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1 Hoeffding (sum of independent RVs)

Hoeffding’s lemma. If X ∈ [a, b] and E[X] = 0, then for all t > 0:

E[etX ] ≤ et
2(b−a)2/8

Proof. Since etx is convex, for all x ∈ [a, b]:

etx ≤ b− x
b− a

eta +
x− a
b− a

etb

This means:

E[etX ] ≤ b

b− a
eta − a

b− a
etb =

(
b
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− a

b− a
et(b−a)

)
eta = eφ(t)

where φ(t) := ta + ln
(

b
b−a −

a
b−ae

t(b−a)
)

. We did the second step because we want

the form (b− a). Look at the derivatives of φ:
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b
b−1e
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)2
=
α(1− α)e−t(b−a)(b− a)2(

(1− α)e−t(b−a) + α
)2 for α := −a

b−a

=
α(

(1− α)e−t(b−a) + α
)︸ ︷︷ ︸

u
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)︸ ︷︷ ︸
1−u

(b− a)2 ≤ (b− a)2

4

We used the fact that the concave function u(1− u) = u− u2 achieves its maximum
of 1/4 at u = 1/2.

Now we approximate φ(t) at t = 0 with the first-degree Taylor polynomial. The
Remainder theorem gives us that

φ(t) = φ(0) +
1

t
φ′(0) +R1(θ) for some θ ∈ [0, t]

=
t2

2
φ′′(θ) ≤ t2(b− a)2

8
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Hoeffding’s inequality. Given iid random variables X1 . . . Xm where Xi ∈ [ai, bi],
let Sm :=

∑m
i=1Xi. Then for any ε > 0:

P (Sm −E[Sm] ≥ ε) ≤ e−2ε
2/

∑m
i=1(bi−ai)

2

Proof. Using the Chernoff bounding technique, we write for all t ≥ 0:

P (Sm −E[Sm] ≥ ε) = P (et(Sm−E[Sm]) ≥ etε)
≤ E[et(Sm−E[Sm])]e−tε by Markov

= E

[
m∏
i=1

et(Xi−E[Xi])

]
e−tε

=

m∏
i=1

E
[
et(Xi−E[Xi])

]
e−tε by independence

≤
m∏
i=1

e
t2(bi−ai)

2

8 e−tε by Hoeffding’s lemma

=

m∏
i=1

e
t2(bi−ai)

2

8 −tε

Since t2(bi−ai)2
8 − tε is convex, we minimize it with t = 4ε

(bi−ai)2 , yielding the bound∏m
i=1 e

−2ε2

(bi−ai)2 = e
−2ε2∑m

i=1
(bi−ai)2 .1

The proof suggests that the result can be generalized to variables that are not
necessarily independent, since we just need the expectation to break over a product.

2 Azuma (sum of martingale differences)

Conditional Hoeffding’s lemma. If V ∈ [f(Z), f(Z) + c] and E[V |Z] = 0, then
for all t > 0:

E[etV |Z] ≤ et
2c2/8

Note that E[etV |Z] is a random variable in Z.

Proof. Similar to the proof of Hoeffding’s lemma. Use a = f(Z), b = f(Z) + c and
use E[·|Z] instead of E[·].

V1, V2, . . . is called a martingale difference sequence wrt. X1, X2, . . . if

• Vi is a function of X1 . . . Xi.

• E[|Vi|] <∞

• E[Vi+1|X1 . . . Xi] = 0

1Without Hoeffding’s lemma, we could handle the case Xi ∈ {0, 1} by explicitly bounding the
non-centered quantity E[etXi ] = pie

t+(1−pi) = 1−pi(e
t+1) ≤ exp(−pi(et+1)) (here pi := E[Xi])

and observing
∏m

i=1 E[etXi ] ≤ exp(−E[Sm](et + 1)).
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Azuma’s inequality. Given a martingale difference sequence V1, V2, . . . wrt. X1, X2, . . .
where Vi ∈ [fi(X1 . . . Xi−1), fi(X1 . . . Xi−1) + ci] for some fi and ci ≥ 0, for all ε > 0:

E

[
m∑
i=1

Vi ≥ ε

]
≤ e−2ε

2/
∑m
i=1 c

2
i

Proof. For each k ∈ [m], define Sk :=
∑k
i=1 Vi. By the law of iterated expectations

(LIE) EX [X] = EZ [EX|Z [X|Z]] (see the appendix):

E[etSk ] = E[E[etSk |X1 . . . Xk−1]]

where

E[etSk |X1 . . . Xk−1] = E[etSk−1etVk |X1 . . . Xk−1]

= E[etSk−1 |X1 . . . Xk−1]E[etVk |X1 . . . Xk−1]

≤ E[etSk−1 |X1 . . . Xk−1]et
2c2k/8

The second step holds because Sk−1 only depends on X1 . . . Xk−1. The third step
holds by conditional Hoeffding’s lemma. Thus

E[etSm ] ≤ et
2c2m/8E[etSm−1 ] ≤ · · · ≤ e

t2
∑m
i=1 c

2
i
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Use the Chernoff bounding technique on Sm:

P (Sm ≥ ε) = P (etSm ≥ etε)
≤ E

[
etSm

]
e−tε by Markov

≤ e
t2

∑m
i=1 c

2
i

8 −tε by the above argument

By minimizing the convex function
t2

∑m
i=1 c

2
i

8 − tε with t = 4ε/
∑m
i=1 c

2
i , we get the

bound e−2ε
2/

∑m
i=1 c

2
i .

