
THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS

KARL L. STRATOS

Abstract. If n ∈ Z denotes the size of input polynomials, the conventional

way to compute their product takes the runtime of Θ(n2). In this paper, we

show how the Fast Fourier Transform, or FFT, can reduce this runtime to
Θ(n log n). We shall also investigate its applications in integer multiplication

and signal processing.

1. Introduction

Throughout history, methods for fast computation have been developed in order
to accomplish engineering tasks in a more efficient manner. Indeed, it has been a
long progress that is too interesting to skip over. So before we start, as a warm-up
let us try to comprehend the inner workings of some methods for trivial calculation.

Consider simple addition, which can be geographically interpreted as
“If a and b are the lengths of two sticks, then if we place the sticks one after the
other, the length of the stick thus formed will be a + b.”[4]

For adding two numbers, probably most if not all employ the technique:

(1) Align their right-hand ends.
(2) Compute from right to left a single addition digit by digit.
(3) Maintain the overflow as a carry.

For example, adding two integers 2135 and 632 we will have

1 (carry)
2535

+ 632
−−−

3167

Such a systemetic procedure is called an algorithm. More formally, an algo-
rithm is a method for solving a mathematical problem in a finite number of steps
that frequently involves repetition of an operation.

Now, why does this algorithm work? In order to answer the question, we need
the following proposition:

Proposition 1.1. In any base b ≥ 2, where b ∈ Z, the sum of any three single-digit
numbers is at most two digits long.

Proof. For base case b = 2, this is obviously true, for 1 + 1 + 1 = 11 has two digits.
Assume that, for some b ∈ Z≥2, the sum of three single-digit numbers in base b
is at most two digits long. This means that the sum of three b − 1 is less than or

1

2 KARL L. STRATOS

equal to (b− 1) · b1 + (b− 1) · b0. Thus 3 · (b− 1) = 3b− 3 ≤ b2 − 1, or 3b ≤ b2 + 2.
Now, consider the base b+ 1. The sum of numbers in this base can at most be 3b.
Denote this sum as s. By the inductive hypothesis,

s ≤ 3b ≤ b2 + 2 ≤ b2 + b = b · b1 + b · b0

since b ≥ 2. Hence s is two digits long. �

Notice that whenever two individual numbers are added, their sum is at most
two-digit long. Hence the carry is always a single digit ! And, by the above propo-
sition, the sum of the carry and two numbers is also at most two-digit long. This is
why we can execute the usual addition algorithm without worrying if it might fail.[1]

How about multiplication? Just as in addition, most of us use the standard
technique: To multiply two numbers x and y, we create an array of intermediate
sums, each representing the product of x by a single digit of y. These values
are appropriately left-shifted and then added up. For example, 27 times 82 looks
something like

27
×82
−−−

54 (27× 2)

216 (27× 8)
−−−−

2214 (54 + 2160)

But some people have come up with a different method: one that does not even
require the multiplication table, only the ability to multiply and divide by 2, and
to add. Ancient Egyptians seem to have used it, as shown in Rhind Mathematical
Papyri written in the seventeenth century B.C. by the scribe Ahmes.[4] This is also
known as Russian Peasant Multiplication. According to this method, to add two
numbers A and B,

(1) Align A and B side-by-side, each at the head of a column.
(2) Divide A by 2, flooring the quotient, until there is nothing left to divide.

Write the series of results under A.
(3) Keep doubling B until you have doubled it as many times as you divided

A. Write the series of results under B.
(4) Add up all the numbers in the B-column that are next to an odd number

in the A-column.

FAST FOURIER TRANSFORM 3

Let us do the same example to check if it works. To multiply 27 times 82:

27 82 (+)

13 164 (+)

6 328 (ignore)

3 656 (+)

1 1312 (+)
−−−−−−−−−−−−−−−−

2214 (1312 + 656 + 164 + 82)

So it works! Can you see why it works? Notice that we are basically converting
the first number 27 from decimal to binary: 11011. Thus we actually had:

82 · 27 = 82 · ((1) · 24 + (1) · 23 + (0) · 22 + (1) · 21 + (1) · 20)

= 82 · (16 + 8 + 2 + 1)
= 1312 + 656 + 164 + 82
= 2214.

The decomposition into a sum of powers of two was probably not intended as a
change from base ten to base two; the Egyptians then were unaware of such con-
cepts and had to resort to much simpler methods. The ancient Egyptians had laid
out tables of a great number of powers of two so as not to be obliged to recalculate
them each time. The decomposition of a number thus consists of finding the powers
of two which make it up. The Egyptians knew empirically that a given power of
two would only appear once in a number. For the decomposition, they proceeded
methodically; they would initially find the largest power of two less than or equal
to the number in question, subtract it out and repeat until nothing remained. (The
Egyptians did not make use of the number zero in mathematics).[4]

An acute reader probably have noticed that this is a very natural construction
to be written into a programming language. Another way to package this algorithm
(to multiply two numbers x, y ∈ Z) is

x · y =
{

2(x · by/2c) if y is even
x+ 2(x · by/2c) if y is odd.

We are now ready to write a simple pseudo-code. A pseudo-code is a descrip-
tion of how a certain algorithm works that can be readily implemented on any
computer language. Essentially, it is distills and collects the core working of the
ideas. We will employ the following convention for writing a psuedo-code. The first
bolded line indicates the name of the function (here, MULTIPLY). Next, its input
and output are described (here, two numbers and their product). When calling a
function, we say the name and put a parenthesis to the right to denote what the
input values are (e.g. multiply(3,4) means call the multiply function with the input
of 3 and 4). We write a return statement to indicate that the function has fulfilled
its purpose and is returning the output value. Usually, the function terminates at
this point. Given this explanation, we can write a pseudo-code for multiplying two
integers using the above method as follows:

4 KARL L. STRATOS

MULTIPLY(x, y)
INPUT: Two integers x, y, where y ≥ 0
OUTPUT: their product
if (y == 0): return 0
z = MULTIPLY(x, by/2c)
if (y is even):
return 2z
else:
return x+ 2z

As a final note, this method of breaking a problem into smaller subproblems,
recursively solving these subproblems, and accordingly combining their answers to
obtain the final result is called the divide-and-conquer strategy. The above
MULTIPLY is, strictly speaking, not an example of the divide-and-conquer tactics
since it does not divide the problem into subproblems, but rather just reduce it to
smaller size. So it is more like a plain recursive algorithm. But we will be using
the divide-and-conquer approach to deal with the FFT later.

