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1 What EM optimizes

Let O,H be a random variables representing the space of samples. Let θ be the
parameter of a generative model with an associated probability function P (O,H|θ).
In many cases, it is easy to find the maximum-likelihood estimate (MLE) solution if
both O,H are observed:

θ∗ = arg max
θ

logP (O,H|θ) (1)

This is largely due to the log operation directly on P (O,H|θ). For instance, if
P (O,H|θ) is a member of the exponential family, the log application results in a
substantially simpler expression (e.g., is smooth and concave in θ).

However, suppose we are only given partial samples O. The MLE solution is now

θ∗ = arg max
θ

log
∑
H

P (O,H|θ) (2)

A critical change is that log is no longer directly on the distribution. As a result,
this objective is often difficult to optimize. By convention, we will write logP (O|θ)
to refer to log

∑
H P (O,H|θ).

The Expectation-Maximization (EM) algorithm allows us to optimize a significantly
simpler objective which nevertheless is guaranteed to improve logP (O|θ):

EM
Input: model P (O,H|θ), partial samples O, number of iterations T
Output: (not necessarily exact in the limit) estimation of (2)

• Initialize θ0 (e.g., randomly).

• For t = 1 . . . T :

– E-step: Calculate P (H|O, θt−1).

– M-step: θt ← arg maxθ Q(θ, θt−1) where

Q(θ, θt−1) :=
∑
H

P (H|O, θt−1) logP (O,H|θ)

• Return θT .

OptimizingQ(θ, θ′) over θ is typically much easier since we have log back on P (O,H|θ).
Thus we have reduced a difficult problem into a series of easy problems.
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1.1 Proof that EM converges

At a first glance, EM does not seem to be optimizing logP (O|θ). But we can show
that it always increases this value unless it has reached a stationary point. To show
this, let q be any distribution over H and define the following quantity:

L(q, θ) :=
∑
H

q(H) log
P (O,H|θ)
q(H)

First, we show that the target objective logP (O|θ) is lower bounded by L(q, θ) for
any choice of q.

Lemma 1.1. logP (O|θ) = L(q, θ) +KL{q||P (H|O, θ)} for any q, where

KL{q||P (H|O, θ)} :=
∑
H

q(H) log
q(H)

P (H|O, θ)
≥ 0

is the Kullback-Leibler (KL) divergence between q(H) and P (H|O, θ).

Proof. It can be easily verified by using P (O,H|θ) = P (H|O, θ)P (O|θ) in L(q, θ).

Next, we claim that for a fixed θ, the lower bound L(q, θ) can be tightened to
logP (O|θ) by choosing q(H) = P (H|O, θ).

Lemma 1.2.

max
q
L(q, θ) = logP (O|θ)

arg max
q

L(q, θ) = P (H|O, θ)

Proof. By Lemma 1.1, we have L(q, θ) + KL{q||P (H|O, θ)} = C(θ) where C(θ) is
constant in q. This means the maximizing q for L(q, θ) is one that has zero KL
divergence with P (H|O, θ). This gives the desired result.

The final lemma shows that when q(H) = P (H|O, θ̄) is fixed, maximizing the lower
bound L(q, θ) over θ is equivalent to maximizing the Q(θ, θ̄) over θ.

Lemma 1.3. When q(H) is fixed as P (H|O, θ̄),

arg max
θ

L(q, θ) = arg max
θ

Q(θ, θ̄)

Proof. Plugging in q(H) = P (H|O, θ̄) inside L(q, θ), we see the desired result since

L(q, θ) =
∑
H

P
(
H|O, θ̄

)
logP (H|O, θ)︸ ︷︷ ︸

Q(θ, θ̄)

−
∑
H

P
(
H|O, θ̄

)
logP

(
H|O, θ̄

)
︸ ︷︷ ︸

independent of θ

These lemmas together yield the following statement.
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Theorem 1.4. In EM, we have logP (O|θt) ≥ logP (O|θt−1) with equality iff θt−1

is a stationary point in logP (O|θ).

Proof. In the t-th iteration, we fix P (H|O, θt−1) to compute θt = arg maxθ Q(θ, θt−1).
Then θt = arg maxθ L(q′, θ) where q′(H) = P (H|O, θt−1) by Lemma 1.3. Regarding
L(q′, θt) and L(q′, θt−1), we have:

1. L(q′, θt) ≤ logP (O|θt) by Lemma 1.1.

2. L(q′, θt) ≥ L(q′, θ) for any θ since θt = arg maxθ L(q′, θ).

3. L(q′, θt−1) = logP (O|θt−1) by Lemma 1.2 since q′(H) = P (H|O, θt−1).

These observations give us:

logP (O|θt) ≥ L(q′, θt) ≥ L(q′, θt−1) = logP (O|θt−1)

To see why L(q′, θt) > L(q′, θt−1) unless θt−1 is a stationary point in logP (O|θ),
suppose θt−1 is not a stationary point. Then the gradient of logP (O|θ) at θt−1 is
nonzero. By Lemma 1.1 and 1.2, we see that

∂

∂θt−1
L(q′, θ) +

∂

∂θt−1
KL{q′||P (H|O, θ)} =

∂

∂θt−1
L(q′, θ) 6= 0

Thus the gradient of L(q′, θ) at θt−1 is nonzero either, so θt = arg maxθ L(q′, θ) will
satisfy L(q′, θt) > L(q′, θt−1) and therefore logP (O|θt) > logP (O|θt−1).

