÑdogq, c

8
VÑsleepsqc

1
S

“ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqπ
S (3)

This follows because the Ga and pGaq´1 terms for the various non-terminals in the
tree cancel. Note that the expression in Eq. 3 again follows the structure of the tree,
but with qaÑx terms for the leaves, T aÑb c terms for each rule production aÑ b c in
the tree, and a πS term for the root.

3. Finally, we show that the expression in Eq. 3 implements the conventional dynamic-
programming method for calculation of the tree probability, as described in Eqs. 11–13
below.

We now go over these three points in detail. The algorithm in Figure 4 calculates the
following terms (each f i is an m-dimensional row vector):

f3 “ c8DÑthe

f4 “ c8NÑdog

f5 “ c8VÑsleeps

f2 “ CNPÑD N pf3, f4q

f1 “ CSÑNP V pf2, f5q

The final quantity returned by the algorithm is

f1c1
S “

ÿ

h

f1
hrc

1
Ssh

15
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Combining the definitions above, it can be seen that

f1c1
S “ CSÑNP V pCNPÑD N pc8DÑthe, c

8
NÑdogq, c

8
VÑsleepsqc

1
S

demonstrating that point 1 above holds.
Next, given the assumptions in the theorem, we show point 2, that is, that

CSÑNP V pCNPÑD N pc8DÑthe, c
8
NÑdogq, c

8
VÑsleepsqc

1
S

“ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqπ
S (4)

This follows because the Ga and pGaq´1 terms in the theorem cancel. More specifically, we
have

f3 “ c8DÑthe “ qDÑthepG
Dq´1 (5)

f4 “ c8NÑdog “ qNÑdogpG
N q´1 (6)

f5 “ c8VÑsleeps “ qVÑsleepspG
V q´1 (7)

f2 “ CNPÑD N pf3, f4q “ TNPÑD N pqDÑthe, qDÑdogqpG
NP q´1 (8)

f1 “ CSÑNP V pf2, f5q “ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqpG
Sq´1 (9)

Eqs. 5, 6, 7 follow by the assumptions in the theorem. Eq. 8 follows because by the assump-
tions in the theorem

CNPÑD N pf3, f4q “ TNPÑD N pf3GD, f4GN qpGNP q´1

hence

CNPÑD N pf3, f4q “ TNPÑD N pqDÑthepG
Dq´1GD, qNÑdogpG

N q´1GN qpGNP q´1

“ TNPÑD N pqDÑthe, qNÑdogqpG
NP q´1

Eq. 9 follows in a similar manner.
It follows by the assumption that c1

S “ GSπS that

CSÑNP V pCNPÑD N pc8DÑthe, c
8
NÑdogq, c

8
VÑsleepsqc

1
S

“ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqpG
Sq´1GSπS

“ TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsqπ
S (10)

The final step (point 3) is to show that the expression in Eq. 10 correctly calculates the
probability of the example tree. First consider the term TNPÑD N pqDÑthe, qNÑdogq—this
is an m-dimensional row vector, call this b2. By the definition of the tensor TNPÑD N , we
have

b2h “
“

TNPÑD N pqDÑthe, qNÑdogq
‰

h

“
ÿ

h2,h3

tpNP Ñ D N,h2, h3|h,NP q ˆ qpD Ñ the|h2, Dq ˆ qpN Ñ dog|h3, Nq(11)
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By a similar calculation, TSÑNP V pTNPÑD N pqDÑthe, qNÑdogq, qVÑsleepsq—call this vector
b1—is

b1h “
ÿ

h2,h3

tpS Ñ NP V, h2, h3|h, Sq ˆ b
2
h2 ˆ qpV Ñ sleeps|h3, V q (12)

Finally, the probability of the full tree is calculated as

ÿ

h

b1hπ
S
h (13)

It can be seen that the expression in Eq. 4 implements the calculations in Eqs. 11, 12
and 13, which are precisely the calculations used in the conventional dynamic programming
algorithm for calculation of the probability of the tree.

7. Estimating the Tensor Model

A crucial result is that it is possible to directly estimate parameters CaÑb c, c8aÑx and c1
a

that satisfy the conditions in Theorem 3, from a training sample consisting of s-trees (i.e.,
trees where hidden variables are unobserved). We first describe random variables underlying
the approach, then describe observable representations based on these random variables.

7.1 Random Variables Underlying the Approach

Each s-tree with N rules r1 . . . rN has N nodes. We will use the s-tree in Figure 1 as a
running example.

Each node has an associated rule: for example, node 2 in the tree in Figure 1 has the
rule NP Ñ D N. If the rule at a node is of the form aÑ b c, then there are left and right
inside trees below the left child and right child of the rule. For example, for node 2 we have
a left inside tree rooted at node 3, and a right inside tree rooted at node 4 (in this case the
left and right inside trees both contain only a single rule production, of the form a Ñ x;
however in the general case they might be arbitrary subtrees).

In addition, each node has an outside tree. For node 2, the outside tree is
S

NP VP

V

saw

P

him
The outside tree contains everything in the s-tree r1 . . . rN , excluding the subtree below
node i.

Our random variables are defined as follows. First, we select a random internal node,
from a random tree, as follows:

• Sample a full tree r1 . . . rN , h1 . . . hN from the PMF ppr1 . . . rN , h1 . . . hN q.

• Choose a node i uniformly at random from rN s.

If the rule ri for the node i is of the form aÑ b c, we define random variables as follows:

17
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• R1 is equal to the rule ri (e.g., NPÑ D N).

• T1 is the inside tree rooted at node i. T2 is the inside tree rooted at the left child of
node i, and T3 is the inside tree rooted at the right child of node i.

• H1, H2, H3 are the hidden variables associated with node i, the left child of node i,
and the right child of node i respectively.

• A1, A2, A3 are the labels for node i, the left child of node i, and the right child of node
i respectively. (E.g., A1 “ NP, A2 “ D, A3 “ N.)

• O is the outside tree at node i.

• B is equal to 1 if node i is at the root of the tree (i.e., i “ 1), 0 otherwise.

If the rule ri for the selected node i is of the form a Ñ x, we have random variables
R1, T1, H1, A1, O,B as defined above, but H2, H3, T2, T3, A2, and A3 are not defined.

We assume a function ψ that maps outside trees o to feature vectors ψpoq P Rd
1

. For
example, the feature vector might track the rule directly above the node in question, the
word following the node in question, and so on. We also assume a function φ that maps
inside trees t to feature vectors φptq P Rd. As one example, the function φ might be an
indicator function tracking the rule production at the root of the inside tree. Later we give
formal criteria for what makes good definitions of ψpoq and φptq. One requirement is that
d1 ě m and d ě m.

In tandem with these definitions, we assume projection matices Ua P Rpdˆmq and V a P

Rpd
1ˆmq for all a P N . We then define additional random variables Y1, Y2, Y3, Z as

Y1 “ pU
a1qJφpT1q Z “ pV

a1qJψpOq

Y2 “ pU
a2qJφpT2q Y3 “ pU

a3qJφpT3q

where ai is the value of the random variable Ai. Note that Y1, Y2, Y3, Z are all in Rm.

7.2 Observable Representations

Given the definitions in the previous section, our representation is based on the following
matrix, tensor and vector quantities, defined for all a P N , for all rules of the form aÑ b c,
and for all rules of the form aÑ x respectively:

Σa “ ErY1Z
J|A1 “ as

DaÑb c “ E
“

vR1 “ aÑ b cwZY J2 Y
J

3 |A1 “ a
‰

d8aÑx “ E
“

vR1 “ aÑ xwZJ|A1 “ a
‰

Assuming access to functions φ and ψ, and projection matrices Ua and V a, these quantities
can be estimated directly from training data consisting of a set of s-trees (see Section 8).

Our observable representation then consists of:

CaÑb cpy1, y2q “ DaÑb cpy1, y2qpΣaq´1 (14)

c8aÑx “ d8aÑxpΣ
aq´1 (15)

c1
a “ E rvA1 “ awY1|B “ 1s (16)
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We next introduce conditions under which these quantities satisfy the conditions in Theo-
rem 3.

The following definition will be important:

Definition 5 For all a P N , we define the matrices Ia P Rpdˆmq and Ja P Rpd
1ˆmq as

rIasi,h “ ErφipT1q | H1 “ h,A1 “ as

rJasi,h “ ErψipOq | H1 “ h,A1 “ as

In addition, for any a P N , we use γa P Rm to denote the vector with γah “ P pH1 “ h|A1 “

aq.

The correctness of the representation will rely on the following conditions being satisfied
(these are parallel to conditions 1 and 2 in Hsu et al. (2009)):

Condition 1 @a P N , the matrices Ia and Ja are of full rank (i.e., they have rank m).
For all a P N , for all h P rms, γah ą 0.

Condition 2 @a P N , the matrices Ua P Rpdˆmq and V a P Rpd
1ˆmq are such that the

matrices Ga “ pUaqJIa and Ka “ pV aqJJa are invertible.

