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Latent-Variable Models in NLP

Models with latent/hidden variables are widely used for
unsupervised and semi-supervised NLP tasks.

Some examples:

1. Word clustering (Brown et al., 1992)

2. Syntactic parsing (Matsuzaki et al., 2005; Petrov et al., 2006)

3. Label induction (Haghighi and Klein 2006; Berg-Kirkpatrick et al., 2010)

4. Machine translation (Brown et al., 1993)
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Computational Challenge

latent variables −→ (generally) intractable computation

I Learning HMMs: intractable (Terwijn, 2002)

I Learning topic models: NP-hard (Arora et al., 2012)

I Many other hardness results

Common approach: EM, gradient-based search (SGD, L-BFGS)

I No global optimality guaranteed!
I Heuristics in this sense
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Why Not Heuristics?

Heuristics are often sufficient for empirical purposes.

I EM, SGD, L-BFGS: remarkably successful training methods

I Do have weak guarantees (convergence to a local optimum)

I Ways to deal with local optima issues (careful initialization, random
restarts, . . .)

“So why not just use heuristics?”

At least two downsides:

1. Impedes the development of new theoretical frameworks

No new understanding of problems for better solutions

2. Limited guidance of rigorous theory

Black art tricks, unreliable and difficult to reproduce
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This Thesis

Derives algorithms for latent-variable models in NLP with
provable guarantees.

Main weapon

SPECTRAL METHODS
(i.e., methods that use singular value decomposition (SVD)

or other similar factorization)

Stands on the shoulders of many giants:

I Guaranteed learning of GMMs (Dasgupta, 1999)

I Dimensionality reduction with CCA (Kakade and Foster, 2007)

I Guaranteed learning of HMMs (Hsu et al., 2008)

I Guaranteed learning of topic models (Arora et al., 2012)
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Main Contributions

Novel spectral algorithms for two NLP tasks

Task 1. Learning lexical representations

(UAI 2014) First provably correct algorithm for clustering words under the
language model of Brown et al. (“Brown clustering”)

(ACL 2015) New model-based interpretation of smoothed CCA for deriving
word embeddings

Task 2. Estimating latent-variable models for NLP

(TACL 2016) Consistent estimator of a model for unsupervised
part-of-speech (POS) tagging

(CoNLL 2013) Consistent estimator of a model for supervised phoneme
recognition
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Overview

Introduction

Learning Lexical Representations
A Spectral Algorithm for Brown Clustering
A Model-Based Approach for CCA Word Embeddings

Estimating Latent-Variable Models for NLP
Unsupervised POS Tagging with Anchor HMMs
Supervised Phoneme Recognition with Refinement HMMs

Concluding Remarks
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Motivation

Brown clustering algorithm (Brown et al., 1992)

I An agglomerative word clustering method

I Popular for semi-supervised NLP (Miller et al., 2004; Koo et al., 2008)

This method assumes an underlying clustering of words, but is not
guaranteed to recover the correct clustering.

This work:
I Derives a spectral algorithm with a guarantee of recovering

the underlying clustering.
I Also empirically much faster (up to ∼ 10 times)
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Original Clustering Scheme of Brown et al. (1992)
BrownAlg
Input: sequence of words x1 . . . xN in vocabulary V, number of clusters m

1. Initialize each w ∈ V to be its own cluster.

2. For |V| − 1 times, merge a pair of clusters that yields the smallest decrease in

p

(
x1 . . . xN

∣∣∣∣Brown model

)
when merged.

3. Return a pruning of the resulting tree with m leaf clusters.

1

11

111

ran

110

walked

10

101

walk

100

run

0

01

011

cat

010

dog

00

001

tea

000

coffee

m = 4

00 coffee tea

01 dog cat

10 walk run

11 walked ran
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Brown Model = Restricted HMM

3 26 7 · · · // unobserved

Their product was · · · // observed

I Hidden states: m word classes {1 . . .m}
I Observed states: n word types {1 . . . n}
I Restriction. Word x belongs to exactly one class C(x).

p(x1 . . . xN ) = πC(x1) ×
N∏
i=2

TC(xi),C(xi−1) ×
N∏
i=1

Oxi,C(xi)

The model assumes a true class C(x) for each
word x. BrownAlg is a greedy heuristic with no
guarantee of recovering C(x).
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Derivation of a Spectral Algorithm

Key observation. Given the emission parameters Ox,c, we can
trivially recover the true clustering (by the model restriction).