2. Basic Definitions

Now that we have seen some instances of handling computational method, let
us turn to the task at hand: operations on polynomials. But first, we need some
basic definitions.

In order to be able to measure the efficiency of an algorithm independent of the
platform (may that be a computer or your head) on which it is run, we need a way
to describe how long it takes given some amount of input. In other words, we must
define the runtime of the algorithm based on its input size, often denoted as n. We
shall need the following notations to be more precise:

Definition 2.1. Let f(n) and g(n) be functions from positive integers to positive
reals. We say f = O(g) (“big-oh of g”) if there exists a constant c > 0 such that
f(n) ≤ c · g(n). We say f = Ω(g) (“omega of g”) if g = O(f). If f = O(g) and
f = Ω(g), then we say f = Θ(g) (“theta of g”).[1]

The functions of our interest will be of the form f : S 7→ T , where S and T
denote input size and time, respectively.

Notice that saying f = Θ(g) is a very loose analog of “f = g.” These notations
allow us to disregard constants and focus on the big picture. For example, let us
consider two algorithms for a particular computational task. One takes f1(n) = n2

steps to complete it, while the other takes f2(n) = 2n + 20 steps. We can de-
clare that f2 has a better runtime than f1, or that f1 grows faster than f2, since
f1 = O(f2). That is, intuitively, regardless of what happens with a small input
size, f2(n) eventually gives fewer steps than f1(n) as the input size n grows to a
large number. More concretely, although f1(n) ≤ f2(n) for n < 6, f2(n) ≤ f1(n)
for all n ≥ 6. We say the runtime is linear if it is Θ(n). We shall employ these
platform-free notations rather loosely throughout the paper to compare the run-
times of various algorithms, since they are not the main subject in themselves.

FAST FOURIER TRANSFORM 5

In particular, the runtime of a divide-and-conquer algorithm can be captured
by a recurrence relation. We write a recurrence relation for a recursive divide-and-
conquer algorithm as follows (T (n) means the time it takes to solve a problem of
size n):

T (n) = aT (dn/be) +O(nd)
where n is the size of the problem, a is the number of subproblems resulting from
each recursive call, n/b is the size of each subproblem, and O(nd) is the time it
takes to combine the answers (a, b, d > 0).

We have a very convenient theorem called the Master Theorem that gives us
right away a closed-form solution to this general recurrence.

Theorem 2.2 (Mater Theorem). If T (n) = aT (dn/be)+O(nd) for some constants
a > 0, b > 0, and d ≥ 0, then

T (n) =

 O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlogb a) if d < logb a

Proof. Let us assume that n is a power of b for convenience’s sake. This will not
influence the final bound in any important way since n is at most a multiplicative
factor of b away from some power of b. The size of the subproblems decreases by
a factor of b with each level of recursion, so it reaches the base case after logb n
levels. The “branching” factor is a, so the kth level of the tree is made up of ak

subproblems, each of size n/bk. Therefore, the total work done at this (kth) level
is

ak ×O(
n

bk
)d = O(nd)× (

a

bd
)k.

Notice that as k goes from 0 (the root) to logb n (the leaves), these numbers form
a geometric series with ratio a/bd. This ratio breaks down to three cases, each of
which corresponds to the assertion of the Master Theorem:

(1) The ratio is less than 1. Then the series is decreasing, so its sum is just
given by its first term, O(nd) (remember we’re dealing with Big-O’s).

(2) The ratio is greater than 1. Then the series is increasing, so its sum is given
by the last term,

nd(
a

bd
)logbn = nd

alogbn

(blogbn)d
= alogbn = a(logan)(logba) = nlogba.

(3) The ratio is equal to 1. Then all O(log n) terms of the series are equal to
O(nd).[1]

�

We shall use this theorem to obtain the runtime of the FFT algorithm.

Definition 2.3. A polynomial in the variable x over an algebraic field F is a
representation of a funnction A(x) as a formal sum:[2]

A(x) =
n−1∑
j=0

ajx
j .

6 KARL L. STRATOS

Note that the exponent j must be non-negagive whole number. That means
x3 − 5x+ 1 is a polynomial while x3 − 5

x + 2x(1/2) is not, since the latter contains
a negative and a rational exponent.

We call the values a0, a1, . . . , an−1 the coefficients of the polynomial. The co-
efficients are drawn from a field F, typcially the set C of complex numbers.

A polynomial A(x) has degree k if its highest nonzero coefficient is ak (i.e. k
is the highest exponent). Any n ∈ N such that n > k is called a degree-bound
of that polynomial. For example, if a polynomial has a degree-bound 5, then its
degree may be any integer between 0 and 4, inclusive.

We are trying to investigate an efficient way of performing operations on polyno-
mials, so we define these operations rigorously. For polynomial addition, if A(x)
and B(x) are polynomials of degree-bound n, we say that their sum is a polynomial
C(x), also of degree-bound n, such that

C(x) = A(x) +B(x)

for all x ∈ F. 1 In other words, if

A(x) =
n−1∑
j=0

ajx
j

and

B(x) =
n−1∑
j=0

bjx
j ,

then

C(x) =
n−1∑
j=0

cjx
j ,

where cj = aj + bj for all j ∈ [0, n − 1]. For example, if we have the polyno-
mials A(x) = 6x3 + 7x2 − 10x + 9 and B(x) = −2x2 + 4x − 5, we shall have
C(x) = 6x3 + 5x2 − 6x+ 4.

Likewise, we define polynomial multiplication as follows: if A(x) and B(x)
are polynomials of degree-bound n, we say their product C(x) is a polynomial of
degree-bound 2n− 1 such that

C(x) = A(x)B(x)

for all x ∈ F. Another way to express the product C(x) is to use the well-known
Cauchy Product, which is a discrete convolution of two sequences (in this case, the
coefficients of the two polynomials):

C(x) =
2n−2∑
j=0

cjx
j ,

1Notice we are using the concept of degree-bound so that we are not limited only to the
operations on polynomials of the same degree.