We can now state the following theorem:

Theorem 6 Assume conditions 1 and 2 are satisfied. For all a P N , define Ga “ pUaqJIa.
Then under the definitions in Eqs. 14-16:

1. For all rules aÑ b c, CaÑb cpy1, y2q “
`

T aÑb cpy1Gb, y2Gcq
˘

pGaq´1

2. For all rules aÑ x, c8aÑx “ qaÑxpG
aq´1.

3. For all a P N , c1
a “ Gaπa

Proof: The following identities hold (see Section A.2):

DaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

diagpγaqpKaqJ (17)

d8aÑx “ qaÑxdiagpγaqpKaqJ (18)

Σa “ GadiagpγaqpKaqJ (19)

c1
a “ Gaπa (20)

Under conditions 1 and 2, Σa is invertible, and pΣaq´1 “ ppKaqJq´1pdiagpγaqq´1pGaq´1.
The identities in the theorem follow immediately.

This theorem leads directly to the spectral learning algorithm, which we describe in the
next section. We give a sketch of the approach here. Assume that we have a training set
consisting of skeletal trees (no latent variables are observed) generated from some under-
lying L-PCFG. Assume in addition that we have definitions of φ, ψ, Ua and V a such that
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conditions 1 and 2 are satisfied for the L-PCFG. Then it is straightforward to use the train-
ing examples to derive i.i.d. samples from the joint distribution over the random variables
pA1, R1, Y1, Y2, Y3, Z,Bq used in the definitions in Eqs. 14–16. These samples can be used
to estimate the quantities in Eqs. 14–16; the estimated quantities ĈaÑb c, ĉ8aÑx and ĉ1

a can
then be used as inputs to the algorithms in Figures 4 and 5. By standard arguments, the
estimates ĈaÑb c, ĉ8aÑx and ĉ1

a will converge to the values in Eqs. 14–16.
The following lemma justifies the use of an SVD calculation as one method for finding

values for Ua and V a that satisfy condition 2, assuming that condition 1 holds:

Lemma 7 Assume that condition 1 holds, and for all a P N define

Ωa “ ErφpT1q pψpOqq
J
|A1 “ as (21)

Then if Ua is a matrix of the m left singular vectors of Ωa corresponding to non-zero singular
values, and V a is a matrix of the m right singular vectors of Ωa corresponding to non-zero
singular values, then condition 2 is satisfied.

Proof sketch: It can be shown that Ωa “ IadiagpγaqpJaqJ. The remainder is similar to
the proof of lemma 2 in Hsu et al. (2009).

The matrices Ωa can be estimated directly from a training set consisting of s-trees,
assuming that we have access to the functions φ and ψ. Similar arguments to those of Hsu
et al. (2009) can be used to show that with a sufficient number of samples, the resulting
estimates of Ua and V a satisfy condition 2 with high probability.

8. Deriving Empirical Estimates

Figure 7 shows an algorithm that derives estimates of the quantities in Eqs 14, 15, and
16. As input, the algorithm takes a sequence of tuples prpi,1q, tpi,1q, tpi,2q, tpi,3q, opiq, bpiqq for
i P rM s.

These tuples can be derived from a training set consisting of s-trees τ1 . . . τM as follows:
‚ @i P rM s, choose a single node ji uniformly at random from the nodes in τi. Define

rpi,1q to be the rule at node ji. t
pi,1q is the inside tree rooted at node ji. If rpi,1q is of the form

aÑ b c, then tpi,2q is the inside tree under the left child of node ji, and tpi,3q is the inside
tree under the right child of node ji. If rpi,1q is of the form aÑ x, then tpi,2q “ tpi,3q “ NULL.
opiq is the outside tree at node ji. b

piq is 1 if node ji is at the root of the tree, 0 otherwise.
Under this process, assuming that the s-trees τ1 . . . τM are i.i.d. draws from the distribu-

tion ppτq over s-trees under an L-PCFG, the tuples prpi,1q, tpi,1q, tpi,2q, tpi,3q, opiq, bpiqq are i.i.d.
draws from the joint distribution over the random variables R1, T1, T2, T3, O,B defined in
the previous section.

The algorithm first computes estimates of the projection matrices Ua and V a: following
Lemma 7, this is done by first deriving estimates of Ωa, and then taking SVDs of each Ωa.
The matrices are then used to project inside and outside trees tpi,1q, tpi,2q, tpi,3q, opiq down to
m-dimensional vectors ypi,1q, ypi,2q, ypi,3q, zpiq; these vectors are used to derive the estimates
of CaÑb c, c8aÑx, and c1

a. For example, the quantities

DaÑb c “ E
“

vR1 “ aÑ b cwZY J2 Y
J

3 |A1 “ a
‰

d8aÑx “ E
“

vR1 “ aÑ xwZJ|A1 “ a
‰
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can be estimated as

D̂aÑb c “ δa ˆ
M
ÿ

i“1

vrpi,1q “ aÑ b cwzpiqpypi,2qqJpypi,3qqJ

d̂8aÑx “ δa ˆ
M
ÿ

i“1

vrpi,1q “ aÑ xwpzpiqqJ

where δa “ 1{
řM
i“1vai “ aw, and we can then set

ĈaÑb cpy1, y2q “ D̂aÑb cpy1, y2qpΣ̂aq´1

ĉ8aÑx “ d̂8aÑxpΣ̂
aq´1

We now state a PAC-style theorem for the learning algorithm. First, we give the fol-
lowing assumptions and definitions:

• We have an L-PCFG pN , I,P,m, n, t, q, πq. The samples used in Figures 7 and 8 are
i.i.d. samples from the L-PCFG (for simplicity of analysis we assume that the two
algorithms use independent sets of M samples each: see above for how to draw i.i.d.
samples from the L-PCFG).

• We have functions φptq P Rd and ψpoq P Rd
1

that map inside and outside trees respec-
tively to feature vectors. We will assume without loss of generality that for all inside
trees ||φptq||2 ď 1, and for all outside trees ||ψpoq||2 ď 1.

• See Section 7.2 for a definition of the random variables pR1, T1, T2, T3, A1, A2, A3, H1, H2, H3, O,Bq,
and the joint distribution over them.

• For all a P N define
Ωa “ ErφpT1qpψpOqq

J|A1 “ as

and define Ia P Rdˆm to be the matrix with entries

rIasi,h “ ErφipT1q|A1 “ a,H1 “ hs

• Define
σ “ min

a
σmpΩ

aq

and
ξ “ min

a
σmpI

aq

where σmpAq is the m’th largest singular value of the matrix A.

• Define
γ “ min

a,b,cPN ,h1,h2,h3Prms
tpaÑ b c, h2, h3|a, h1q

• Define T pa,Nq to be the set of of all skeletal trees with N binary rules (hence 2N ` 1
rules in total), with non-terminal a at the root of the tree.
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The following theorem gives a bound on the sample complexity of the algorithm:

Theorem 8 There exist constants C1, C2, C3, C4, C5 such that the following holds. Pick
any ε ą 0, any value for δ such that 0 ă δ ă 1, and any integer N such that N ě 1.
Define L “ log 2|N |`1

δ . Assume that the parameters ĈaÑb c, ĉ8aÑx and ĉ1
a are output from

the algorithm in Figure 7, with values for Na, Ma and R such that

@a P I, Na ě
C1LN

2m2

γ2ε2ξ4σ4
@a P P, Na ě

C2LN
2m2n

ε2σ4

@a P I,Ma ě
C3LN

2m2

γ2ε2ξ4σ2
@a P P,Ma ě

C4LN
2m2

ε2σ2

R ě
C5LN

2m3

ε2σ2

It follows that with probability at least 1´ δ, for all a P N ,

ÿ

tPT pa,Nq
|p̂ptq ´ pptq| ď ε

where p̂ptq is the output from the algorithm in Figure 4 with parameters ĈaÑb c, ĉ8aÑx and
ĉ1
a, and pptq is the probability of the skeletal tree under the L-PCFG.

See Appendix B for a proof.
The method described of selecting a single tuple prpi,1q, tpi,1q, tpi,2q, tpi,3q, opiq, bpiqq for each

s-tree ensures that the samples are i.i.d., and simplifies the analysis underlying Theorem 8.
In practice, an implementation should use all nodes in all trees in training data; by Rao-
Blackwellization we know such an algorithm would be better than the one presented, but
the analysis of how much better would be challenging (Bickel and Doksum, 2006; section
3.4.2). It would almost certainly lead to a faster rate of convergence of p̂ to p.

9. Discussion

There are several applications of the method. The most obvious is parsing with L-PCFGs
(Cohen et al., 2013).3 The approach should be applicable in other cases where EM has
traditionally been used, for example in semi-supervised learning. Latent-variable HMMs
for sequence labeling can be derived as special case of our approach, by converting tagged
sequences to right-branching skeletal trees (Stratos et al., 2013).

In terms of efficiency, the first step of the algorithm in Figure 7 requires an SVD cal-
culation: modern methods for calculating SVDs are very efficient (e.g., see Dhillon et al.,
2011 and Tropp et al., 2009). The remaining steps of the algorithm require manipulation
of tensors or vectors, and require OpMm3q time.

The sample complexity of the method depends on the minimum singular values of Ωa;
these singular values are a measure of how well correlated ψ and φ are with the unobserved

3. Parameters can be estimated using the algorithm in Figure 7; for a test sentence x1 . . . xN we can first
use the algorithm in Figure 5 to calculate marginals µpa, i, jq, then use the algorithm of Goodman (1996)
to find arg maxτPT pxq

ř

pa,i,jqPτ µpa, i, jq.
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Inputs: Training examples prpi,1q, tpi,1q, tpi,2q, tpi,3q, opiq, bpiqq for i P t1 . . .Mu, where rpi,1q

is a context free rule; tpi,1q, tpi,2q and tpi,3q are inside trees; opiq is an outside tree; and
bpiq “ 1 if the rule is at the root of tree, 0 otherwise. A function φ that maps inside trees
t to feature-vectors φptq P Rd. A function ψ that maps outside trees o to feature-vectors
ψpoq P Rd

1

.