O =


1 2

smile 0.3 0
grin 0.7 0
frown 0 0.2
cringe 0 0.8


frown

cringe

smile grin

Algorithm: put words x, x′ in the same cluster iff

Ox
||Ox||

=
Ox′

||Ox′ ||

11 / 53



SVD Recovers the Emission Parameters

Theorem. Let UΣV > be a rank-m SVD of Ω defined by

Ωx,x′ :=
p(x, x′)√
p(x)× p(x′)

Then for some orthogonal Q ∈ Rm×m,

U =
√
OQ>

Corollary: words x, x′ are in the same cluster iff

Ux
||Ux||

=
Ux′

||Ux′ ||
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Clustering with Empirical Estimates

Ω̂ := empirical estimate of Ω from N samples x1 . . . xN

Ω̂x,x′ :=
count(x, x′)√

count(x)× count(x′)
.

Û Σ̂V̂ > := rank-m SVD of Ω̂

The Guarantee. If N is large enough (polynomial in the con-
dition number of Ω), C(x) is given by some m-pruning of an
agglomerative clustering of

f̂(x) := Ûx/
∣∣∣∣∣∣Ûx∣∣∣∣∣∣

Proof sketch. Large N ensures small
∣∣∣∣∣∣Ω− Ω̂

∣∣∣∣∣∣, which ensures the

strict separation property for the distance between f̂(x):

C(x) = C(x′) 6= C(x′′) =⇒
∣∣∣∣∣∣f̂(x)− f̂(x′)

∣∣∣∣∣∣ < ∣∣∣∣∣∣f̂(x)− f̂(x′′)
∣∣∣∣∣∣

The claim follows from Balcan et al. (2008).
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∣∣∣∣∣∣Ûx∣∣∣∣∣∣
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Summary of the Algorithm
I Compute an empirical estimate Ω̂ from unlabeled text.

Ω̂x,x′ :=
count(x, x′)√

count(x)× count(x′)

I Compute a rank-m SVD:

Ω̂ ≈ ÛΣ̂V̂ >

I Agglomeratively cluster the normalized rows Ûx/
∣∣∣∣∣∣Ûx∣∣∣∣∣∣.

I Return a pruning of the hierarchy into m leaf clusters.
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∣∣∣∣∣∣Ûx∣∣∣∣∣∣.

I Return a pruning of the hierarchy into m leaf clusters.

1

11

111

ran

110

walked

10

101

walk

100

run

0

01

011

cat

010

dog

00

001

tea

000

coffee

00 coffee tea

01 dog cat

10 walk run

11 walked ran

14 / 53



Summary of the Algorithm
I Compute an empirical estimate Ω̂ from unlabeled text.

Ω̂x,x′ :=
count(x, x′)√

count(x)× count(x′)

I Compute a rank-m SVD:

Ω̂ ≈ ÛΣ̂V̂ >
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Experiments: Comparison with Brown et al.

Corpus. RCV1 new articles (205 million words)

I Induced 1000 clusters with both algorithms

I Use them as features in a perceptron-style model for
named-entity recognition (NER)

. . .

PER

John Smith works at

ORG

New York Times . . .

I NER dataset: CoNLL 2003 shared task

Features time to induce clusters dev F1 test F1

— — 90.03 84.39
Brown 22 hours 92.68 88.76

Spectral 2 hours 92.31 87.76
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Motivation: word2vec as Matrix Decomposition

I word2vec (Mikolov et al., 2013) trains word/context

embeddings by maximizing some objective:

(vw, vc) = arg max
u,v

J(u, v)

I Recently cast as a low-rank decomposition of transformed

co-occurrence counts (Levy and Goldberg, 2014):

v>wvc = f (count(w, c))

I Q. Are there other count transformations whose low-rank
decompositions yield effective word embeddings?
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This Work

1. Count transformation under canonical correlation analysis
(CCA) (Hotelling, 1936)

I Model-based interpretation

2. Unifies various spectral methods in the literature

3. Empirically competitive with word2vec and glove
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Optimization Problem Underlying CCA
Input:

