
Notes on the framework of Ando and Zhang (2005)

Karl Stratos

1 Beyond learning good functions: learning good spaces

1.1 A single binary classification problem

Let X denote the problem domain. Suppose we want to learn a binary hypothesis function h : X →
{−1,+1} defined as

h(x) :=

{
1 if f(x) ≥ 0
−1 otherwise

where f : X → R assigns a real-valued score to a given x ∈ X. We assume some loss function L : R×R→
R that can be used to evaluate the prediction f(x) ∈ R against a given label y ∈ {−1,+1}. Here are
some example loss functions:

L(y, y′) := log(1 + exp(−yy′)) (logistic loss)

L(y, y′) := max(0, 1− yy′) (hinge loss)

In a risk minimization approach, we seek a function f∗∗ within a space of allowed functions H that
minimizes the expected loss over the distribution D of instances (x, y) ∈ X × {−1,+1}:

f∗∗ := arg min
f∈H

E(X,Y)∼D L(f(X), Y)

Of course, we don’t know the distribution D. In practice, we seek a function f∗ that minimizes the
empirical loss over the training data (x(1), y(1)) . . . (x(n), y(n)):

f∗ := arg min
f∈H

n∑
i=1

L(f(x(i)), y(i)) (1)

this approach is called “empirical risk minimization” (ERM). One can easily find f∗ if L is defined so
that the objective in Eq. (1) is convex with respect to the function parameters.

1.2 Multiple binary classification problems

Suppose we now have m binary classification problems. Let Xl denote the problem domain of the l-th
problem. We want to lean m binary hypothesis functions h1 . . . hm defined as

hl(x) :=

{
1 if fl(x) ≥ 0
−1 otherwise

where fl : Xl → R assigns a real-valued score to a given input x ∈ Xl from the l-th domain. A simple way
to learn f1 . . . fm is to assume that each problem is independent so that there is no interaction between
hypothesis spaces H1 . . .Hm. Then following the usual ERM approach, we simply solve for each function
separately. Assuming we have nl training examples (x(1;l), y(1;l)) . . . (x(nl;l), y(nl;l)) ∈ Xl × {−1,+1} for
the l-th problem drawn iid from distribution Dl, find:

f∗l := arg min
fl∈Hl

nl∑
i=1

L(fl(x
(i;l)), y(i;l)) (2)

for l = 1 . . .m.

1

A more interesting setting is that the problems share a certain common structure. To realize this setting,
we introduce an abstract parameter Θ ∈ Γ for some parameter space Γ and assume that all the m
hypothesis spaces are influenced by Θ. To mark this influence, we now denote the spaces byH1,Θ . . .Hm,Θ
and functions by f1,Θ . . . fm,Θ. If we know Θ, then this new setting is reduced to the previous setting since
the problems are conditionally independent given Θ. Again, we simply solve for each function separately
in a manner similar to Eq. (2):

f∗l,Θ := arg min
fl,Θ∈Hl,Θ

nl∑
i=1

L(fl,Θ(x(i;l)), y(i;l))

But instead of assuming a known Θ ∈ Γ, we will optimize it jointly with the model parameters {wl, vl}ml=1.
In this approach, we seek to minimize the sum of average losses across the m problems:

Θ∗, {f∗l,Θ}ml=1 := arg min
Θ∈Γ,fl,Θ∈Hl,Θ

m∑
l=1

1

nl

nl∑
i=1

L(fl,Θ(x(i;l)), y(i;l)) (3)

Note that for each problem l = 1 . . .m, we minimize the average loss (normalized by the number of
training examples nl) since the problems may have vastly different sizes of training data.

2 Learning strategies

To make the exposition in this section concrete, we will adopt the following setup of Ando and Zhang
(2005). We assume a single feature function φ that maps an input x ∈ Xl from any of the l problems
to a vector φ(x) ∈ Rd. We consider the structural parameter space Γ ⊆ Rk×d for some k. For the l-th
problem and for a given structural parameter Θ ∈ Rk×d, we consider a hypothesis space Hl,Θ of linear
functions fl,Θ : Xl → R parameterized by wl ∈ Rd and vl ∈ Rk:

fl,Θ(x) = (w>l + v>l Θ)φ(x) ∀x ∈ Xl (4)

Here is how to interpret the setup. If Θ is a zero matrix, then the hypothesis function for each problem
independently makes its own predictions as a standard linear classifier: fl,Θ(x) = w>l φ(x). Otherwise, Θ
serves as a global force that influences the predictions of all m hypothesis functions f1,Θ . . . fm,Θ.