Definitions: For each a P N , define Na “
řM
i“1vai “ aw. Define R “

řM
i“1vb

piq “ 1w.
(These definitions will be used in Theorem 8.)

Algorithm:
Define ai to be the non-terminal on the left-hand side of rule rpi,1q. If rpi,1q is of the form
aÑ b c, define bi to be the non-terminal for the left-child of rpi,1q, and ci to be the non-
terminal for the right-child.
(Step 0: Singular Value Decompositions)

• Use the algorithm in Figure 8 to calculate matrices Ûa P Rpdˆmq, V̂ a P Rpd
1ˆmq and

Σ̂a P Rpmˆmq for each a P N .

(Step 1: Projection)

• For all i P rM s, compute ypi,1q “ pÛaiqJφptpi,1qq.

• For all i P rM s such that rpi,1q is of the form aÑ b c, compute ypi,2q “ pÛ biqJφptpi,2qq
and ypi,3q “ pÛ ciqJφptpi,3qq.

• For all i P rM s, compute zpiq “ pV̂ aiqJψpopiqq.

(Step 2: Calculate Correlations)

• For each a P N , define δa “ 1{
řM
i“1vai “ aw

• For each rule aÑ b c, compute D̂aÑb c “ δa ˆ
řM
i“1vr

pi,1q “

aÑ b cwzpiqpypi,2qqJpypi,3qqJ

• For each rule aÑ x, compute d̂8aÑx “ δa ˆ
řM
i“1vr

pi,1q “ aÑ xwpzpiqqJ

(Step 3: Compute Final Parameters)

• For all aÑ b c, ĈaÑb cpy1, y2q “ D̂aÑb cpy1, y2qpΣ̂aq´1

• For all aÑ x, ĉ8aÑx “ d̂8aÑxpΣ̂
aq´1

• For all a P I, ĉ1
a “

řM
i“1vai“a and bpiq“1wypi,1q

řM
i“1vb

piq“1w

Figure 7: The spectral learning algorithm.
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Inputs: Identical to algorithm in Figure 7.
Definition: For each a P N , define Ma “

řM
i“1vai “ aw (this definition will be used in

Theorem 8).
Algorithm:
‚ For each a P N , compute Ω̂a P Rpdˆd

1q as

Ω̂a “

řM
i“1vai “ awφptpi,1qqpψpopiqqqJ

řM
i“1vai “ aw

and calculate a singular value decomposition of Ω̂a.
‚ For each a P N , define Ûa P Rmˆd to be a matrix of the left singular vectors of Ω̂a

corresponding to the m largest singular values. Define V̂ a P Rmˆd
1

to be a matrix of
the right singular vectors of Ω̂a corresponding to the m largest singular values. Define
Σ̂a “ pÛaqJΩ̂aV̂ a.

Figure 8: Singular value decompositions.

hidden variable H1. Experimental work is required to find a good choice of values for ψ
and φ for parsing.

For simplicity we have considered the case where each non-terminal has the same num-
ber, m, of possible hidden values. It is simple to generalize the algorithms to the case where
the number of hidden values varies depending on the non-terminal; this is important in
applications such as parsing.
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Appendix A. Proofs of Theorems 1 and 2

This section gives proofs of theorems 3 and 6.
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A.1 Proof of Theorem 3

The key idea behind the proof of Theorem 3 is to show that the algorithms in Figures 4 and 5
compute the same quantities as the conventional version of the inside outside algorithms,
as shown in Figures 2 and 3.

First, the following lemma leads directly to the correctness of the algorithm in Figure 4:

Lemma 9 Assume that conditions 1-3 of Theorem 3 are satisfied, and that the input to the
algorithm in Figure 4 is an s-tree r1 . . . rN . Define ai for i P rN s to be the non-terminal
on the left-hand-side of rule ri. For all i P rN s, define the row vector bi P Rp1ˆmq to be
the vector computed by the conventional inside-outside algorithm, as shown in Figure 2,
on the s-tree r1 . . . rN . Define f i P Rp1ˆmq to be the vector computed by the tensor-based
inside-outside algorithm, as shown in Figure 4, on the s-tree r1 . . . rN .

Then for all i P rN s, f i “ bipGpaiqq´1. It follows immediately that

f1c1
a1 “ b1pGpa1qq´1Ga1πa1 “ b1πa1 “

ÿ

h

b1hπpa, hq

Hence the output from the algorithms in Figures 2 and 4 is the same, and it follows that
the tensor-based algorithm in Figure 4 is correct.

This lemma shows a direct link between the vectors f i calculated in the algorithm, and
the terms bih, which are terms calculated by the conventional inside algorithm: each f i is a
linear transformation (through Gai) of the corresponding vector bi.
Proof: The proof is by induction.

First consider the base case. For any leaf—i.e., for any i such that ai P P—we have
bih “ qpri|h, aiq, and it is easily verified that f i “ bipGpaiqq´1.

The inductive case is as follows. For all i P rN s such that ai P I, by the definition in
the algorithm,

f i “ Cripfβ, fγq

“

´

T ripfβGaβ , fγGaγ q
¯

pGaiq´1

Assuming by induction that fβ “ bβpGpaβqq´1 and fγ “ bγpGpaγqq´1, this simplifies to

f i “
´

T ripbβ, bγq
¯

pGaiq´1 (22)

By the definition of the tensor T ri ,
”

T ripbβ, bγq
ı

h
“

ÿ

h2Prms,h3Prms

tpri, h2, h3|ai, hqb
β
h2
bγh3

But by definition (see the algorithm in Figure 2),

bih “
ÿ

h2Prms,h3Prms

tpri, h2, h3|ai, hqb
β
h2
bγh3

hence bi “ T ripbβ, bγq and the inductive case follows immediately from Eq. 22.
Next, we give a similar lemma, which implies the correctness of the algorithm in Figure 5:
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Lemma 10 Assume that conditions 1-3 of Theorem 3 are satisfied, and that the input to
the algorithm in Figure 5 is a sentence x1 . . . xN . For any a P N , for any 1 ď i ď j ď N ,
define ᾱa,i,j P Rp1ˆmq, β̄a,i,j P Rpmˆ1q and µ̄pa, i, jq P R to be the quantities computed
by the conventional inside-outside algorithm in Figure 3 on the input x1 . . . xN . Define
αa,i,j P Rp1ˆmq, βa,i,j P Rpmˆ1q and µpa, i, jq P R to be the quantities computed by the
algorithm in Figure 3.

Then for all i P rN s, αa,i,j “ ᾱa,i,jpGaq´1 and βa,i,j “ Gaβ̄a,i,j. It follows that for all
pa, i, jq,

µpa, i, jq “ αa,i,jβa,i,j “ ᾱa,i,jpGaq´1Gaβ̄a,i,j “ ᾱa,i,j β̄a,i,j “ µ̄pa, i, jq

Hence the outputs from the algorithms in Figures 3 and 5 are the same, and it follows that
the tensor-based algorithm in Figure 5 is correct.

Thus the vectors αa,i,j and βa,i,j are linearly related to the vectors ᾱa,i,j and β̄a,i,j , which
are the inside and outside terms calculated by the conventional form of the inside-outside
algorithm.

Proof: The proof is by induction, and is similar to the proof of Lemma 9.
First, we prove that the inside terms satisfy the relation αa,i,j “ ᾱa,i,jpGaq´1.
The base case of the induction is as follows. By definiton, for any a P P, i P rN s, h P rms,

we have ᾱa,i,ih “ qpa Ñ xi|h, aq. We also have for any a P P, i P rN s, αa,i,i “ c8aÑxi “
qaÑxipG

aq´1. It follows directly that αa,i,i “ ᾱa,i,ipGaq´1 for any a P P, i P rN s.
The inductive case is as follows. By definition, we have @a P I, 1 ď i ă j ď N,h P rms

ᾱa,i,jh “

j´1
ÿ

k“i

ÿ

b,c

ÿ

h2Prms

ÿ

h3Prms

tpaÑ b c, h2, h3|h, aq ˆ ᾱ
b,i,k
h2

ˆ ᾱc,k`1,j
h3

We also have @a P I, 1 ď i ă j ď N,

αa,i,j “

j´1
ÿ

k“i

ÿ

b,c

CaÑb cpαb,i,k, αc,k`1,jq (23)

“

j´1
ÿ

k“i

ÿ

b,c

´

T aÑb cpαb,i,kGb, αc,k`1,jGcq
¯

pGaq´1 (24)

“

j´1
ÿ

k“i

ÿ

b,c

´

T aÑb cpᾱb,i,k, ᾱc,k`1,j
¯

pGaq´1 (25)

“ ᾱa,i,jpGaq´1 (26)

Eq. 23 follows by the definitions in algorithm 5. Eq. 24 follows by the assumption in the
theorem that

CaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

pGaq´1

Eq. 25 follows because by the inductive hypothesis, αb,i,k “ ᾱb,i,kpGbq´1 and αc,k`1,j “

ᾱc,k`1,jpGcq´1. Eq. 26 follows because
”

T aÑb cpᾱb,i,k, ᾱc,k`1,jq

ı

h
“

ÿ

h2,h3

tpaÑ b c, h2, h3|h, aqᾱ
b,i,k
h2

ᾱc,k`1,j
h3
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hence
j´1
ÿ

k“i

ÿ

b,c

T aÑb cpᾱb,i,k, ᾱc,k`1,jq “ ᾱa,i,j

We now turn the outside terms, proving that βa,i,j “ Gaβ̄a,i,j . The proof is again by
induction.