1. (X,Y ) ∈ Rd × Rd′ // two “views” of an object

2. m ≤ min(d, d′) // number of projection vectors

Output: (a1, b1) . . . (am, bm) ∈ Rd × Rd′ such that

I (a1, b1) is the solution of

arg max
a,b

Cor
(
a>X, b>Y

)
(1)

I For i = 2 . . .m : (ai, bi) is the solution of (1) subject to:

Cor
(
a>X, a>j X

)
= 0 ∀j < i

Cor
(
b>Y, b>j Y

)
= 0 ∀j < i
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Exact Solution via Singular Value Decomposition (SVD)

Theorem. (Hotelling, 1936) Define correlation matrix Ω ∈ Rd×d′ :

Ω :=
(
E[XX>]− E[X]E[X]>

)−1/2(
E[XY >]− E[X]E[Y ]>

)(
E[Y Y >]− E[Y ]E[Y ]>

)−1/2

Let (ui, vi) be the left/right singular vectors of Ω corresponding

to the i-th largest singular value. Then

ai =
(
E[XX>]− E[X]E[X]>

)−1/2
ui

bi =
(
E[Y Y >]− E[Y ]E[Y ]>

)−1/2
vi

20 / 53



Two Views of a Word

Extract samples of (X,Y ) := (word, context) from a corpus:

. . . Whatever our souls are made of . . .

↓
(souls, our) (souls, are)

Perform SVD on

Ω̂ =
(

Ê[XX>]− Ê[X]Ê[X]>
)−1/2

(
Ê[XY >]− Ê[X]Ê[Y ]>

)
(

Ê[Y Y >]− Ê[Y ]Ê[Y ]>
)−1/2
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Simplified Correlation Matrix

When the number of samples is large,

Ω̂ ≈ Ê
[
XX>

]−1/2
Ê
[
XY >

]
Ê
[
Y Y >

]−1/2

I.e., decompose the following transformed counts!

Ω̂w,c =
count(w, c)√

count(w)× count(c)
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Previous Work Using CCA for Word Embeddings

I Dhillon et al. (2011, 2012) propose various modifications of

CCA, but take the square root of counts,

Ω̂w,c =
count(w, c)1/2√

count(w)1/2 × count(c)1/2

I The square root was taken for empirical reasons.

I We now provide a model-based interpretation that naturally
admits this extra transformation.
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SVD Still Recovers the Emission Parameters

Theorem. Let UΣV > be a rank-m SVD of Ω〈a〉 defined by

Ω〈a〉w,c :=
p(w, c)a√

p(w)a × p(c)a

(where a 6= 0). Then for an orthogonal Q and a positive vector s,

U = O〈a/2〉diag(s)Q>

Corollary: normalized rows of U still cluster-revealing

I Assuming words generated by the Brown model
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Choosing the Value of a

One answer: a = 1/2

Why?

I Word counts drawn from a multinomial distribution

I Equivalent to: drawn from independent Poisson distributions
(conditioned on the length of the corpus)

I Square-root is a variance-stabilizing transformation for
Poisson random variables (Bartlett, 1936):

X ∼ Poisson(λ)

Var(X1/2) ≈ 1/4
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Experiments

Corpus: pre-processed English Wikipedia (1.4 billion words)

Comparison with
I glove (Pennington et al., 2014)

I word2vec: cbow, sgns (Mikolov et al., 2013)

I Default hyperparameter configurations
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Evaluation Tasks

1. AVG-SIM: word similarity scores averaged across 3 datasets

w1 w2 human cos(θ)
king queen 8.58 ?
drink eat 6.87 ?

professor cucumber 0.31 ?

2. SYN: accuracy in 8000 syntactic analogies
MIXED: accuracy in 19544 syntactic/semantic analogies
(two datasets provided by Mikolov et al. 2013)

w1 w2 w3 w4
(syntactic) take took ∼ sit ?