FAST FOURIER TRANSFORM 7

where

cj =
j∑

k=0

akbj−k.

Thus degree(C) = degree(A) + degree(B), which means if A is a polynomial of
degree-bound n and B is a polynomial of degree-bound m, then C is a polynomial
of degree-bound n + m − 1. For notational simplicity, because a polynomial of
degree-bound k − 1 is also a polynomial of degre-bound k, we shall say that C has
a degree-bound n+m.

3. Statement of the Problem

Consider any two polynomials A(x) and B(x) of degree-bound n. Using the
conventional method for multiplication, we can multiply A and B as follows:

(1) Align their right-hand ends.
(2) Multiply every term of A by one term of B.
(3) Do step(2) for every term of B.
(4) Sum the results, adding coefficients of the same degree of x.

For example, if A(x) = 2x3 + x2 + 3x + 1 and B(x) = 3x3 + 6x + 1, then we will
compute:

1 · 2x3 + 1 · x2 + 1 · 3x+ 1 · 1
6x · 2x3 + 6x · x2 + 6x · 3x+ 6x · 1
0 · 2x3 + 0 · x2 + 0 · 3x+ 0 · 1
3x3 · 2x3 + 3x3 · x2 + 3x3 · 3x+ 3x3 · 1

Adding them together, we have our result

A(x) ·B(x) = 6x6 + 3x5 + 21x4 + 11x3 + 19x2 + 9x+ 1.

The final addition is quite easy (as to be shown shortly) and takes linear time.
However, the multiplication part is more cumbersome, for we are multiplying two
numbers n times (step(2)), and we are doing this process again for n times (step(3)).
Because this procedure takes n · n = n2 steps, it clearly has the runtime of Θ(n2),
and so does the entire algorithm. To illustrate, the above example cost us 42 = 16
multiplications.

Here, we are employing the usual coefficient representation of polynomials to do
the operations.

Definition 3.1. A coefficient representation of a polynomialA(x) =
∑n−1
j=0 ajxj

of degree bound n is a vector of coefficients a = (a0, a1, . . . , an−1).

This coefficient representation works efficiently in certain operations on polyno-
mials. For instance, if we want to evaluate the polynomial A(x) at a given point
x0, all we have to do is to plug in x0 and compute each term. It boils down to the
runtime of Θ(n) using Horner’s rule:

A(x0) = a0 + x0(a1 + x0(a2 + · · ·+ x0(an−2 + x0(an−1)) . . .))

8 KARL L. STRATOS

(we are simply pulling the variable x out so that we can add and multiply only once
each time).

Also, if we want to add two polynomials represented by the coefficient vectors
a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) then we just produce the coefficent
vector c = (c0, c1, . . . , cn−1) by computing cj = aj + bj for j ∈ [0, n − 1]. This is
clearly a linear-time procedure, as asserted above.

We have already seen that the multiplication of two degree-bound n polynomials
A(x) and B(x) does not work quite as satisfactorily in coefficient representation,
since its runtime is Θ(n2). Calculating the convolution of the input vectors a and
b for each resulting vector c seems to be a lot of work. This is why we might wish
to look at a different way of expressing polynomials.

4. Solution

Our game plan of efficiently multiplying two polynomials A and B is now:
(1) Convert A and B from the disappointing coefficient representation to some

better form F. (Θ(n log n))
(2) Carry out the multiplication while A and B are in the form F to obtain

their product (in the form F). (Θ(n))
(3) Convert this product from the form F back to the coefficient representation

as our answer. (Θ(n log n))
Therefore, if this plan succeeds, we will have achieved a method of polynomial
multiplication that runs in time Θ(n log n).
It turns out that the “better form” in step(1) is something called the point-value
representation.

Definition 4.1. A point-value representation of a polynomial A(x) of degree-
bound n is a set of n point-value pairs

(x0, y0), (x1, y1), . . . , (xn−1, yn−1)

such that all of the xk are distinct and

yk = A(xk)

for k = 0, 1, · · · , n− 1.[2]

Note that a polynomial has many different point-value representations, since any
set of n distinct points x0, x1, · · · , xn−1 can be used as a basis for the representation.

Given a polynomial represented in coefficient form, it is straightforward to com-
pute its point-value representation (step(1)). All we have to do is select any n
distict points x0, x1, · · · , xn−1 and then evaluate A(xk) for k = 0, 1, · · · , n − 1.
With Horner’s method, this n-point evalution takes Θ(n2) (do you see why?), and
will ruin our whole plan. However, we shall see later that if we choose the xk wisely,
we can reduce this runtime to Θ(n log n).

Also, the inverse of evaluation - determining the coefficient form from a point-
value representation (step(3)) - is called interpolation. How do we know that
the coefficient form that we derive from a point-value form represents a unique
polynomial? Well, the intuitive approach is that when you have two distinct points
on a plane, then there is only one line that you can draw in such a way that it goes

FAST FOURIER TRANSFORM 9

through both of the points. We will generalize this idea, and prove that interpolation
is well defined when the desired interpolating polynomial has a degree-bound equal
to the given number of point-values pairs.

Theorem 4.2 (Uniqueness of an interpolating polynomial). For any set
(x0, y0), (x1, y1), ..., (xn−1, yn−1) of n point-value pairs such that all the xk values
are distinct, there is a unique polynomial A(x) of degree-bound n such that

yk = A(xk) (1)

for k = 0, 1, · · · , n− 1.

The proof of this theorem depends on the invertibility of a certain matrix, thus
we will need some definitions and theorems.

Definition 4.3. A determinant is a special number associated to any square
matrix. More precisely, the determinant of an n× n matrix A having entries from
a field F is a scalar in F, denoted by det(A) or |A|, and can be computed in the
following manner:

(1) If A is 1× 1, then det(A) = A11, the single entry of A.
(2) If A is n× n for n > 1, then

det(A) =
n∑
j=1

(−1)i+jAij · det(Ãij) (2)

where Ãij denotes the (n−1)× (n−1) matrix obtained from A by deleting
row i and column j.[5]

We also define the cofactor cij of the entry of A in row i, column j, by

cij = (−1)i+jdet(Ãij).
Then we can express the formula for the determinant of A as

det(A) = Ai1ci1 +Ai2ci2 + ...+Aincin

for any 1 ≤ i ≤ n.
A square matrix A of size n× n is said to be invertible if there exists an n× n

matrix A−1 such that AA−1 = A−1A = I, where I denotes the identity matrix
whose entries are defined by Iij = 1 if i = j and Iij = 0 if i 6= j.