Example 2.1. Let m denote the number of distinct words in the vocabulary. Given an occurrence of
word x in a corpus, we use φ(x) ∈ Rd to represent the context of x. For example, for the sentence the

dog barked, φ(dog) ∈ R2m might be a two-hot encoding of words the and barked. Note that the word x
itself is not encoded in φ(x).

We have m binary predictors f1,Θ . . . fm,Θ where fl,Θ(x) = (w>l + v>l Θ)φ(x) corresponds to predicting
whether x is the l-th word type given only the context φ(x).

2.1 Joint optimization on training data

Assume R(Θ) and rl(wl, vl) are some regularizers for matrices Θ ∈ Rk×d and vectors wl ∈ Rd, vl ∈ Rk.
Then we can implement the abstract training objective in Eq. (3) by definingHl,Θ as a space of regularized
linear functions parametrized by Θ ∈ Rk×d, wl ∈ Rd, and vl ∈ Rk as in Eq. (4):

Θ∗, {w∗l , v∗l }ml=1 := arg min
Θ,{wl,vl}ml=1

R(Θ) +

m∑
l=1

(
rl(wl, vl) +

1

nl

nl∑
i=1

L((w>l + v>l Θ)φ(x(i;l)), y(i;l))

)
(5)

We assume that rl and L are chosen so that Eq. (5) is convex with respect to wl, vl for a fixed Θ. But this
is not convex with respect to wl, vl,Θ jointly, so one cannot hope to find globally optimal Θ∗, {w∗l , v∗l }ml=1.
A natural optimization method is alternating minimization:

• Initialize Θ to some value.

• Repeat until convergence:

2

1. Optimize the objective in Eq. (5) with respect to wl, vl, with fixed Θ.

2. Optimize the objective in Eq. (5) with respect to Θ, with fixed wl, vl.

But Ando and Zhang (2005) modify the objective slightly so that the alternating minimization can use
singular value decomposition (SVD) as a subroutine.

2.2 Alternating minimization using SVD

Here is a variant of the objective in Eq. (5):

Θ∗, {w∗l , v∗l }ml=1 := arg min
Θ,{wl,vl}ml=1

m∑
l=1

(
λl ||wl||2 +

1

nl

nl∑
i=1

L((w>l + v>l Θ)φ(x(i;l)), y(i;l))

)
(6)

subject to ΘΘ> = Ik,k

In other words, we set rl(wl, vl) = λl ||wl||2 (where λl ≥ 0 is a regularization hyperparameter) and
introduced an orthogonality constraint ΘΘ> = Ik,k. This constraint can be seen as implicitly regularizing
the parameter Θ.

Now a key step: a change of variables. Define ul := wl + Θ>vl ∈ Rd. We can then rewrite Eq. (6) as:

Θ∗, {u∗l , v∗l }ml=1 := arg min
Θ,{ul,vl}ml=1

m∑
l=1

(
λl
∣∣∣∣ul −Θ>vl

∣∣∣∣2 +
1

nl

nl∑
i=1

L(u>l φ(x(i;l)), y(i;l))

)
(7)

subject to ΘΘ> = Ik,k

Once we have Θ∗, {u∗l , v∗l }ml=1, we can recover w∗l = u∗l − (Θ∗)>v∗l . This non-obvious step is to achieve
the following effect. When ul is fixed for l = 1 . . .m, Eq. (7) reduces to:

Θ∗, {v∗l }ml=1 := arg min
Θ,{vl}ml=1

m∑
l=1

λl
∣∣∣∣ul −Θ>vl

∣∣∣∣2 (8)

subject to ΘΘ> = Ik,k

One more key step: inspect what the optimal parameters {v∗l }ml=1 are given a fixed Θ in Eq. (8). That
is, analyze the form of

{v∗l }ml=1 := arg min
{vl}ml=1

m∑
l=1

λl
∣∣∣∣ul −Θ>vl

∣∣∣∣2 (9)

for some Θ ∈ Rk×d such that ΘΘ> = Ik,k. Differentiating the right hand side with respect to vl and
setting it to zero, we see that v∗l = Θul. Note that this is the case for any given Θ, in particular the
optimal Θ∗ in Eq. (8). This is good, because we can now pretend there is no vl in Eq. (8) by plugging in
vl = Θul. Eq. (8) is now formulated entirely in terms of Θ:

Θ∗ := arg max
Θ

m∑
l=1

λl u
>
l Θ>Θul (10)

subject to ΘΘ> = Ik,k

This form is almost there. To see what the solution Θ∗ is more clearly, we take a final step: organize
vectors u1 . . . um and regularizing parameters λ1 . . . λm into a matrix M = [

√
λ1u1 . . .