(“semantic”) London England ∼ Kampala ?
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Effect of Power Transformation in CCA

Different values of a in

Ω̂〈a〉w,c =
count(w, c)a√

count(w)a × count(c)a

1000 dimensions

a AVG-SIM SYN MIXED

1 0.572 39.68 57.64
2/3 0.650 60.52 74.00
1/2 0.690 65.14 77.70
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Word Similarity and Analogy

I log: log transform, no scaling

I ppmi: no transform, PPMI scaling

I cca: square-root transform, CCA scaling

500 dimensions

Method AVG-SIM SYN MIXED

Spectral log 0.652 59.52 67.27
ppmi 0.628 43.81 58.38
cca 0.655 68.38 74.17

Others glove 0.576 68.30 78.08
cbow 0.597 75.79 73.60
sgns 0.642 81.08 78.73
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Semi-Supervised Learning

Real-valued extra features for NER (CoNLL 2003 dataset)

30 dimensions

Features Dev Test

— 90.04 84.40
brown 92.49 88.75

log 92.27 88.87
ppmi 92.25 89.27
cca 92.88 89.28

glove 91.49 87.16
cbow 92.44 88.34
sgns 92.63 88.78

(brown: 1000 Brown clusters)
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Motivation

I Goal: induce POS tags

John/N has/V a/D light/J bag/N

I Straightforward approach: learn an HMM with EM
I Terrible performance (Merialdo, 1994)

I Model misspecification
I Suboptimal learning

I This work:
I Introduces a variant of HMM suited for POS tagging.

I “Anchor” HMM

I Derives an exact estimation method.
I Based on NMF (Arora et al., 2012)
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Anchor HMM

Relaxation of the Brown et al. disjointedness assumption

Disjointedness: Each word belongs to exactly one state.

⇓

“Anchor”: Each state has at least 1 word that belongs to that
state only.

h1 the

h2 new

h3 on

h4 is

Bonus: hidden states are lexicalized by anchor words
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Learning an Anchor HMM

Define “context” Y and matrix Ω with rows:

Ωx := E[Y |X = x]

Conditions:

1. Y is independent of X, given the state H of X.

2. Ω has rank m (number of states).

One choice of Y : indicator vector of neighboring words

the dog saw the cat

Can reduce the dimension as long as rank(Ω) = m

I Random projection, SVD, CCA
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Learning an Anchor HMM (Cont.)

Under the conditions, Ω factorizes:

Ωx =
∑
h

p(h|x)× E[Y |h]

where Ωx = E[Y |hx] if x is an anchor!

the

on

is

Algorithm:

1. Find anchor rows (Arora et al., 2012).
2. Estimate convex coefficients p(h|x).
3. Use Bayes’ rule to recover emission parameters o(x|h).
4. Given o(x|h), recover t(h′|h) and π(h).
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Experiments

Dataset. Universal treebank (McDonald et al., 2013)

12 POS tags for 10 languages

Baselines.

I em: HMM trained with EM

I brown: Brown clusters (Brown et al., 1993)

I log-lin: Log-linear model (Berg-Kirkpatrick et al., 2010)

de en es fr id it ja ko pt-br sv

em 46 60 61 60 50 52 60 52 60 42
brown 60 63 67 66 59 66 60 48 67 62
anchor 63 71 74 72 67 60 69 62 66 61
log-lin 68 62 67 62 61 53 78 61 63 57
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Discovered Anchor Words (for 12 Tags)

German English Spanish French Italian Korean
empfehlen loss y avait radar 완전

wie 1 hizo commune però 중에

; on - Le sulle 경우

Sein one especie de - 줄

Berlin closed Además président Stati 같아요

und are el qui Lo 많은

, take páıses ( legge ,
- , la à al 볼

der vice España États far- 자신의

im to en Unis di 받고

des York de Cette la 맛있는

Region Japan municipio quelques art. 위한

loss ≈ noun 1 ≈ number on ≈ preposition . . .
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Refinement HMM for Supervised Phoneme Recognition
Introduces a latent variable for each state.

ao1 ao2 ao4 ao1 ow3

15 9 7 900 835

p(15 9 7 900 835, ao ao ao ao ow, 1 2 4 1 3)

We derive a spectral algorithm for consistently estimating the
model parameters without observing the latent states.