Theorem 4.4. If a square matrix A has an inverse B, then this inverse is unique.

Proof. Suppose C is another inverse of the matrix A. Then we have AB = BA = I
and also AC = CA = I. But C = IC = BAC = BI = B. �

Now, we show that a matrix is invertible if and only if its determinant is nonzero.

Theorem 4.5. An n× n matrix A =


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann

.

is invertible if and only if det(A) 6= 0.

10 KARL L. STRATOS

Sketch Proof. We note from the determinant formula (2) that whenever i + j is
even, the term is positive, and whenever i + j is odd, the term is negative. It is a
matter of simple calculation to show

Ai1cj1 +Ai2cj2 + ...+Aincjn = 0

for 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j. (It is the determinant of the matrix you get
when in matrix A you replace row i by row j. The matrix then has two equal
rows, so its determinant must be 0.) Now, we claim that the inverse of A is

A−1 =


c11

det(A)
c21

det(A) . . . cn1
det(A)

c12
det(A)

c22
det(A) . . . cn2

det(A)

...
...

. . .
...

c1n
det(A)

c2n
det(A) . . . cnn

det(A)

.

This is also a matter of checking if AA−1 = A−1A = I, which is left to the reader.
This computation of the inverse of A clearly can’t work when det(A) = 0. So we
have the desired result.
The fact that a matrix with determinant 0 really can’t have an inverse can be
seen from the following: We know that, when det(A) = 0, then row n is a linear
combination of rows 1, 2, 3, · · · , n− 1. Now suppose that matrix B is the inverse of
matrix A, so AB = I. Note that the nth row of AB is now a linear combination
of the rows 1, 2, 3, ..., n − 1 of AB too. The elements in the nth column of rows
1, 2, 3, ..., n − 1 of I are all zero, so that means that the nth element of the nth
row of AB should be zero, too, being a linear combination of zeroes. But the nth
element of the nth row of I is one, and we have a contradiction.[6] �

Definition 4.6. A Vandermonde matrix a matrix with the terms of a geometric
progression in each row (Vi,j = αj−1

i for all indices i and j).[4] In other words, it is
an m by n matrix

V =


1 α1 α2

1 . . . αn−1
1

1 α2 α2
2 . . . αn−1

2

1 α3 α2
3 . . . αn−1

3
...

...
...

. . .
...

1 αm α2
m . . . αn−1

m

.

This particular type of matrix has a special property.

Theorem 4.7. An n by n Vandermonde matrix V has the following determinant:

det(V) =
∏

1≤i<j≤n

(aj − ai). (3)

Proof. For n = 2 the determinant of the Vandermonde matrix is

det
(

1 x1

1 x2

)
= x2 − x1.

So the property holds.
Let

FAST FOURIER TRANSFORM 11

Vn =

∣∣∣∣∣∣∣∣∣
an−1
1 an−2

1 · · · a1 1
an−1
2 an−2

2 · · · a2 1
...

...
. . .

...
...

an−1
n an−2

n · · · an 1

∣∣∣∣∣∣∣∣∣
(It’s written that way round to make the proof come out easier).
For all n ∈ N, let P (n) be the proposition that Vn =

∏
16i<j6n (ai − aj). We have

already proved the basis with the 2 by 2 matrix. Now we need to show that, if
P (k) is true, where k > 2, then it follows that P (k + 1) is true. So this is our
induction hypothesis:

Vk =
∏

16i<j6k

(ai − aj) .

Take the determinant Vk+1 =

∣∣∣∣∣∣∣∣∣
xk xk−1 · · · x2 x 1
ak2 ak−1

2 · · · a2
2 a2 1

...
...

. . .
...

...
...

akk+1 ak−1
k+1 · · · a2

k+1 ak+1 1

∣∣∣∣∣∣∣∣∣.
If you expand it in terms of the first row, you can see it is a polynomial in x

whose degree is no greater than k. Call that polynomial f (x). If you substitute
any ar for x in the determinant, two of its rows will be the same. So the value of
such a determinant will be 0. Such a substitution in the determinant is equivalent
to substituting ar for x in f (x). Thus it follows that f (a2) = f (a3) = . . . =
f (ak+1) = 0 as well. So f (x) is divisible by each of the factors x−a2, x−a3, . . . , x−
ak+1. All these factors are distinct otherwise the original determinant is zero. So
f (x) = C (x− a2) (x− a3) · · · (x− ak) (x− ak+1). As the degree of f (x) is no
greater than k, it follows that C is independent of x. From expansion, we can see
that the coefficient of xk is∣∣∣∣∣∣∣

ak−1
2 · · · a2

2 a2 1
...

. . .
...

...
...

ak−1
k+1 · · · a2

k+1 ak+1 1

∣∣∣∣∣∣∣.
By the induction hypothesis, this is equal to

∏
26i<j6k+1 (ai − aj). So this has

to be our value of C. So we have f (x) = C (x− a2) (x− a3) · · · (x− ak) (x− ak+1)∏
26i<j6k+1 (ai − aj). Substituting a1 for x, we retrieve the proposition P (k + 1).

So P (k) =⇒ P (k + 1). Therefore Vn =
∏

16i<j6n (ai − aj). Or, in our original
formulation, this is equivalent to

det(V) =
∏

1≤i<j≤n

(aj − ai).[7]

�

Finally, let us turn to the proof of the first theorem.

Proof of the Uniqueness of an interpolating polynomial. Note that the equation (1)
is equivalent to the matrix equation

12 KARL L. STRATOS
1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1
...

...
...

. . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1



a0

a1

...
an−1

 =


y0
y1
...

yn−1

.