The base case is as follows. By the definitions in the algorithms, for all a P I, βa,1,n “
c1
a “ Gaπa, and for all a P I, h P rms, β̄a,1,nh “ πpa, hq. It follows directly that for all a P I,
βa,1,n “ Gaβ̄a,1,n.

The inductive case is as follows. By the definitions in the algorithms, we have @a P
N , 1 ď i ď j ď N,h P rms

β̄a,i,jh “ γ1,a,i,j
h ` γ2,a,i,j

h

where

γ1,a,i,j
h “

i´1
ÿ

k“1

ÿ

bÑc a

ÿ

h2Prms

ÿ

h3Prms

tpbÑ c a, h3, h|h2, bq ˆ β̄
b,k,j
h2

ˆ ᾱc,k,i´1
h3

γ2,a,i,j
h “

N
ÿ

k“j`1

ÿ

bÑa c

ÿ

h2Prms

ÿ

h3Prms

tpbÑ a c, h, h3|h2, bq ˆ β̄
b,i,k
h2

ˆ ᾱc,j`1,k
h3

and @a P N , 1 ď i ď j ď N,

βa,i,j “
i´1
ÿ

k“1

ÿ

bÑc a

CbÑc ap1,2q pβ
b,k,j , αc,k,i´1q `

N
ÿ

k“j`1

ÿ

bÑa c

CbÑa cp1,3q pβ
b,i,k, αc,j`1,kq

Critical identities are

i´1
ÿ

k“1

ÿ

bÑc a

CbÑc ap1,2q pβ
b,k,j , αc,k,i´1q “ Gaγ1,a,i,j (27)

N
ÿ

k“j`1

ÿ

bÑa c

CbÑa cp1,3q pβ
b,i,k, αc,j`1,kq “ Gaγ2,a,i,j (28)

from which βa,i,j “ Gaβ̄a,i,j follows immediately.

The identities in Eq. 29 and 30 are proved through straightforward algebraic manipula-
tion, based on the following properties:

• By the inductive hypothesis, βb,k,j “ Gbβ̄b,k,j and βb,i,k “ Gbβ̄b,i,k.

• By correctness of the inside terms, as shown earlier in this proof, αc,k,i´1 “ ᾱc,k,i´1pGcq´1,
αc,j`1,k “ ᾱc,j`1,kpGcq´1.

• By the assumptions in the theorem,

CaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

pGaq´1
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It follows (see Lemma 11) that

CbÑc ap1,2q pβ
b,k,j , αc,k,i´1q “ Ga

´

T bÑc ap1,2q ppG
bq´1βb,k,j , αc,k,i´1Gcq

¯

“ Ga
´

T bÑc ap1,2q pβ̄
b,k,j , ᾱc,k,i´1q

¯

and

CbÑa cp1,3q pβ
b,i,k, αc,j`1,kq “ Ga

´

T bÑa cp1,3q pβ̄
b,i,k, ᾱc,j`1,kq

¯

Finally, we give the following Lemma, as used above:

Lemma 11 Assume we have tensors C P Rmˆmˆm and T P Rmˆmˆm such that for any
y2, y3,

Cpy2, y3q “
`

T py2A, y3Bq
˘

D

where A,B,D are matrices in Rmˆm. Then for any y1, y2,

Cp1,2qpy
1, y2q “ B

`

Tp1,2qpDy
1, y2Aq

˘

(29)

and for any y1, y3,
Cp1,3qpy

1, y3q “ A
`

Tp1,3qpDy
1, y3Bq

˘

(30)

Proof: Consider first Eq. 29. We will prove the following statement:

@y1, y2, y3, y3Cp1,2qpy
1, y2q “ y3B

`

Tp1,2qpDy
1, y2Aq

˘

This statement is equivalent to Eq. 29.
First, for all y1, y2, y3, by the assumption that Cpy2, y3q “

`

T py2A, y3Bq
˘

D,

Cpy2, y3qy1 “ T py2A, y3BqDy1

hence
ÿ

i,j,k

Ci,j,ky
1
i y

2
j y

3
k “

ÿ

i,j,k

Ti,j,kz
1
i z

2
j z

3
k (31)

where z1 “ Dy1, z2 “ y2A, z3 “ y3B.
In addition, it is easily verified that

y3Cp1,2qpy
1, y2q “

ÿ

i,j,k

Ci,j,ky
1
i y

2
j y

3
k (32)

y3B
`

Tp1,2qpDy
1, y2Aq

˘

“
ÿ

i,j,k

Ti,j,kz
1
i z

2
j z

3
k (33)

where again z1 “ Dy1, z2 “ y2A, z3 “ y3B. Combining Eqs. 31, 32, and 33 gives

y3Cp1,2qpy
1, y2q “ y3B

`

Tp1,2qpDy
1, y2Aq

˘

thus proving the identity in Eq. 29.
The proof of the identity in Eq. 30 is similar, and is omitted for brevity.
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A.2 Proof of the Identity in Eq. 17

We now prove the identity in Eq. 17, repeated here:

DaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

diagpγaqpKaqJ

Recall that

DaÑb c “ E
“

vR1 “ aÑ b cwZY J2 Y
J

3 |A1 “ a
‰

or equivalently

DaÑb c
i,j,k “ E rvR1 “ aÑ b cwZiY2,jY3,k|A1 “ as

Using the chain rule, and marginalizing over hidden variables, we have

DaÑb c
i,j,k “ E rvR1 “ aÑ b cwZiY2,jY3,k|A1 “ as

“
ÿ

h1,h2,h3Prms

ppaÑ b c, h1, h2, h3|aqE rZiY2,jY3,k|R1 “ aÑ b c, h1, h2, h3s

By definition, we have

ppaÑ b c, h1, h2, h3|aq “ γah1 ˆ tpaÑ b c, h2, h3|h1, aq

In addition, under the independence assumptions in the L-PCFG, and using the definitions
of Ka and Ga, we have

E rZiY2,jY3,k|R1 “ aÑ b c, h1, h2, h3s

“ E rZi|A1 “ a,H1 “ h1s ˆE rY2,j |A2 “ b,H2 “ h2s ˆE rY3,k|A3 “ c,H3 “ h3s

“ Ka
i,h1 ˆG

b
j,h2 ˆG

c
k,h3

Putting this all together gives

DaÑb c
i,j,k “

ÿ

h1,h2,h3Prms

γah1 ˆ tpaÑ b c, h2, h3|h1, aq ˆK
a
i,h1 ˆG

b
j,h2 ˆG

c
k,h3

“
ÿ

h1Prms

γah1 ˆK
a
i,h1 ˆ

ÿ

h2,h3Prms

tpaÑ b c, h2, h3|h1, aq ˆG
b
j,h2 ˆG

c
k,h3

By the definition of tensors,

rDaÑb cpy1, y2qsi

“
ÿ

j,k

DaÑb c
i,j,k y1

j y
2
k

“
ÿ

h1Prms

γah1 ˆK
a
i,h1 ˆ

ÿ

h2,h3Prms

tpaÑ b c, h2, h3|h1, aq ˆ

˜

ÿ

j

y1
jG

b
j,h2

¸

ˆ

˜

ÿ

k

y2
kG

c
k,h3

¸

“
ÿ

h1Prms

γah1 ˆK
a
i,h1 ˆ

”

T aÑb cpy1Gb, y2Gcq
ı

h1
(34)
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The last line follows because by the definition of tensors,
”

T aÑb cpy1Gb, y2Gcq
ı

h1
“

ÿ

h2,h3

T aÑb ch1,h2,h3

”

y1Gb
ı

h2

“

y2Gc
‰

h3

and we have

T aÑb ch1,h2,h3 “ tpaÑ b c, h2, h3|h1, aq
”

y1Gb
ı

h2
“

ÿ

j

y1
jG

b
j,h2

“

y2Gc
‰

h3
“

ÿ

k

y2
kG

c
k,h3

Finally, the required identity

DaÑb cpy1, y2q “

´

T aÑb cpy1Gb, y2Gcq
¯

diagpγaqpKaqJ

follows immediately from Eq. 34.