I Algorithm: dimensionality reduction with SVD, followed by
the method of moments

I Extension of Hsu et al. (2008)
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Summary of Contributions

Novel spectral algorithms for two NLP tasks:

1. Learning lexical representations.
Brown clusters (UAI 2014), word embeddings (ACL 2015)

2. Estimating latent-variable models.
Unsupervised (TACL 2016)/supervised (CoNLL 2013) tagging

Radically different from previous algorithms

I Central computation: decomposition (SVD and NMF)

I Guarantees about the consistency of estimates

Conclusion Spectral methods are viable and effective for NLP

I New understanding of problems

I Scalable and often competitive with the state-of-the-art
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Limitations of (Current) Spectral Learning Framework

I “Rigid”: specific forms of objective/model
I Squared-error minimization, trace maximization
I Relatively simple models (e.g., HMMs, topic models)

I Limited applicability compared to EM, backprop

I Ongoing progress
I Moments + likelihood (Chaganty and Liang, 2014)

I More general non-convex objectives (Janzamin et al., 2015)
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Future Directions
I Flexible spectral framework

Ex. Manifold optimization

I Online/randomized spectral methods
Ex. SVD (Halko et al., 2011), CCA (Ma et al., 2015), matrix sketching

(Edo, 2013)

I Incorporate more nonlinearity
Ex. Deep CCA (Andrew et al., 2013)

I Other NLP applications
Ex. More word clustering, deciperment, generalized CCA for

multi-lingual tasks

thank yΩu! questiΩns?
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Proof of Spectral Learning of O

What is E[Ω̂]?

E[Ω̂] = diag(Oπ)−1/2Odiag(π)(OT )>diag(OTπ)−1/2

= diag(Oπ)−1/2Odiag(π)1/2︸ ︷︷ ︸
A

. . . . . . . . .︸ ︷︷ ︸
Θ>

(some rank-m matrix)

What is A?

Ax,h =
Ox,h
√
πh√∑

hOx,hπh
=

Ox,h
√
πh√

Ox,C(x)πC(x)

=
√
Ox,C(x)

1. A has the same sparsity pattern as O.

2. A has orthogonal columns: A>A = Im×m.
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Proof of Spectral Learning of O (Cont.)

If U ∈ Rn×m is the top m left singular vectors of E[Ω̂],

UU> = E[Ω̂](E[Ω̂]>E[Ω̂])+E[Ω̂]>

= AΘ>(ΘA>AΘ>)+ΘA>

= AΘ>(ΘΘ>)+ΘA>

= AA>

Θ>(ΘΘ>)+Θ = Im×m since range(Θ) = Rm

So UU> = AA>, i.e., ∃ orthogonal Q ∈ Rm×m such that

U = AQ> =
√
OQ>
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Variance Stabilization

A heuristic “proof”: if X ∼ Poisson(λ) and

g(X) :=
√
X

By the delta method:

Var(g(X)) ≈ g′(E[X ])2 Var(X)

=

(
1

2
√
λ

)2

λ

=
1

4
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Fast Agglomerative Clustering

Input: µ(1) . . . µ(n) ∈ Rd word vectors sorted in decreasing frequency, integer m ≤ n
Output: hierarchical clustering of µ(1) . . . µ(n)

Tightening: O(dm) subroutine tighten(c):

nearest(c) := argmin
c′∈C:c′ 6=c

4(c, c′) lb(c) := min
c′∈C:c′ 6=c

4(c, c′) tight(c) := True

Main body:

1. C ← {{µ(1)}, . . . , {µ(m)}}, call tighten(c) for each c ∈ C.
2. For i = m+ 1 to n+m− 1:

2.1 If i ≤ n: let c := {µ(i)}, call tighten(c), and let C := C ∪ {c}.
2.2 Let c∗ := argminc∈C lb(c).
2.3 While tight(c∗) is False, call tighten(c∗) and let c∗ := argminc∈C
2.4 Merge c∗ and nearest(c∗) in C.
2.5 For each c ∈ C: if nearest(c) ∈ {c∗, nearest(c∗)}, set tight(c) := False.

Instead of O(dn2m) (already using the fixed window trick), we
have O(dm2 + γdnm) = O(γdnm) where empirically γ � n
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Why the Brown Clustering Algorithm is Slow

computeL2usingOld(s, t, u, v, w) = L2[v][w]

− q2[v][s]− q2[s][v]− q2[w][s]− q2[s][w]

− q2[v][t]− q2[t][v]− q2[w][t]− q2[t][w]