We also note that the left matrix is a Vandermonde matrix, and denote it by
V (x0, x1, · · · , xn−1). By Theorem 4.7, this matrix has determinant∏

1≤j<k≤n(ak − aj),

and therefore, the determinant is nonzero if the xk are distinct. Moreover, in
that case, the matrix is invertible by Theorem 4.5, and the inverse is unique
by Theorem 4.4. Thus, the coefficients aj can be uniquely solved for, given the
point-value representation:

a = V (x0, x1, · · · , xn−1)−1y (4)

or
a0

a1

...
an−1

 =


y0
y1
...

yn−1




1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1
...

...
...

. . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1


−1

.

�

Thanks to the uniqueness of an interpolating polynomial, we do not have to
worry about getting our polynomial back to its orinial form in coefficient represen-
tation when we turn it into point-value representation.

The point-value representation allows us to multiply polynomials in time Θ(n),
much less than the time required to multiply polynomials in coefficient form. To
see this, let C(x) = A(x)B(x). Then C(xk) = A(xk)B(xk) for any point xk, and
we can pointwise multiply a point-value representation for A by a point-value rep-
resentation for B to obtain a point-value representation for C. There is an annoying
restrction, however, that degree(C) = degree(A) + degree(B); if A and B are of
degree-bound n, then C is of degree-bound 2n. Since A and B will give us n point-
value pairs when multiplied, and since we need 2n pairs to interpolate a unique
polynomial C of degree-bound 2n, we must begin with “extended” point-value rep-
resentations for A and B consisting of 2n point-value pairs each. More concretely,
given an extended point-value represenation for A

(x0, y0), (x1, y1), · · · , (x2n−1, y2n−1),

and a corresponding extended point-value representation for B

(x0, y
′
0), (x1, y

′
1), · · · , (x2n−1, y

′
2n−1)

then we can get a point-value representation for C as

(x0, y0y
′
0), (x1, y1y

′
1), · · · , (x2n−1, y2n−1y

′
2n−1).

We know that once we have our polynomials in point-value form, multiplying
them is a piece of cake. So now the key to our task is our ability to convert a poly-
nomial quickly from coefficient form to point-value form (evaluate) and vice-versa

FAST FOURIER TRANSFORM 13

(interpolate).

Recall that evaluation takes the runtime of Θ(n2) if we simple-mindedly choose
n different points to evaluate a polynomial of degree-bound n. But we shall show
that if we choose “complex roots of unity” as the evaluation points, we can produce
a point-value representation by taking the Discrete Fourier Transform (DFT - to
be defined later) of a coefficient vector, reducing the runtime to Θ(n log n). The
inverse operation, interpolation, can be performed by taking the “inverse DFT” of
point-value pairs, yielding a coefficient vector.

The Discrete Fourier Transform and Fast Fourier Transform

First, we need a definition of complex roots of unity. And we also need to clarify
a series of their properties to exploit.

Definition 4.8. A complex nth root of unity is a complex number w such that

wn = 1.

To visualize the roots, we shall use the Euler’s formula:

Theorem 4.9 (Euler’s formula). For any x ∈ R,

eix = cos(x) + isin(x).

Since this is a very elegant and insightful statement, we shall take a leisurely
detour and prove it in two different ways: one using Taylor series and the other
calculus.

First proof. We express the functions ex, cosx, and sinx as Taylor expansions
around zero:

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

We can replace the real variable x with u ∈ C since each series has an infinite
radius of convergence. Furthermore, since each series is absolutely convergent, the
rearrangement of terms does not change the limit value:

eiu = 1 + iu+
(iu)2

2!
+

(iu)3

3!
+

(iu)4

4!
+

(iu)5

5!
+

(iu)6

6!
+

(iu)7

7!
+

(iu)8

8!
+ · · ·

= 1 + iu− u2

2!
− iu3

3!
+
u4

4!
+
iu5

5!
− u6

6!
− iu7

7!
+
u8

8!
+ · · ·

=
(

1− u2

2!
+
u4

4!
− u6

6!
+
u8

8!
− · · ·

)
+ i

(
u− u3

3!
+
u5

5!
− u7

7!
+ · · ·

)
= cosu+ i sinu

�

Second proof. Define a function f(x) as

14 KARL L. STRATOS

f(x) = (cosx+ i sinx) · e−ix.

By the product rule, the derivative of f is given by:
d

dx
f(x) = (cosx+ i sinx) · d

dx
e−ix +

d

dx
(cosx+ i sinx) · e−ix

= (cosx+ i sinx)(−ie−ix) + (− sinx+ i cosx) · e−ix

= (−i cosx− i2 sinx) · e−ix + (− sinx+ i cosx) · e−ix (i2 = −1)

= (−i cosx+ sinx− sinx+ i cosx) · e−ix

= 0.

This means that (x) is a constant function. Thus

(cosx+ i sinx) · e−ix = f(x) = f(0) = (cos 0 + i sin 0) · e0 = 1.

Multiplying both sides by eix, we obtain

cosx+ i sinx = eix.

�

There are exactly n complex nth roots of unity: e
2πik
n for k = 0, 1, · · · , n − 1.

Euler’s formula allows us to visualize the roots of unity on a complex plane. For
instance, the following figure displays the 8th roots of unity

Several things to notice here. First, the n roots are equally spaced around the
circle of unit radius centered at the origin of the complex plane. The value

wn = e
2πi
n

is called the principal nth root of unity (note that all other roots of unity are
powers of wn). So in the figure above, w8 = e

2πi
8 is the principal 8th root of unity.

Second, when n is even, there will be a point at z = −1, while if n is odd, there is
no point at z = −1. Third, the n complex nth roots of unity

w0
n, w

1
n, · · · , wn−1

n ,

FAST FOURIER TRANSFORM 15

form a group under multiplication. This group has the same structure as the ad-
ditive group (Zn,+) modulo n, since wnn = w0

n = 1 implies that wjnw
k
n = wj+kn =

w
(j+k) modn
n . Similarly, w−1

n = wn−1
n .

The following lemmas will help us understand the essential properties of the
complex nth roots of unity.

Lemma 4.10 (Cancellation lemma). For any integers n ≥ 0, k ≥ 0, and d ≥ 0,

wdkdn = wkn.

Proof. This lemma follows directly from the definition of the roots since

wdkdn = (e2πi/dn)dk

= (e2πi/n)k

= wkn.