A.3 Proof of the Identity in Eq. 18

We now prove the identity in Eq. 18, repeated below:

d8aÑx “ qaÑxdiagpγaqpKaqJ

Recall that by definition

d8aÑx “ E
“

vR1 “ aÑ xwZJ|A1 “ a
‰

or equivalently
rd8aÑxsi “ E rvR1 “ aÑ xwZi|A1 “ as

Marginalizing over hidden variables, we have

rd8aÑxsi “ E rvR1 “ aÑ xwZi|A1 “ as

“
ÿ

h

ppaÑ x, h|aqErZi|H1 “ h,R1 “ aÑ xs

By definition, we have

ppaÑ x, h|aq “ γahqpaÑ x|h, aq “ γah rqaÑxsh

In addition, by the independence assumptions in the L-PCFG, and the definition of Ka,

ErZi|H1 “ h,R1 “ aÑ xs “ ErZi|H1 “ h,A1 “ as “ Ka
i,h

Putting this all together gives

rd8aÑxsi “
ÿ

h

γah rqaÑxshK
a
i,h

from which the required identity

d8aÑx “ qaÑxdiagpγaqpKaqJ

follows immediately.
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A.4 Proof of the Identity in Eq. 19

We now prove the identity in Eq. 19, repeated below:

Σa “ GadiagpγaqpKaqJ

Recall that by definition

Σa “ ErY1Z
J|A1 “ as

or equivalently

rΣasi,j “ ErY1,iZj |A1 “ as

Marginalizing over hidden variables, we have

rΣasi,j “ ErY1,iZj |A1 “ as

“
ÿ

h

pph|aqErY1,iZj |H1 “ h,A1 “ as

By definition, we have

γah “ pph|aq

In addition, under the independence assumptions in the L-PCFG, and using the definitions
of Ka and Ga, we have

ErY1,iZj |H1 “ h,A1 “ as “ ErY1,i|H1 “ h,A1 “ as ˆErZj |H1 “ h,A1 “ as

“ Gai,hK
a
j,h

Putting all this together gives

rΣasi,j “
ÿ

h

γahG
a
i,hK

a
j,h

from which the required identity

Σa “ GadiagpγaqpKaqJ

follows immediately.

A.5 Proof of the Identity in Eq. 20

We now prove the identity in Eq. 19, repeated below:

c1
a “ Gaπa

Recall that by definition

c1
a “ E rvA1 “ awY1|B “ 1s

or equivalently

rc1
asi “ E rvA1 “ awY1,i|B “ 1s
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Marginalizing over hidden variables, we have

rc1
asi “ E rvA1 “ awY1,i|B “ 1s

“
ÿ

h

P pA1 “ a,H1 “ h|B “ 1qE rY1,i|A1 “ a,H1 “ h,B “ 1s

By definition we have

P pA1 “ a,H1 “ h|B “ 1q “ πpa, hq

By the independence assumptions in the PCFG, and the definition of Ga, we have

E rY1,i|A1 “ a,H1 “ h,B “ 1s “ E rY1,i|A1 “ a,H1 “ hs

“ Gai,h

Putting this together gives

rc1
asi “

ÿ

h

πpa, hqGai,h

from which the required identity

c1
a “ Gaπa

follows.

Appendix B. Proof of Theorem 8

In this section we give a proof of Theorem 8. The proof relies on three lemmas:

• In Section B.1 we give a lemma showing that if estimates ĈaÑb c, ĉaÑx and ĉ1
a are

close (up to linear transforms) to the parameters of an L-PCFG, then the distribution
defined by the parameters is close (in l1-norm) to the distribution under the L-PCFG.

• In Section B.2 we give a lemma showing that if the estimates Ω̂a, D̂aÑb c, d̂8aÑx and
ĉ1
a are close to the underlying values being estimated, the estimates ĈaÑb c, ĉaÑx and
ĉ1
a are close (up to linear transforms) to the parameters of the underlying L-PCFG.

• In Section B.3 we give a lemma relating the number of samples in the estimation
algorithm to the errors in estimating Ω̂a, D̂aÑb c, d̂8aÑx and ĉ1

a.

The proof of the theorem is then given in Section B.4.

B.1 A Bound on How Errors Propagate

In this section we show that if estimated tensors and vectors ĈaÑb c, ĉ8aÑx and ĉ1
a are

sufficiently close to the underlying parameters T aÑb c, q8aÑx, and πa of an L-PCFG, then
the distribution under the estimated parameters will be close to the distribution under the
L-PCFG. Section B.1.1 gives assumptions and definitions; Lemma 12 then gives the main
lemma; the remainder of the section gives proofs.
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B.1.1 Assumptions and Definitions

We make the following assumptions:

• Assume we have an L-PCFG with parameters T aÑb c P Rmˆmˆm, qaÑx P Rm, πa P Rm.
Assume in addition that we have an invertible matrix Ga P Rmˆm for each a P N .
For convenience define Ha “ pGaq´1 for all a P N .

• We assume that we have parameters ĈaÑb c P Rmˆmˆm, ĉ8aÑx P R1ˆm and ĉ1
a P Rmˆ1

that satisfy the following conditions:

– There exists some constant ∆ ą 0 such that for all rules aÑ b c, for all y1, y2 P

Rm,
||ĈaÑb cpy1Hb, y2HcqGa ´ T aÑb cpy1, y2q||8 ď ∆||y1||2||y

2||2

– There exists some constant δ ą 0 such that for all a P P, for all h P rms,
ÿ

x

|rĉ8aÑxG
ash ´ rq

8
aÑxsh| ď δ

– There exists some constant κ ą 0 such that for all a,

||pGaq´1ĉ1
a ´ π

a||1 ď κ

We give the following definitions:

• For any skeletal tree t “ r1 . . . rN , define biptq to be the quantities computed by the
algorithm in Figure 4 with t together with the parameters T aÑb c, q8aÑx, πa as input.
Define f̂ iptq to be the quantities computed by the algorithm in Figure 4 with t together
with the parameters ĈaÑb c, ĉ8aÑx, ĉ1

a as input. Define

ξptq “ b1ptq

and
ξ̂ptq “ f1ptqGa1

where as before a1 is the non-terminal on the left-hand-side of rule r1. Define p̂ptq to
be the value returned by the algorithm in Figure 4 with t together with the parameters
ĈaÑb c, ĉ8aÑx, ĉ1

a as input. Define pptq to be the value returned by the algorithm in
Figure 4 with t together with the parameters T aÑb c, q8aÑx, πa as input.

• Define T pa,Nq to be the set of of all skeletal trees with N binary rules (hence 2N ` 1
rules in total), with non-terminal a at the root of the tree.

• Define

Zpa, h,Nq “
ÿ

tPT pa,Nq
rξptqsh

Dpa, h,Nq “
ÿ

tPT pa,Nq
|rξ̂ptqsh ´ rξptqsh|

F pa, h,Nq “
Dpa, h,Nq

Zpa, h,Nq
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• Define
γ “ min

a,b,cPN ,h1,h2,h3Prms
tpaÑ b c, h2, h3|a, h1q

• For any aÑ b c define the tensor

T̂ aÑb cpy1, y2q “ ĈaÑb cpy1Hb, y2HcqGa

B.1.2 The Main Lemma

Lemma 12 Given the assumptions in Section B.1.1, for any a, N ,

ÿ

tPT pa,Nq
|p̂ptq ´ pptq| ď m

˜

p1` κq

ˆ

1`
∆

γ

˙N´1

p1` δqN ´ 1

¸

(35)

Proof: By definition we have

ÿ

tPT pa,Nq
|p̂ptq ´ pptq| “

ÿ

tPT pa,Nq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

h

rξ̂ptqshrpG
aq´1ĉ1

ash ´
ÿ

h

rξptqshπ
a
h

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

tPT pa,Nq

ˇ

ˇ

ˇ
ξ̂ptq ¨ rpGaq´1ĉ1

as ´ ξptq ¨ π
a
ˇ

ˇ

ˇ

Define e “ rpGaq´1ĉ1
as ´ π

a. Then by the triangle inequality,

ˇ

ˇ

ˇ
ξ̂ptq ¨ rpGaq´1ĉ1

as ´ ξptq ¨ π
a
ˇ

ˇ

ˇ
ď |ξ̂ptq ¨ πa ´ ξptq ¨ πa| ` |ξ̂ptq ¨ e´ ξptq ¨ e| ` |ξptq ¨ e|

We bound each of the three terms as follows:

|ξ̂ptq ¨ πa ´ ξptq ¨ πa| ď ||ξ̂ptq ´ ξptq||8||π
a||1 ď ||ξ̂ptq ´ ξptq||8 ď

ÿ

h

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh|

ˇ

ˇ

ˇ

|ξ̂ptq ¨ e´ ξptq ¨ e| ď ||ξ̂ptq ´ ξptq||8||e||1 ď κ||ξ̂ptq ´ ξptq||8 ď κ
ÿ

h

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh|

ˇ

ˇ

ˇ

|ξptq ¨ e| ď ||ξptq||8||e||1 ď κ||ξptq||8 ď κ
ÿ

h

rξptqsh

Combining the above gives

ÿ

tPT pa,Nq
|p̂ptq ´ pptq| ď p1` κq

ÿ

tPT pa,Nq

ÿ

h

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh|

ˇ

ˇ

ˇ
` κ

ÿ

tPT pa,Nq

ÿ

h

rξptqsh

ď mp1` κq

˜

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸

`mκ

“ m

˜

p1` κq

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸
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where the second inequality follows because
ř

tPT pa,Nq
ř

hrξptqsh ď m, and because Lemma 13
gives

ÿ

tPT pa,Nq

ÿ

h

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh|

ˇ

ˇ

ˇ
ď m

˜

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸

We now give a crucial lemma used in the previous proof:

Lemma 13 Given the assumptions in Section B.1.1, for any a, h, N ,

Dpa, h,Nq “
ÿ

tPT pa,Nq

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh

ˇ

ˇ

ˇ
ď Zpa, h,Nq

˜

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸

Proof: A key identity is the following, which holds for anyN ě 1 (recall that F pa, h,Nq “
Dpa, h,Nq{Zpa, h,Nq):

F pa, h,Nq

ď ´1`
N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

gpa, b, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

`∆
Y pNq

Zpa, h,Nq

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

hpb, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

(36)

where

gpa, b, c, k, h1, h2q “ tpaÑ b c, h1, h2|a, hq
Zpb, h1, kqZpc, h2, N ´ k ´ 1q

Zpa, h,Nq

Y pNq “

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

Zpb, h1, kqZpc, h2, N ´ k ´ 1q

hpb, c, k, h1, h2q “
Zpb, h1, kqZpc, h2, N ´ k ´ 1q

Y pNq

The proof of Eq. 36 is in Section B.1.3. Note that we have

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

gpa, b, c, k, h1, h2q “

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

hpb, c, k, h1, h2q “ 1

The rest of the proof follows through induction. For the base case, for N “ 0 we have

Zpa, h,Nq

˜

ˆ

1`
∆

γ

˙N

p1` δqN`1 ´ 1

¸

“ δZpa, h,Nq “ δ
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where the last equality follows because Zpa, h, 0q “ 1 for any a, h. For N “ 0 we also have

ÿ

tPT pa,Nq

ˇ

ˇ

ˇ
rξ̂ptqsh ´ rξptqsh

ˇ

ˇ

ˇ
“

ÿ

x

|rĉ8aÑxG
ash ´ rq

8
aÑxsh| ď δ

The base case follows immediately.