EM can be viewed as an (unconventional) alternating optimization algorithm that
iteratively improves the lower bound of the objective instead of the objective itself.
It repeats the following two steps:

• E-step: q′ ← arg maxq L(q, θ′)

• M-step: θ′ ← arg maxθ L(q′, θ)

The E-step defines a new (tight) lower bound function that is tangent to logP (O|θ)
at θ′. The M-step modifies θ′ to optimize this lower bound, in the process making
the lower bound loose. The argument about strict improvement can be visualized as
follows: if θ′ is not a stationary point in logP (O|θ), then it cannot be a stationary
point in L(q, θ) which is tangent to logP (O|θ) and shares the gradient at θ′.

2 Examples of EM

2.1 Gaussian mixture model (GMM)

Consider a mixture of m univariate spherical Gaussians θ = {(γj , µj)}mj=1: the j-
th Gaussian has mean µj and standard deviation 1, and is associated with a prior
probability γj of being selected.

Assume we have n iid. samples from this model. Complete samples would have the
form X = {(o(i), h(i))}ni=1 where o(i) is generated by the h(i)-th Gaussian: in that case,
solving (1) is trivial. However, assume instead we have partial samples O = {o(i)}ni=1;
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we do not observe the corresponding H = {h(i)}ni=1. Then we must maximize P (O|θ)
over θ:

n∑
i=1

log

m∑
j=1

γj√
2π

exp

(
− (o(i) − µj)2

2

)
in which complicated interactions between parameters are unresolved by log. Thus
we turn to EM: we optimize instead

Q(θ, θt−1) =

n∑
i=1

m∑
j=1

p(h(i) = j|o(i), θt−1)

(
log γj − log 2π − (o(i) − µj)2

2

)

over θ. This leads to a simple formula for setting θt using θt−1.

2.2 Hidden Markov model (HMM)

Consider an HMM with a discrete observation space X and a discrete state space Y.
It is parameterized by π, t, and o and defines the probability distribution

p(x1 . . . xN , y1 . . . yN ) = π(y1)×
N∏
j=1

o(xj |yj)×
N∏
j=2

t(yj |yj−1)

for a sequence pair x1 . . . xN ∈ XN and y1 . . . yN ∈ YN .

Assume we have n iid. sample sequences of length N from this model. Complete
samples would have the form X = {(x(i), y(i))}ni=1 where x(i) ∈ XN is an observation
sequence and y(i) ∈ YN is the corresponding state sequence. Again, solving (1) is
trivial if we are given X. Assume instead we have partial samples O = {x(i)}ni=1. It
is unclear how to maximize P (O|θ) over θ:

n∑
i=1

log
∑
y∈YN

π(y1)×
N∏
j=1

o(x
(i)
j |yj)×

N∏
j=2

t(yj |yj−1)

In comparison, we can optimize a substantially simpler objective using EM:

Q(θ, θt−1) =

n∑
i=1

∑
y∈YN

p(y|o(i), θt−1)

log π(y1) +

N∑
j=1

log o(x
(i)
j |yj) +

N∑
j=2

log t(yj |yj−1)


The sum over the elements of YN can be achieved with dynamic programming.

3 Discussion

Despite the widespread use of EM today, it is often heuristically understood. Es-
pecially, it is often mistaken as plugging in conditional expectations in place of un-
observed values in (1). This is in general incorrect (Flury and Zoppe, 2000), even
though it is the case for a wide class of practical models (Appendix). It is important
to understand EM from an optimization point of view to avoid this pitfall.

Reference: Bishop, Christopher M. Pattern recognition and machine learning (2006).
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4 Appendix: trick for categorical distributions

Whenever P (O,H|θ) is a categorical distribution, i.e., it defines a distribution over
counts of events as a product of parameters associated with the events, we can actually
plug in conditional expectations in place of unobserved values in (1) and solve that
problem. This makes the derivation of EM almost trivial. Since many useful models
in the world are categorical (e.g., HMMs), this trick can be often handy.

To make this concrete, suppose we have a categorical distribution over n+m events
in which n events are observed and m events are unobserved. Let oi be the count of
the i-th observed event and hj the count of the j-th unobserved event. The model
defines a probability distribution as:

p(o1 . . . on, h1 . . . hm|α, β) =

n∏
i=1

αoii ×
m∏
j=1

β
hj

j

where θ = (α, β) is the model parameter. We will now examine the form of Q(θ, θ̄)
(θ̄ is fixed):

Q(θ, θ̄) :=
∑

h1...hm

p(h1 . . . hm|o1 . . . on, θ̄)

 n∑
i=1

oi logαi +

m∑
j=1

hj log βj


=

n∑
i=1

oi logαi +
∑

h1...hm

p(h1 . . . hm|o1 . . . on, θ̄)
m∑
j=1

hj log βj

=

n∑
i=1

oi logαi +

m∑
j=1

∑
hj

p(hj |o1 . . . on, θ̄)hj log βj

=

n∑
i=1

oi logαi +

m∑
j=1

ĥj(θ̄) log βj

where ĥj(θ̄) =
∑
hj
p(hj |o1 . . . on, θ̄)hj is the expected count of the j-th unobserved

event under θ̄. Compare this to the setting in which h1 . . . hm are fully observed and
we maximize:

log p(o1 . . . on, h1 . . . hm|α, β) =

n∑
i=1

oi logαi +

m∑
j=1

hj log βj

We see that this is exactly the same as Q(θ, θ̄) except that ĥj(θ̄) is switched with
hj . Hence in this particular setup, each iteration of EM amounts to solving the
fully observed MLE estimation in (1) but with unobserved values replaced by their
corresponding conditional expections.
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