�

Corollary 4.11. For any even integer n > 0,

wn/2n = w2 = −1.

Proof.

wn/2n = w
1/2
1

= w2

= eπi

= cos(π) + isin(π)
= −1.

�

Lemma 4.12 (Halving lemma). If n > 0 is even, then the squares of the n complex
nth roots of unity are the n/2 complex (n/2)th roots of unity.

Proof. By the canellation lemma, we have (wkn)2 = wkn/2, for any nonnegative
integer k. Note that if we square all of the nth roots of unity, then each (n/2)th
root of unity is obtained exactly twice, since

(wk+n/2n)2 = w2k+n
n

= w2k
n w

n
n

= w2k
n

= (wkn)2.

Thus, wkn and w
k+n/2
n have the same square. �

This halving lemma is crucial to our divide-and-conquer approach for converting
between coefficient and point-value representations of polynomials, since it guaran-
ntees that the recursive subproblems are only half as large.

16 KARL L. STRATOS

Lemma 4.13 (Summation lemma). For any integer n ≥ 1 and nonzero integer k
not divisible by n,

n−1∑
j=0

(wkn)j = 0.

Proof. The closed form of summation applies to complex values as well as to reals,
and thus we have

n−1∑
j=0

(wkn)j =
(wkn)n − 1
wkn − 1

=
(wnn)k − 1
wkn − 1

=
(1)k − 1
wkn − 1

= 0

The restriction on k that it is not divisible by n makes sure that the denominator
is never 0, since wkn = 1 only when k is divisible by n. �

The DFT

Our job is to evaluate a polynomial

A(x) =
n−1∑
j=0

ajx
j

of degree-bound n at n different points. We shall use the n complex nth roots
of unity

w0
n, w

1
n, w

2
n, · · · , wn−1

n

as our evaluation points.

One minor detail to remember: this length n is actually 2n (as discussed) since
we double the degree-bound of the given polynomials prior to evaluation. Recall
that the product of two polynomials of degree-bound n is a polynomial of degree-
bound 2n so that we must double their degree-bounds to 2n. This is easy, since
all we have to do is to add n high-order coefficients of 0. Therefore, in fact we are
working with complex (2n)th roots of unity. But for simplicity, let us indulge the
rather erroneous notation of n. Furthermore, let us assume that n is a power of 2
(why not, we can always add new high-order coefficients of 0 as necessary).

We assume that A is given in coefficient form:

a = (a0, a1, · · · , an−1).

FAST FOURIER TRANSFORM 17

Definition 4.14. Let us denote the results yk, for k = 0, 1, · · · , n− 1, by

yk = A(wkn)

=
n−1∑
j=0

ajw
kj
n .

Then the vector y = (y0, y1, · · · , yn−1) is the Discrete Fourier Transform
(DFT) of the coefficient vector a = (a0, a1, · · · , an−1). We write y = DFTn(a) to
inform the length.

The FFT

The Fast Fourier Transform (FFT) is a method that takes advantage of
the special properties of the complex roots of unity to compute DFTn(a) in time
Θ(nlogn), as opposed to the Θ(n2) time of the straightforward method.

The FFT method employs a divide-and-conquer strategy. The motivation is
from the halving lemma, which implies that, for even n, we might need only half
of the points for evaluation.

Here is the strategy. Use the even-index and odd-index coefficients of A(x) sep-
arately to define the two new polynomials A′(x) and A′′(x) of degree-bound n/2:

A′(x) = a0 + a2x+ a4x
2 + · · ·+ an−2x

n/2−1,

A′′(x) = a1 + a3x+ a5x
2 + · · ·+ an−1x

n/2−1.

Note that A′ contains all the even-index coefficients of A (the binary represen-
tation of the index ends in 0) and A′′ contains all the odd-index coefficients (the
binary representation of the index ends in 1). You should check the following fact:

A(x) = A′(x2) + xA′′(x2). (5)

Now, the problem of evaluating A(x) at w0
n, w

1
n, · · · , wn−1

n reduces to the follow-
ing divide-and-conquer scheme

(1) Evaluate the degree-bound n/2 polynomials A′(x) and A′′(x) at the points

(w0
n)2, (w1

n)2, · · · , (wn−1
n)2,

(2) Combine the results according to equation (5).
Now that we have the square forms of the complex roots, can you see how the

halving lemma comes in? The n values in step (1)

(w0
n)2, (w1

n)2, · · · , (wn−1
n)2

are nothing but n/2 distinct values of the complex (n/2)th roots of unity, with each
root occuring exacly twice

(w0
n/2), (w1

n/2), · · · , (wn/2−1
n/2)

18 KARL L. STRATOS

Therefore, the polynomials A′ and A′′ of degree-bound n/2 are recursively eval-
uated at the n/2 complex (n/2)th roots of unity. The recursion is possible because
the subproblems have exactly the same form as the original problem, but only are
half the size. i.e. We have successfully decomposed an n-element DFTn computa-
tion into two n/2-element DFTn/2 computations. Note that our requirement for
n to be a power of 2 guarantees a smooth termination of the algorithm (because
we’re dividing in half). We are now ready to write an algorithm. We will employ
the same convention that we used for the MULTIPLY pseudo-code; that is, the
first line RECURSIVE-FFT denotes the name of the function, the input and
output are explained next, and return statements are used to signify the end of
the current fuction. We will investigate how the code works line by line.

RECURSIVE-FFT(a)
INPUT: A(x) in the coefficient vector a = (a0, a1, · · · , an−1)
OUTPUT: the DFT of a
1. n← length[a]
2. if (n = 1)
3. then return a ∇base case
4. wn ← e2πi/n

5. w ← 1
6. a′ ← (a0, a2, · · · , an−2)
7. a′′ ← (a1, a3, · · · , an−1)
8. y′ ← RECURSIVE-FFT(a′)
9. y′′ ← RECURSIVE-FFT(a′′)
10. fork ← 0 to n/2− 1
11. yk ← y′k + wy′′k
12. yk+(n/2) ← y′k − wy′′k
13. w ← wwn
14. return y

Let us comprehend how each line works. Lines 2-3 represent the basis of the
recursion. To see why it is so, consider the DFT of one element

y0 = a0w
0
1

= a0 · 1
= a0,

which is the original element itself.