For the recursive case, by the inductive hypothesis we have

1` F pb, h1, kq ď

ˆ

1`
∆

γ

˙k

p1` δqk`1

and

1` F pc, h2, N ´ k ´ 1q ď

ˆ

1`
∆

γ

˙N´k´1

p1` δqN´k

It follows from Eq. 36 that

F pa, h,Nq ď ´1`

ˆ

1`∆
Y pNq

Zpa, h,Nq

˙ˆ

1`
∆

γ

˙N´1

p1` δqN`1

ď ´1`

ˆ

1`
∆

γ

˙N

p1` δqN`1

where the second inequality follows because

Y pNq

Zpa, h,Nq
“

řN´1
k“0

ř

b,c

ř

h1,h2
Zpb, h1, kqZpc, h2, N ´ k ´ 1q

řN´1
k“0

ř

b,c

ř

h1,h2
tpaÑ b c, h1, h2|a, hqZpb, h1, kqZpc, h2, N ´ k ´ 1q

ď
1

γ

This completes the proof.

B.1.3 Proof of Eq. 36

Any tree t P T pa,Nq where N ě 1 can be decomposed into the following: 1) A choice b, c,
implying the rule aÑ b c is at the root; 2) A choice of 0 ď k ď N´1, implying that the tree
dominated by b is of size k, the tree dominated by c is of size N ´1´k; 3) A choice of trees
t1 P T pb, kq and t2 P T pc,N ´ 1´ kq. The resulting tree has ξhptq “ T aÑb ch pξpt1q, ξpt2qq.
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Define dptq “ ξptq ´ ξ̂ptq. We then have the following:

ÿ

tPT pa,Nq
|ξ̂hptq ´ ξhptq|

“

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

|T̂ aÑb ch pξ̂pt1q, ξ̂pt2qq ´ T
aÑb c
h pξpt1q, ξpt2qq|

ď ∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

p||ξpt1q||2 ` ||dpt1q||2qp||ξpt2q||2 ` ||dpt2q||2q

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

|T aÑb ch pξpt1q, dpt2qq|

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

|T aÑb ch pdpt1q, ξpt2qq|

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

|T aÑb ch pdpt1q, dpt2qq| (37)

The inequality follows because by Lemma 14,

|T̂ aÑb ch pξ̂pt1q, ξ̂pt2qq ´ T
aÑb c
h pξpt1q, ξpt2qq|

ď ∆p||ξpt1q||2 ` ||dpt1q||2qp||ξpt2q||2 ` ||dpt2q||2q

`|T aÑb ch pξpt1q, dpt2qq| ` |T
aÑb c
h pdpt1q, ξpt2qq| ` |T

aÑb c
h pdpt1q, dpt2qq|

We first derive an upper bound on the last three terms of Eq. 37. Note that we have
the identity

Zpa, h,Nq

“

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq
ÿ

t1PT pb,kq
ξh1pt1q

ÿ

t2PT pc,N´1´kq

ξh2pt2q

“

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hqZpb, h1, kqZpc, h2, N ´ k ´ 1q
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It follows that

N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

`

|T aÑb c
h pξpt1q, dpt2qq| ` |T

aÑb c
h pdpt1q, ξpt2qq| ` |T

aÑb c
h pdpt1q, dpt2qq|

˘

“

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq
ÿ

t1PT pb,kq

ξpt1qh1

ÿ

t2PT pc,N´1´kq

|dpt2qh2
|

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq
ÿ

t1PT pb,kq

|dpt1qh1 |
ÿ

t2PT pc,N´1´kq

ξpt2qh2

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq
ÿ

t1PT pb,kq

|dpt1qh1
|

ÿ

t2PT pc,N´1´kq

|dpt2qh2
|

“

¨

˝

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hq
ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

pξpt1qh1
` |dpt1qh1

|qpξpt2qh2
` |dpt2qh2

|q

˛

‚

´Zpa, h,Nq

“

˜

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hqpZpb, h1, kq `Dpb, h1, kqqpZpc, h2, N ´ k ´ 1q `Dpc, h2, N ´ k ´ 1qq

¸

´Zpa, h,Nq

“

˜

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

tpaÑ b c, h1, h2|a, hqZpb, h1, kqZpc, h2, N ´ k ´ 1qp1`
Dpb, h1, kq

Zpb, h1, kq
qp1`

Dpc, h2, N ´ k ´ 1q

Zpc, h2, N ´ k ´ 1q

¸

´Zpa, h,Nq

“ Zpa, h,Nq

˜

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

gpa, b, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

¸

´Zpa, h,Nq (38)

where gpa, b, c, k, h1, h2q “
tpaÑb c,h1,h2|a,hqZpb,h1,kqZpc,h2,N´k´1q

Zpa,h,nq .

We next derive a bound on the first term as follows:

∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

p||ξpt1q||2 ` ||dpt1q||2qp||ξpt2q||2 ` ||dpt2q||2q

ď ∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

t1PT pb,kq

ÿ

t2PT pc,N´1´kq

p||ξpt1q||1 ` ||dpt1q||1qp||ξpt2q||1 ` ||dpt2q||1q

“ ∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

pZpb, h1, kq `Dpb, h1, kqqpZpc, h2, N ´ k ´ 1q `Dpc, h2, N ´ k ´ 1qq

“ ∆
N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

Zpb, h1, kqZpc, h2, N ´ k ´ 1qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

“ ∆Y pNq
N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

hpk, b, c, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq (39)
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where

hpk, b, c, h1, h2q “
Zpb, h1, kqZpc, h2, N ´ k ´ 1q

Y pNq

and Y pNq “
řN´1
k“0

ř

b,c

ř

h1,h2
Zpb, h1, kqZpc, h2, N ´ k ´ 1q.

Combining Eqs. 37, 38 and 39 gives the inequality in Eq. 36, repeated below:

F pa, h,Nq

ď ´1

`

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

gpa, b, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

`∆
Y pNq

Zpa, h,Nq

N´1
ÿ

k“0

ÿ

b,c

ÿ

h1,h2

hpb, c, k, h1, h2qp1` F pb, h1, kqqp1` F pc, h2, N ´ k ´ 1qq

The following lemma was used in the previous proof:

Lemma 14 Assume we have tensors T̂ and T and that there is some constant ∆ such that
for any y1, y2 P Rm,

||T̂ py1, y2q ´ T py1, y2q||8 ď ∆||y1||2||y
2||2

Then for any y1, y2, ŷ1, ŷ2, for any h, it follows that

|T̂hpŷ
1, ŷ2q ´ Thpy

1, y2q| ď ∆p||y1||2 ` ||d
1||2qp||y

2||2 ` ||d
2||2q

`|Thpy
1, d2q| ` |Thpd

1, d2q| ` |Thpd
1, y2q|

where d1 “ ŷ1 ´ y1, and d2 “ ŷ2 ´ y2.

Proof: Define
ĝpy1q “ T̂hpy

1, ŷ2q

gpy1q “ Thpy
1, y2q

Define d1 “ pŷ1 ´ y1q, d2 “ pŷ2 ´ y2q. For any v P Rm,

|ĝpvq ´ gpvq| “ |T̂hpv, ŷ
2q ´ Thpv, y

2q|

ď |T̂hpv, y
2q ´ Thpv, y

2q| ` |T̂hpv, d
2q ´ Thpv, d

2q| ` |Thpv, d
2q|

We can then derive the following bound:

|T̂hpŷ
1, ŷ2q ´ Thpy

1, y2q| “ |ĝpŷ1q ´ gpy1q|

ď |ĝpy1q ´ gpy1q| ` |ĝpd1q ´ gpd1q| ` |gpd1q|

ď |T̂hpy
1, y2q ´ Thpy

1, y2q| ` |T̂hpy
1, d2q ´ Thpy

1, d2q| ` |Thpy
1, d2q|

`|T̂hpd
1, y2q ´ Thpd

1, y2q| ` |T̂hpd
1, d2q ´ Thpd

1, d2q| ` |Thpd
1, d2q|

`|Thpd
1, y2q|

ď ∆p||y1||2 ` ||d
1||2qp||y

2||2 ` ||d
2||2q

`|Thpy
1, d2q| ` |Thpd

1, d2q| ` |Thpd
1, y2q|
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B.2 Relating ∆, δ, κ to Estimation Errors

We now give a lemma that relates estimation errors in the algorithm to the values for ∆, δ
and κ as defined in the previous section.