+ (p2[v][s] + p2[w][s]) ∗ log((p2[v][s] + p2[w][s])/((p1[v] + p1[w]) ∗ p1[s]))
+ (p2[s][v] + p2[s][w]) ∗ log((p2[s][v] + p2[s][w])/((p1[v] + p1[w]) ∗ p1[s]))
+ (p2[v][t] + p2[w][t]) ∗ log((p2[v][t] + p2[w][t])/((p1[v] + p1[w]) ∗ p1[t]))
+ (p2[t][v] + p2[t][w]) ∗ log((p2[t][v] + p2[t][w])/((p1[v] + p1[w]) ∗ p1[t]))
+ q2[v][u] + q2[u][v] + q2[w][u] + q2[u][w]

− (p2[v][u] + p2[w][u]) ∗ log((p2[v][u] + p2[w][u])/((p1[v] + p1[w]) ∗ p1[u]))
− (p2[u][v] + p2[u][w]) ∗ log((p2[u][v] + p2[u][w])/((p1[v] + p1[w]) ∗ p1[u]))

A O(1) function that is called O(nm2) times in Liang’s
implementation of the Brown algorithm, accounting for over 40%

of the runtime.
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Template
Input: count(w, c), dimension m, transform t, scaling s

I count(w) :=
∑

c count(w, c)
I count(c) :=

∑
w count(w, c)

Output: embedding v(w) ∈ Rm for each word w

1. Transform counts

2. Scale counts to construct matrix Ω̂

3. Do rank-m SVD on Ω̂ ≈ Û Σ̂V̂ > and let v(w) = Ûw/
∣∣∣∣∣∣Ûw∣∣∣∣∣∣
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Template: No Scaling (Pennington et al., 2014)

Input: count(w, c), dimension m, t = log, s = —

I count(w) :=
∑

c count(w, c)
I count(c) :=

∑
w count(w, c)

Output: embedding v(w) ∈ Rm for each word w

1. Transform counts

count(w, c)← log(1 + count(w, c))

2. Scale counts to construct matrix Ω̂

Ω̂w,c = count(w, c)

3. Do rank-m SVD on Ω̂ ≈ Û Σ̂V̂ > and let v(w) = Ûw/
∣∣∣∣∣∣Ûw∣∣∣∣∣∣
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Template: PPMI (Levy and Goldberg, 2014)

Input: count(w, c), dimension m, t = —, s = ppmi

I count(w) :=
∑

c count(w, c)
I count(c) :=

∑
w count(w, c)

Output: embedding v(w) ∈ Rm for each word w

1. Transform counts

count(w, c)← count(w, c) count(w)← count(w)

count(c)← count(c)

2. Scale counts to construct matrix Ω̂

Ω̂w,c = max

(
0, log

count(w, c)×
∑

w,c count(w, c)

count(w)× count(c)

)
3. Do rank-m SVD on Ω̂ ≈ Û Σ̂V̂ > and let v(w) = Ûw/

∣∣∣∣∣∣Ûw∣∣∣∣∣∣
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Template: CCA with Square-Root (this work)

Input: count(w, c), dimension m, t = sqrt, s = cca

I count(w) :=
∑

c count(w, c)
I count(c) :=

∑
w count(w, c)

Output: embedding v(w) ∈ Rm for each word w

1. Transform counts

count(w, c)←
√

count(w, c) count(w)←
√

count(w)

count(c)←
√

count(c)

2. Scale counts to construct matrix Ω̂

Ω̂w,c =
count(w, c)√

count(w)× count(c)

3. Do rank-m SVD on Ω̂ ≈ Û Σ̂V̂ > and let v(w) = Ûw/
∣∣∣∣∣∣Ûw∣∣∣∣∣∣
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Some Nearest Neighbor Examples

rochester seattle yahoo starbucks lol

binghamton tacoma linkedin dunkin yeah

albany portland msn mcdonalds heh

hartford washington facebook mcdonald’s kidding

utica denver digg domino’s thats

syracuse oakland aol applebee’s damn

elmira baltimore google 7-eleven ahh

bridgeport chicago friendster kfc gosh

newark cleveland orkut walmart kinda

smile frown 1 1945 second

smiles frowns 2 1944 third

smiling frowned 3 1943 fourth

grin disapprove 4 1942 fifth

wide-eyed cringe 5 1941 first

laugh discourages 6 1946 sixth

cheerful overreact 8 1940 seventh

eyes detest 7 1939 eighth

grinning forbid 9 1947 ninth
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