Lines 6-7 define the coefficient vectors for the polynomials A′ and A′′. Lines 4,
5, and 13 guarantee that w is updated properly so that whenever lines 12-13 are
executed, we have w = wkn.

Lines 8-9 perform the two recursive DFTn/2 computations and set, for k =
0, 1, · · · , n/2− 1,

y′k = a′(wkn/2),

y′′k = a′′(wkn/2),

FAST FOURIER TRANSFORM 19

By the cancellation lemma (since wkn/2 = w2
nk), this is equivalent to

y′k = a′(w2
nk),

y′′k = a′′(w2
nk),

Lines 12-13 combine the results of the recursive DFTn/2 calculations. For
y0, y1, · · · , yn/2−1, line 11 yields

yk = y′k + wkny
′′
k

= a′(w2
nk) + wkna

′(w2
nk)

= a(wkn)

For yn/2, yn/2+1, · · · , yn (letting k = 0, 1, · · · , n/2− 1), line 12 yields

yk+(n/2) = y′k − wkny′′k
= y′k + wk+(n/2)

n y′′k (since wk+(n/2)
n = −wkn)

= a′(w2
nk) + wk+(n/2)

n a′(w2
nk)

= a′(w2k+n
n) + wk+(n/2)

n a′(w2
nk) (since w2k+n

n = w2
nk)

= a(wk+(n/2)
n)

Therefore, the vector y returned by RECURSIVE-FFT is indeed the DFT of
the input vector a!

Now, let us verify the runtime of this algorithm. Since each recursive call creates
2 subproblems of size n/2, and the time to combine the results is Θ(n), where n is
the length of the input vector, we have the recurrence T (n) = 2T (n/2) + Θ(n). By
the Master Theorem (since 1 = log2 2), the closed form of this relation is

T (n) = 2T (n/2) + Θ(n)

= Θ(n log n).

Thus we have achieved our first goal: we can evaluate a polynomial of degree-
bound n at the complex nth roots of unity in time Θ(n log n) using the Fast Fourier
Transform. The only missing link now is to quickly recover the coefficient vector
from the DFT.

Interpolation at the complex roots of unity

We shall interpolate by writing the DFT as a matrix equation and then looking
at the form of the matrix inverse.

20 KARL L. STRATOS

Recall the matrix representation of the formula y = A(x)
y0
y1
...

yn−1

 =


1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1
...

...
...

. . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1



a0

a1

...
an−1

 .
From this, we can write the DFT as the matrix product y = Vna, where Vn is a

Vandermonde matrix containing the appropriate powers of wn:

y0
y1
y2
y3
...

yn−1


=



1 1 1 1 . . . 1
1 wn w2

n w3
n . . . wn−1

n

1 w2
n w4

n w6
n . . . w

2(n−1)
n

1 w3
n w6

n w9
n . . . w

3(n−1)
n

...
...

...
...

. . .
...

1 wn−1
n w

2(n−1)
n w

3(n−1)
n . . . w

(n−1)(n−1)
n





a0

a1

a2

a3

...
an−1


.

The (k, j) entry of Vn is wkjn , for j, k = 0, 1, · · · , n−1, and the exponenets of the
entries of Vn form a multiplication table.

For the inverse operation, which we write as a = DFT−1
n (y), we multiply y by

the matrix V −1
n , the inverse of Vn (which we know exists from previous exercises).

Theorem 4.15. For j, k = 0, 1, · · · , n− 1, the (j, k) entry of V −1
n is w−kjn /n.

Proof. We shall show that V −1
n Vn = In. Consider the (j, j′) entry of V −1

n Vn:

[V −1
n Vn]jj′ =

n−1∑
k=0

(w−kjn /n)(wkj
′

n)

=
n−1∑
k=0

wk(j
′−j)

n /n.

This summation equals 1 if j′ = j, and it is 0 otherwise by the summation
lemma. So the resulting matrix of V −1

n Vn will be precisely equal to the identity
matrix. �

Given the inverse matrix V −1
n , DFT−1

n (y) is given by

aj =
1
n

n−1∑
k=0

ykw
−kj
n

for j = 0, 1, · · · , n− 1.
Compare this to the equation that we used for evaluation:

FAST FOURIER TRANSFORM 21

yk =
n−1∑
j=0

ajw
kj
n for k = 0, 1, · · · , n− 1.

Thus we can simply modify the FFT algorithm to compute the inverse DFT:
just switch the roles of a and y, replace wn by w−1

n , and divide each element of the
result by n.

RECURSIVE-INVERSE-FFT(y)
INPUT: A(x) in the DFT vector form y = (y0, y1, · · · , yn−1)
OUTPUT: the coefficient vector form a
n← length[y]
if (n = 1)
then return y ∇base case
w−1
n ← e2πi/n

w ← 1
y′ ← (y0, y2, · · · , yn−2)
y′′ ← (y1, y3, · · · , yn−1)
a′ ← RECURSIVE-INVERSE-FFT(y′)
a′′ ← RECURSIVE-INVERSE-FFT(y′′)
fork ← 0 to n/2− 1
ak ← 1

n (a′k + wa′′k)
ak+(n/2) ← 1

n (a′k − wa′′k)
w ← ww−1

n

return a

Since this is structurally the same as the original FFT algorithm, it also has the
runtime of Θ(n log n).

Summary

We have accomplished our task of multiplying polynomials in time Θ(n log n).
Remember our game plan to multiply polynomials A and B?

(1) Convert A and B from the disappointing coefficient representation to some
better form F.

(2) Carry out the multiplication while A and B are in the form F to obtain
their product (in the form F).

(3) Convert this product from the form F back to the coefficient representation
as our answer.

Step(1), converting the coefficient representation to the point-value form, can be
done in Θ(n log n) thanks to the special properties of the complex nth roots of unity.

Step(2), multiplication, can be easily done by multiplying the value of A and B
at 2n points. This is a Θ(n) operation.

22 KARL L. STRATOS

Step(3), converting the point-value form back to the coefficient representation,
can be done in Θ(n log n) by using a similar algorithm in Step(1).

Therefore, the runtime of the entire process is Θ(n log n), and we have broken
the limitation of Θ(n2) runtime in the conventional method. In the context of
polynomial multiplication, we have shown the following.