Throughout this section, in addition to the estimates D̂aÑb c, d̂8aÑx, Σ̂a, ĈaÑb c, ĉ8aÑx,
ĉ1
a computed by the algorithm in Figure 7, we define quantities

Σa “ ErY1Z
J|A1 “ as

DaÑb c “ E
“

vR1 “ aÑ b cwZY J2 Y
J

3 |A1 “ a
‰

d8aÑx “ E
“

vR1 “ aÑ xwZJ|A1 “ a
‰

CaÑb cpy1, y2q “ DaÑb cpy1, y2qpΣaq´1

c8aÑx “ d8aÑxpΣ
aq´1

c1
a “ E rvA1 “ awY1|B “ 1s

where

Y1 “ pÛ
a1qJφpT1q Z “ pV̂

a1qJψpOq

Y2 “ pÛ
a2qJφpT2q Y3 “ pÛ

a3qJφpT3q

Note that these definitions are identical to those given in Section 7.2, with the additional
detail that the projection matrices used to define random variables Y1, Y2, Y3, Z are Ûa and
V̂ a, that is, the projection matrices estimated in the first step of the algorithm in Figure 7.

The lemma is as follows:

Lemma 15 Assume that under a run of the algorithm in Figure 7 there are constants
ε1Ω, ε

2
Ω, εD, εd, επ such that

@a P P, ||Ω̂a ´ Ωa||F ď ε1Ω

@a P I, ||Ω̂a ´ Ωa||F ď ε2Ω

@aÑ b c, ||D̂aÑb c ´DaÑb c||F ď εD

@a P P,
c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||

2
2 ď εd

@a, ||ĉ1
a ´ c

1
a||2 ď επ

Assume in addition that ε1Ω ď minaPP
σmpΩaq

3 and ε2Ω ď minaPI
σmpΩaq

3 . For all a define

Ga “ pÛaqJIa and Ha “ pGaq´1. Then:

• For all a, Ga is invertible.

• For all y1, y2 P Rm, for all rules of the form aÑ b c

||ĈaÑb cpy1Hb, y2HcqGa ´ CaÑb cpy1Hb, y2HcqGa||8 ď ∆||y1||2||y
2||2

where

∆ “
16

3

1

σmpIbqσmpIcq

ˆ

ε2Ω
σmpΩaq2

`
εD

3σmpΩaq

˙
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• For all a P P, for all h P rms,

ÿ

x

|rĉ8aÑxG
ash ´ rc

8
aÑxG

ash| ď δ

where

δ “ 4

ˆ

ε1Ω
σmpΩaq2

`
εd
?
n

3σmpΩaq

˙

• For all a,

||pGaq´1ĉ1
a ´ pG

aq´1c1
a||1 ď κ

where

κ “
2
?

3

?
m

σmpΩaq
επ

B.2.1 Proof of Lemma 15

We first prove three necessary lemmas, then give a proof of Lemma 15.

Lemma 16 Assume we have vectors and matrices d P R1ˆm, Σ P Rmˆm, d̂ P R1ˆm,
Σ̂ P Rmˆm, U P Rdˆm, I P Rdˆm. We assume that Σ, Σ̂, and pUJIq are invertible.

In addition define

c “ dΣ´1

ĉ “ d̂Σ̂´1

Ga “ UJI

We assume:

• For h “ 1 . . .m, ||Ih||2 ď 1, where Ih is the h’th column of Ia.

• ||U ||2,o ď 1 where ||U ||2,o is the spectral norm of the matrix U .

• ||Σ̂´ Σ||2,o ď ε1

It follows that

||ĉGa ´ cGa||8 ď
1`

?
5

2

ε1||d̂||2

mintσmpΣq, σmpΣ̂qu2
`
||d̂´ d||2
σmpΣq
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Proof:

||ĉGa ´ cGa||8

“ ||pĉ´ cqUJI||8

(By definition Ga “ UJI)

ď ||pĉ´ cqUJ||2

(By ||Ih||2 ď 1)

ď ||ĉ´ c||2

(By ||U ||2,o ď 1)

“ ||d̂Σ̂´1 ´ dΣ´1||2

(By definitions of c, ĉ)

ď ||d̂pΣ̂´1 ´ Σ´1q||2 ` ||pd̂´ dqΣ
´1||2

(By triangle inequality)

ď ||d̂||2||Σ̂
´1 ´ Σ´1||2,o ` ||d̂´ d||2||Σ

´1||2,o

(By definition of ||.||2,o)

ď ||d̂||2
1`

?
5

2

ε1

mintσmpΣq, σmpΣ̂qu2
`
||d̂´ d||2
σmpΣq

(By Lemma 23 of Hsu et al. (2009), and ||Σ´1||2,o “ 1{σmpΣq)

Lemma 17 Assume we have vectors c, ĉ P Rmˆ1, and we have a matrix Ga P Rmˆm that
is invertible. It follows that

||pGaq´1ĉ´ pGaq´1c||1 ď

?
m||ĉ´ c||2
σmpGaq

Proof:

||pGaq´1ĉ´ pGaq´1c||1 ď
?
m||pGaq´1ĉ´ pGaq´1c||2 ď

?
m||ĉ´ c||2
σmpGaq

The first inequality follows because ||.||1 ď
?
m||.||2. The second inequality follows because

||pGaq´1||2,o “ 1{σmpG
aq.

Lemma 18 Assume we have matrices and tensors D P Rmˆmˆm, Σ P Rmˆm, D̂ P Rmˆmˆm,
Σ̂ P Rmˆm, U P Rdˆm, I P Rdˆm, Gb P Rmˆm, Gc P Rmˆm. We assume that Σ, Σ̂, Gb, Gc,
and UJI are invertible.

In addition define

Cpy1, y2q “ Dpy1, y2qΣ´1

Ĉpy1, y2q “ D̂py1, y2qΣ̂´1

Ga “ UJI

Hb “ pGbq´1

Hc “ pGcq´1

We assume:
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• For h “ 1 . . .m, ||Ih||2 ď 1, where Ih is the h’th column of Ia.

• ||U ||2,o ď 1

• ||Σ̂´ Σ||2,o ď ε1

It follows that for any y1, y2 P Rm,

||Ĉpy1Hb, y2HcqGa ´ Cpy1Hb, y2HcqGa||8

ď
||y1||2||y

2||2

σmpGbqσmpGcq

˜

1`
?

5

2
ˆ

ε1||D̂||F

mintσmpΣq, σmpΣ̂qu2
`
||D̂ ´D||F
σmpΣq

¸

Proof:

||Ĉpy1Hb, y2HcqGa ´ Cpy1Hb, y2HcqGa||8

ď ||D̂py1Hb, y2Hcq||2
1`

?
5

2

ε1

mintσmpΣq, σmpΣ̂qu2
`
||D̂py1Hb, y2Hcq ´Dpy1Hb, y2Hcq||2

σmpΣq

(By Lemma 16, using d̂ “ D̂py1Hb, y2Hcq, d “ Dpy1Hb, y2Hcq.)

ď ||y1Hb||2||y
2Hc||2

˜

||D̂||F
1`

?
5

2

ε1

mintσmpΣq, σmpΣ̂qu2
`
||D̂ ´D||F
σmpΣq

¸

(By ||Dpv1, v2q||2 ď ||D||F ||v
1||2||v

2||2 for any tensor D, vectors v1, v2.)

ď
||y1||2||y

2||2

σmpGbqσmpGcq

˜

||D̂||F
1`

?
5

2

ε1

mintσmpΣq, σmpΣ̂qu2
`
||D̂ ´D||F
σmpΣq

¸

(By Hb “ pGbq´1 hence ||Hb||2,o “ 1{σmpG
bq. Similar for Hc.)

Proof of Lemma 15: By Lemma 9 of Hsu et al. (2009), assuming that εΩ ď mina
σmpΩaq

3
gives for all a

σmpΣ̂
aq ě

2

3
σmpΩ

aq

σmpΣ
aq ě

?
3

2
σmpΩ

aq

σmpG
aq ě

?
3

2
σmpI

aq

The condition that σmpI
aq ą 0 implies that σmpG

aq ą 0 and hence Ga is invertible. The
values for ∆ and κ follow from lemmas 18 and and 17 respectively.

The value for δ is derived as follows. By Lemma 16 we have for any rule aÑ x, for any
h P rms,

|rĉ8aÑxG
ash ´ rc

8
aÑxG

ash| ď
1`

?
5

2

ε1||d̂
8
aÑx||2

mintσmpΣaq, σmpΣ̂aqu2
`
||d̂8aÑx ´ d

8
aÑx||2

σmpΣaq
(40)

By definition

d̂8aÑx “

˜

řM
i“1vr

pi,1q “ aÑ xw
řM
i“1vai “ aw

¸

ˆ

˜

řM
i“1vr

pi,1q “ aÑ xwpzpiqqJ
řM
i“1vr

pi,1q “ aÑ xw

¸
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In addition zpiq “ pV̂ aiqJψptpi,1qq and ||V̂ ai ||2,o ď 1, ||ψptpi,1qq||2 ď 1, hence ||zpiq||2 ď 1, and

||d̂8aÑx||2 ď

řM
i“1vr

pi,1q “ aÑ xw
řM
i“1vai “ aw

It follows that
ÿ

x

||d̂8aÑx||2 ď 1 (41)

In addition we have

ÿ

x

||d̂8aÑx ´ d
8
aÑx||2 ď

?
n
c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||

2
2 ď

?
nεd (42)

Combining Eqs. 41, 42 and 40 gives for any a P P, for any h P rms,

ÿ

x

|rĉ8aÑxG
ash ´ rc

8
aÑxG

ash| ď
1`

?
5

2

ε1

mintσmpΣaq, σmpΣ̂aqu2
`

?
n
b

ř

x ||d̂
8
aÑx ´ d

8
aÑx||

2
2

σmpΣaq

from which the lemma follows.