3 McDiarmid (“Lipschitz” function of independent RVs)

McDiarmid’s inequality. Given iid random variables X1 . . . Xm ∈ X , let f : Xm →
R be function bounded in a Lipschitz-like manner as follows: for all x1 . . . xm, x

′
i ∈ X ,

there is some ci ≥ 0 such that

|f(x1 . . . xi . . . xm)− f(x1 . . . x
′
i . . . xm)| ≤ ci

Let f(S) := f(X1 . . . Xm). Then

P (f(S)−E[f(S)] ≥ ε) ≤ e−2ε
2/

∑m
i=1 c

2
i

Proof. Define V := f(S) − E[f(S)]. Will show V =
∑m
i=1 Vi is a sum of bounded

margingale differences Vi ∈ [fi(X1 . . . Xi−1), fi(X1 . . . Xi−1) + ci]. Then Azuma’s
inequality gives the desired result.

Define Vi := E[V |X1 . . . Xi] − E[V |X1 . . . Xi−1]. Note that each Vi is a function of
X1 . . . Xi and the telescoping sum gives

m∑
i=1

Vi = E[V |X1 . . . Xm] = V
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In addition, E[E[V |X1 . . . Xi]|X1 . . . Xi−1] = E[V |X1 . . . Xi−1] (by LIE), so we have

E[Vi|X1 . . . Xi−1] = E[E[V |X1 . . . Xi]− V |X1 . . . Xi−1] = 0

Thus V1 . . . Vm is a martingale difference sequence wrt. X1 . . . Xm.2

Now bound Vi in terms of X1 . . . Xi−1:

Vi ≤ sup
x∈X

E[V |X1 . . . Xi = x]−E[V |X1 . . . Xi−1] =: Wi

Vi ≥ inf
x∈X

E[V |X1 . . . Xi = x]−E[V |X1 . . . Xi−1] =: Ui

Using the “Lipschitz” condition on f :

Wi − Ui = sup
x,x′∈X

E[V |X1 . . . Xi = x]−E[V |X1 . . . Xi = x′]

= sup
x,x′∈X

E[f(S)|X1 . . . Xi = x]−E[f(S)|X1 . . . Xi = x′]

≤ ci

Thus Wi ≤ Ui+ci and it follows Vi ∈ [Ui, Ui+ci] where Ui is a function of X1 . . . Xi−1.

References. Appendix D of Foundations of Machine Learning (MRT), Chapter 12
of Probability and Computing (MU)

2We’ve constructed a doob martingale Z0, Z1, . . . , Zm wrt. X0 = constant, X1, . . . , Xm for the
target quantity V . That is, Zi := E[V |X0 . . . Xm] which gives Vi = Zi − Zi−1.
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4 Appendies

4.1 Crash Course on Conditional RVs

The proof of Azuma’s and McDiarmid’s inequality makes heavy use of conditional
expectations.

• Let’s say X is a random variable.

• Then EX [X] is a constant.

• However, EX|Y [X|Y ] is a random variable (random over Y )! We can only
compute a value for a specific y ∈ Y :

EX|Y [X|Y = y] =

∫
x

PX|Y (X = x|Y = y)× x dx

is a constant.

The law of iterated expectations (LIE)3 states that

EY [EX|Y [X|Y ]︸ ︷︷ ︸
fnc of Y

] = EX [X]︸ ︷︷ ︸
constant

Now that we know the definition, it’s pretty easy to show:

EY [EX|Y [X|Y ]] =

∫
y

PY (Y = y)×EX|Y [X|Y = y] dy

=

∫
y

PY (Y = y)×
(∫

x

PX|Y (X = x|Y = y)× x dx

)
dy

=

∫
x

(∫
y

PY (Y = y)× PX|Y (X = x|Y = y) dy

)
× x dx

=

∫
x

PX(X = x)× x dx

= EX [X]

The same principle holds when we work with more than two variables:

EY |Z [EX|Y,Z [X|Y, Z]︸ ︷︷ ︸
fnc of Y,Z

|Z] = EX|Z [X|Z]︸ ︷︷ ︸
fnc of Z

It basically says we’re free to condition on anything as long as we eventually take
expectation over it.

4.2 Martingales

A sequence Z0, Z1 . . . is a martingale wrt. X0, X1 . . . if

• Zi is a function of X0 . . . Xi.

• E[|Zi|] ≤ ∞

• E[Zi+1|X0 . . . Xi] = Zi

3Also called the law of total expectation, the tower rule, the smoothing theorem, Adam’s Law.
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A doob martingale is a martingale constructed as follows. Let X0 . . . Xn be any
sequence. We are interested in Y that depends on all X0 . . . Xn; we assume E[|Y |] ≤
∞. We define Zi to be the expectation of Y given X0 . . . Xi:

Zi := E[Y |X0 . . . Xi]

To verify Z0 . . . Zn is a martingale, we need to check the third condition:

E[Zi+1|X0 . . . Xi] = E[E[Y |X0 . . . Xi+1]|X0 . . . Xi] by def

= E[Y |X0 . . . Xi] by LIE

= Zi

For instance, consider a sequence of rewards in n independent fair gambles: X1 . . . Xn

where E[Xi] = 0. We are interested in the total reward Y =
∑n
i=1Xi. Then our

doob martingale is given by

Zi =

n∑
j=1

E[Xj |X1 . . . Xi] =

i∑
j=1

Xj

since E[Xj |X1 . . . Xi] = E[Xj ] = 0 for j > i. I.e., the refined estimate of the total
reward at time i is simply the sum up to that time.

By construction, if Z0, Z1, . . . is a martingale wrt. X0, X1, . . ., then V1, V2, . . . defined
by

Vi := Zi − Zi−1

is a martingle difference sequence defined before since

• Vi = Zi − Zi−1 is a function of X1 . . . Xi.

• E[|Vi|] = E[|Zi − Zi−1|] <∞

• E[Vi+1|X1 . . . Xi] = E[Zi+1|X1 . . . Xi]− Zi = 0
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