Theorem 4.16. For any two vectors a and b of length n, where n is a power of 2,

a⊗ b = DFT−1
2n (DFT2n(a) ·DFT2n(b)),

where the vectors a and b are supplemented by 0’s (zero coefficients) to length
2n and · denotes the componentwise product of two 2n-element vectors.

5. Applications

A breakthrough in this sort of abstract, broad form naturally leads to many
beneficial consequences in various fields. For one thing, it turns out that the fastest
algorithms we have for multiplying integers rely heavily on polynomial multiplica-
tion (after all, polynomials and integers are quite similar - just replace the variable
x by the base and watch out for carries).

Integer Multiplication

Recall the multiplication methods that we reviewed in the beginning of this
paper. Either the conventional “left-shifting-and-adding” or the Russian Peasant
multiplication takes O(n2) runtime. However, the FFT-based algorithm can reduce
it to (surprise!) O(n log n) time. We shall quickly glace over how this is done.

Two large integers X and Y of size at most n− 1 can be written in the form

X = P (B), Y = Q(B)

where B is the base (usually B = 10 or a power of 10) P and Q two polynomials

P (z) =
n−1∑
j=0

xjz
j , Q(z) =

n−1∑
j=0

yjz
j .

If R(z) denotes the polynomial obtained by the product of P (z) and Q(z), then
XY = R(B), and a final rearrangement on the coefficients of R(z) permits to ob-
tain the product XY . Thus, we have transformed the problem into multiplication
of two polynomials of degree < n. And we now know how to do this task quickly,
don’t we? But nonetheless let’s look at a formal presentation of the algorithm to
multiply big numbers with FFT (the method is called Strassen multiplication when
it is used with floating complex numbers):[8]

Let n be a power of two (remember we can always add zero coefficients). To
compute Z = XY in time O(n log n), perform the following steps :

FAST FOURIER TRANSFORM 23

(1) Compute the Fourier transform (DFT) X∗ of size 2n of the sequence (xj).
In other words, compute

X∗ = (x∗0, x
∗
1, · · · , x∗2n−1) = DFT2n(x0, x1, · · · , xn−1, 0, · · · , 0).

(2) Do the same for the sequence (yj) and obtain the Fourier transform Y ∗:

Y ∗ = (y∗0 , y
∗
1 , · · · , y∗2n−1) = DFT2n(y0, y1, · · · , yn−1, 0, · · · , 0).

(3) Multiply term by term of X∗ by Y ∗ and thus obtain Z∗:

Z∗ = (z∗0 , z
∗
1 , · · · , z∗2n−1),where z∗i = x∗i y

∗
i .

(4) Compute the inverse Fourier transform (DFT−1) of Z∗ to obtain the final
answer Z:

Z∗ = (z0, z1, · · · , z2n−1),where zi =
1

2n

2n−1∑
k=0

z∗kw
−ki
2n .

Signal Processing

But perhaps a more important application of the FFT is in signal processing.
A signal is any quantity that is a function of time. An example might be a graph
such as

It has many uses. It might, for instance, capture a human voice by measuring
fluctuations in air pressure close to the speaker’s mouth. Or it might trace the
pattern of stars in the night sky by measuring brightness as a function of angle.

In order to extract information from a signal, we need to first turn it from analog
to digital by sampling. That is, to get values at particular points as shown in

24 KARL L. STRATOS

Then, we need to put it through a system that will transform it in some way.
The output is called the response of the system:

signal → system → response.

An important class of systems are those that are linear (the response to the sum of
two signals is just the sum of their individual responses) and time invariant (shift-
ing the input signal by time t produces the same output, also shifted by t).

Any system with these properties is completely characterized by its response to
the unit impulse δ(t), which is the simplest possible input signal, consisting solely
of a “jerk” (that is, the 3rd derivative of the function) at t = 0

FAST FOURIER TRANSFORM 25

To see why, consider the close relative δ(t − i), a shifted impulse in which the
“jerk” occurs at time i. Let a(t) be any signal. Then a(t) can be expressed as a
linear combination (letting δ(t− i) pick out its behavior at time i)

a(t) =
T−1∑
i=0

a(i)δ(t− i).

if T is the number of samples.

By linearity, the system response to input a(t) is determined by the responses
to the various δ(t− i). And by time invariance, these are in turn just shifted copies
of the impulse response b(t), the response to δ(t).

In other words, the output of the system at time k is

c(k) =
k∑
i=0

a(i)b(k − i).

But this is exactly the formula for polynomial multiplication! [1]

We will not go over the details of implementation, however. But perhaps we
can appreciate how this rather unexpected relation between the FFT (polynomial
multiplication) and signal processing has come about.

Acknowledgements. I would like to appreciate my brother Eung Sun, my father and my
mother for being them. Also, I want to thank Professor Daniel Stevankovic for teaching
me about the FFT, and also Professor Salur for giving me the opportunity to write my
very first paper on a mathematical topic.

References

[1] Dasgupta, S., Papadimitrious, C., and Vazirani, U., Algorithms, McGraw-Hill Higher Ed-

ucation (2008), 11–22.
[2] Cormen T. H., Leiserson C. E., Rivest R. L., and Stein, C., Introduction to Algorithms,

The MIT Press (2001), 822–844.

[3] Bartle, R. G. and Sherbert, D. R., Introduction to Real Analysis, John Wiley & Sons, Inc.
(2000), 661–693.

[4] Wikipedia, the free encyclopedia, Retrieved November 8th, 2009, from

http://en.wikipedia.org.
[5] Friedberg, S. H., Insel, A. J., and Spence, L. E., Linear Algebra, Pearson Education, Inc.

(2003), 199–244.

[6] The Math Forem at Drexel University, Retrieved November 9th, 2009, from
http://mathforum.org/library/drmath/view/55499.html

[7] ProofWiki, Retrieved November 24th, 2009, from http://www.proofwiki.org/

[8] Numbers and Computation, Retrieved November 28th, 2009, from
http://numbers.computation.free.fr/Constants/Algorithms/fft.html

University of Rochester, NY, 14627, US / Gangnam-gu, Seoul, Korea
E-mail address: jlee164@u.rochester.edu