B.3 Estimation Errors

The next lemma relates estimation errors to the number of samples in the algorithm in
Figure 4:

Lemma 19 Consider the algorithm in Figure 7. With probability at least 1´δ, the following
statements hold:

@a P I,
d

ÿ

b,c

||D̂aÑb c ´DaÑb c||2F ď

c

1

Ma
`

d

2

Ma
log

2|N | ` 1

δ

@a P P,
c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||

2
2 ď

c

1

Ma
`

d

2

Ma
log

2|N | ` 1

δ

@a P N , ||Ω̂a ´ Ωa||F ď

c

1

Na
`

d

2

Na
log

2|N | ` 1

δ

c

ÿ

a

||ĉ1
a ´ c

1
a||

2
2 ď

c

1

R
`

c

2

R
log

2|N | ` 1

δ
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B.3.1 Proof of Lemma 19

We first need the following lemma:

Lemma 20 Assume i.i.d. random vectors X1 . . . XN where each Xi P Rd, and for all i with
probability 1, ||Xi||2 ď 1. Define

q “ ErXis

for all i and

Q̂ “

řN
i“1Xi

N

Then for any ε ą 0,

Pp||Q̂´ q||2 ě 1{
?
N ` εq ď e´Nε

2{2

Proof: The proof is very similar to the proof of proposition 19 of Hsu et al. (2009).
Consider two random samples x1 . . . xn and y1 . . . yn where xi “ yi for all i ‰ k. define

q̂ “

řN
i“1 xi
N

and

p̂ “

řN
i“1 yi
N

Then

||q̂ ´ q||2 ´ ||p̂´ q||2 ď ||q̂ ´ p̂||2 “
||xk ´ yk||2

N
ď
||xk||2 ` ||yk||2

N
ď

2

N

It follows through McDiarmid’s inequality (McDiarmid, 1989) that

Prp||Q̂´ q||2 ě E||Q̂´ q||2 ` εq ď e´Nε
2{2
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In addition,

E
”

||Q̂´ q||2

ı

“ E

«

||

řN
i“1Xi

N
´ q||2

ff

“
1

N
E

«

||

N
ÿ

i“1

pXi ´ qq||2

ff

ď
1

N

g

f

f

eE

«

||

N
ÿ

i“1

pXi ´ qq||22

ff

(By Jensen’s inequality)

“
1

N

g

f

f

e

N
ÿ

i“1

E
“

||pXi ´ qq||22
‰

(By independence of the Xi’s)

“
1

N

g

f

f

e

N
ÿ

i“1

E
“

||Xi||
2
2

‰

´N ||q||22

ď
1

N

b

Np1´ ||q||22q

(By ||Xi||2 ď 1.)

ď
1
?
N

which completes the proof.

Proof of Lemma 19: For each aÑ b c, i, j, k P rms, define a random variable

AaÑb ci,j,k “ vR1 “ aÑ b cwZiY
2
j Y

3
k

It follows that

DaÑb c
i,j,k “ ErAaÑb ci,j,k |A1 “ as

Note that

||Z||2 “ ||pV
aqJψpOq||2 ď 1

because ||V a||2,o ď 1, and ||ψpOq||2 ď 1. Similarly ||Y 2||2 ď 1 and ||Y 3||2 ď 1.

In addition we have for all a P I,

ÿ

b,c

m
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“1

|AaÑb ci,j,k |2 “
ÿ

b,c

m
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“1

|Zi|
2|Y 2

j |
2|Y 3

k |
2vR1 “ aÑ b cw2

“ ||Z||22||Y
2||22||Y

3||22p
ÿ

b,c

vR1 “ aÑ b cw2q ď 1
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It follows by an application of Lemma 20 that for the definitions of DaÑb c and D̂aÑb c in
Figure 7, for all a,

Pp

d

ÿ

b,c

ÿ

i,j,k

|D̂aÑb c
i,j,k ´DaÑb c

i,j,k |2 ě 1{
a

Ma ` ε1q ď e´Maε21{2

or equivalently,

P

¨

˝

d

ÿ

b,c

||D̂aÑb c ´DaÑb c||2F ě
1

?
Ma

`

d

2

Ma
log

2|N | ` 1

δ

˛

‚ď
δ

2|N | ` 1
(43)

By a similar argument, if for each a P P, x P rns, i P rms we define the random variable

BaÑx
i “ ZivR1 “ aÑ xw

then

d8aÑx “ ErBaÑx
i |A1 “ as

and
ÿ

x

m
ÿ

i“1

|BaÑx
i |2 “

ÿ

x

m
ÿ

i“1

|Zi|
2vR1 “ aÑ xw2 ď 1

It follows by an application of Lemma 20 that for the definitions of d8aÑx and d̂8aÑx in
Figure 7, for all a,

Pp

d

ÿ

x

ÿ

i

|rd̂8aÑxsi ´ rd
8
aÑxsi|

2 ě 1{
a

Na ` ε2q ď e´Maε22{2

or equivalently

P

˜

c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||

2
2 ě

1
?
Ma

`

d

2

Ma
log

2|N | ` 1

δ

¸

ď
δ

2|N | ` 1
(44)

A similar argument can be used to show that for all a, for the definitions of Ωa and Ω̂a

in Figure 7,

Pp

d

ÿ

i,j

|Ω̂a
i,j ´ Ωa

i,j |
2 ě 1{

a

Na ` ε3q ď e´Naε
2
3{2

or equivalently

P

˜

||Ω̂a ´ Ωa||F ě
1

?
Na

`

d

2

Na
log

2|N | ` 1

δ

¸

ď
δ

2|N | ` 1
(45)

Finally, if we define the random variable

F ai “ Y 1
i vA1 “ aw
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then
ÿ

a

ÿ

i

|F ai |
2 “

ÿ

a

ÿ

i

|Y 1
i |

2vA1 “ aw2 ď 1

In addition
c1
a “ ErF ai |B “ 1s

It follows by an application of Lemma 20 that for the definitions of c1
a and ĉ1

a in Figure 7,

Pp

d

ÿ

a

ÿ

i

|rĉ1
asi ´ rc

1
asi|

2 ě 1{
?
R` ε4q ď e´Rε

2
4{2

or equivalently

P

˜

c

ÿ

a

||ĉ1
a ´ c

1
a||

2
2 ě

1
?
R
`

c

2

R
log

2|N | ` 1

δ

¸

ď
δ

2|N | ` 1
(46)

Finally, applying the union bound to the 2|N | ` 1 events in Eqs. 43, 44, 45 and 46 proves
the theorem.

B.4 Proof of Theorem 8

Under the assumptions of the theorem, we have constants C1, C2, C3, C4 and C5 such that

@a P I, Na ě Lˆ

ˆ

C1
N

γε

m

ξ2σ2

˙2

@a P P, Na ě Lˆ

ˆ

C2Nm

εσ2

˙2

@a P I,Ma ě Lˆ

ˆ

C3
N

γε

m

ξ2σ

˙2

@a P P,Ma ě Lˆ

ˆ

C4
Nm

?
n

εσ

˙2

R ě Lˆ

ˆ

C5
Nm

?
m

εσ

˙2

It follows from Lemma 19 that with probability at least 1´ δ,

@a P I, ||Ω̂a ´ Ωa||F ď ε1Ω

@a P P, ||Ω̂a ´ Ωa||F ď ε2Ω

@aÑ b c, ||D̂aÑb c ´DaÑb c||F ď εD

@a P P,
c

ÿ

x

||d̂8aÑx ´ d
8
aÑx||2 ď εd

@a, ||ĉ1
a ´ c

1
a||2 ď επ

where

ε1Ω ď 3ˆ
1

C2
ˆ σ2 ˆ

ε

Nm

ε2Ω ď 3ˆ
1

C1
ˆ ξ2σ2 ˆ

γε

Nm

εD ď 3ˆ
1

C3
ˆ ξ2σ ˆ

γε

Nm
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εd ď 3ˆ
1

C4
ˆ σ ˆ

ε
?
nNm

επ ď 3ˆ
1

C5
ˆ

σ
?
m
ˆ

ε

Nm

It follows from Lemma 15 that with suitable choices of C1 . . . C5, the inequalities in Lemma 15
hold with values

∆ ď
γε

4Nm

δ ď
ε

4Nm

κ ď
ε

4Nm

It follows from Lemma 12 that

ÿ

tPT pa,Nq
|p̂ptq ´ pptq| ď m

ˆ

´

1`
ε

4Nm

¯2N
´ 1

˙

ď ε

where the second inequality follows because p1` a{tqt ď 1` 2a for a ď 1{2.
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