
The Frank-Wolfe algorithm basics

Karl Stratos

1 Problem

A function f : Rd → R is said to be in differentiability class Ck if the k-th derivative
f (k) exists and is furthermore continuous. For f ∈ Ck, the value of f(x) around
a ∈ Rd is approximated by the k-th order Taylor series Fa,k : Rd → R defined as
(using the “function-input” tensor notation for higher moments):

Fa,k(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a, x− a) + · · ·

+
1

k!
f (k)(a)(x− a, . . . , x− a)

up to an additive error that vanishes as x approaches a.

Let D ⊆ Rd be a compact convex set and f ∈ C1 be a convex function. We consider
a constrained convex optimization problem of the form:

x∗ = arg min
x∈D

f(x) (1)

2 Algorithm

A standard version of the Frank-Wolfe algorithm initializes some x(0) ∈ D and repeats
for t = 1, 2, . . .

1. Instead of (1), solve the following constrained linear optimization problem:

yt = arg min
y∈D

f(x(t−1)) + f ′(x(t−1))(y − x(t−1))

2. Choose the step size γt = 2/(t+ 1).

3. Update the estimate:

x(t) = γtyt + (1− γt)x(t−1)

Step 1 is often easy1 and yields sparse updates. Step 2 is deterministically given
so that no tuning is needed.2 Step 3 always yields an estimate inside D due to its
convexity.

1There are other variants of the Frank-Wolfe algorithm to handle cases where it’s not.
2Another variant of the algorithm performs the line search and finds

γt = arg min
γ∈[0,1]

f(γyt + (1 − γ)x(t−1))

which is also often given in a closed form solution.

1

3 Example (with line search)

Define f(x) := (1/2) ||b−Ax||2 for some b ∈ Rm and A ∈ Rm×d. Define D := {x ∈
Rd : x ≥ 0,

∑
i xi = 1}. Then we initialize x

(0)
i = 1/d and at each step t = 1, 2, . . .

compute:

yt = ei∗ where i∗ = arg min
i=1...d

[A>(Ax(t−1) − b)]i

γt = min

(
0,max

(
1,

(Ax(t−1) −Aei∗)>(Ax(t−1) − b)∣∣∣∣Ax(t−1) −Aei∗ ∣∣∣∣2
))

x(t) = γtyt + (1− γt)x(t−1)

4 Duality gap

Fa,1(x) is linear and tangent with f(x) at a and, so the convexity of f implies that
Fa,1(x) ≤ f(x) for all x ∈ Rd. Thus

f(x(t)) + f ′(x(t))(y − x(t)) ≤ f(y)

min
y∈D

f ′(x(t))(y − x(t)) ≤ f(x∗)− f(x(t))

max
y∈D

f ′(x(t))(x(t) − y) ≥ f(x(t))− f(x∗)

f ′(x(t))(x(t) − yt+1) ≥ f(x(t))− f(x∗)

The right-hand side

h(x(t)) := f(x(t))− f(x∗)

is the (unknown) “true error” of x(t). The left-hand side

g(x(t)) := f ′(x(t))(x(t) − yt+1)

is called the “duality gap” for a connection to Fenchel duality (which we won’t go
into). Since h(x(t)) ≤ g(x(t)) always and g(x(t)) is given for free as part of the
algorithm (Step 1), we can use the duality gap as a stopping criterion.

5 Convergence rate

To derive how fast the algorithm converges, we need to define a notion of non-linearity
of f . Let Cf be a constant such that for all x, a ∈ D and γ ∈ [0, 1],

f((1− γ)x+ γa) ≤ f(x) + γf ′(x)(a− x) +
γ2

2
Cf

Intuitively, the more “curved” f is in D, the larger Cf needs to be. With this constant,
we first prove the following lemma:

Lemma 5.1. f(x(t)) ≤ f(x(t−1))− γtg(x(t−1)) + γ2

2 Cf for t ≥ 1.

2

Proof.

f(x(t)) = f((1− γt)x(t−1) + γtyt)

≤ f(x(t−1)) + γtf
′(x(t−1))(yt − x(t−1)) +

γ2t
2
Cf

= f(x(t−1))− γtg(x(t−1)) +
γ2t
2
Cf

The following theorem states that the true error at step t is bounded above as
O(1/t). So the algorithm has a linear convergence rate.

Theorem 5.2 (Frank and Wolfe, 1956). h(x(t)) ≤ 2Cf

t+2 for t ≥ 1.

Proof. By Lemma 5.1,

f(x(t)) ≤ f(x(t−1))− γtg(x(t−1)) +
γ2t
2
Cf

f(x(t))− f(x∗) ≤ f(x(t−1))− f(x∗)− γtg(x(t−1)) +
γ2t
2
Cf

h(x(t)) ≤ h(x(t−1))− γtg(x(t−1)) +
γ2t
2
Cf

≤ h(x(t−1))− γth(x(t−1)) +
γ2t
2
Cf

≤ (1− γt)h(x(t−1)) +
γ2t
2
Cf

When t = 1, using γ1 = 2/(1 + 1) = 1 we have h(x(1)) ≤ 1
2Cf ≤

2
3Cf .

When t > 1, using γt = 2/(t+ 1) we have

h(x(t)) ≤
(

1− 2

t+ 1

)
h(x(t−1)) +

4Cf
2(t+ 1)2

≤
(

1− 2

t+ 1

)
2Cf
t+ 1

+
2Cf

(t+ 1)2

=
2Cf
t+ 1

− 2Cf
(t+ 1)2

=
2Cf
t+ 1

(
1− 1

t+ 1

)
=

2Cf
t+ 1

(
t

t+ 1

)
≤ 2Cf
t+ 1

(
t+ 1

t+ 2

)
=

2Cf
t+ 2

3