√
λmum] ∈ Rd×m.

By construction, the diagonal entries of ΘMM>Θ> ∈ Rk×k have the following form: for l = 1 . . . k,

[ΘMM>Θ>]l,l = λlu
>
l Θ>Θul

Let θl ∈ Rd denote the l-th row of Θ ∈ Rk×d. Then Eq. (10) can be rewritten as:

{θ∗1 . . . θ∗k} := arg max
θ1...θk

m∑
l=1

λl θ
>
l MM>θl (11)

subject to θ>i θj = 1 if i = j and 0 otherwise

3

At last, it is clear in Eq. (11) that the solution θ∗1 . . . θ
∗
k is the k eigenvectors of MM> ∈ Rd×d that

correspond to the largest k eigenvalues. Equivalently, they are the k left singular vectors of M ∈ Rd×m
that correspond to the largest k singular values.

Based on this derivation, we have an alternating minimization algorithm that uses SVD as a subroutine
to approximate the solution in Eq. (6):

SVD-based Alternating Optimization of Ando and Zhang (2005)
Input: for l = 1 . . .m: training examples (x(1;l), y(1;l)) . . . (x(nl;l), y(nl;l)) ∈ Xl × {−1,+1},
regularization parameters λl ≥ 0; a suitable loss function L : R× R→ R
Output: approximation of the parameters in Eq. (6): ŵl ∈ Rd and v̂l ∈ Rk for l = 1 . . .m,
structurual parameter Θ̂ ∈ Rk×d across the m problems

• Initialize ûl ← 0 ∈ Rd for l = 1 . . .m and Θ̂ ∈ Rk×d randomly.

• Until convergence:

1. For each l = 1 . . .m, set v̂l = Θ̂ûl and optimize the convex objective (e.g., using
subgradient descent)

ŵl = arg min
wl∈Rd

λl ||wl||2 +
1

nl

nl∑
i=1

L((w>l + v̂>l Θ̂)φ(x(i;l)), y(i;l))

2. For each l = 1 . . .m, set ûl = ŵl + Θ̂>v̂l and set

M̂ = [
√
λ1û1 . . .

√
λmûm] ∈ Rd×m

Compute the k left singular vectors θ̂1 . . . θ̂k ∈ Rd of M̂ corresponding to the k
largest singular values and set Θ̂ = [θ̂1 . . . θ̂k]>.

• Return Θ̂, {ŵl, v̂l}ml=1 where v̂l ← Θ̂ûl.

3 Application to semi-supervised learning

Ando and Zhang (2005) propose applying this framework to semi-supervised learning, i.e., leveraging
unlabeled data on top of the labeled data one already has. The basic idea is the following. Given labeled
data for some supervised task, one creates a bunch of auxiliary labeled data for some related task. By
finding a common structure Θ shared between the original task and the artificially constructed task, one
can hope to utilize the information in unlabeled data.

How to artificially construct a task such that (1) it is related to the original task and (2) its labeled
data can be easily obtained from unlabeled data is best illustrated with an example. Consider the task
of associating a word in a sentence with a part-of-speech tag. For simplicity, we will not consider any
structured predction such as viterbi decoding. Instead, we independently predict the part-of-speech tag
of word xj (the j-th word in sentence x) given some feature representation φ(x, j). We will probably
want to include features such as the identity of words in a local context (xj−1, xj , xj+1), the spelling of
the considered word (prefixes and suffixes of xj), and so on.

By observing that part-of-speech tags are intimiately correlated with word types themselves, we create
an artificial problem of predicting the word in the current position given the previous and next words.
This task is also illustrated in Example 2.1. Note that we can use unlabeled text for this problem. In
summary, here is a description of how we might apply this framework to this semi-supervised task:

1. Apply the SVD-based Alternating Optimization algorithm to learn binary classifiers (corre-
sponding to word types) that predict the word in the current position given the previous and next
words. In the described setup, we can simply use the existing feature function φ(x, j) by setting all

4

irrelevant features (such as spelling features) to zero. Ando and Zhang (2005) report that iterating
only once is sufficient in practice.

2. Fix the output structure Θ̂ from step 1. Throw away other parameters ŵl, v̂l returned by the
algorithm. Now, re-learn ŵl, v̂l on the original task of predicting the part-of-speech tag of word xj
given φ(x, j), using the fixed Θ̂ from step 1 in the algorithm.

The output of this procedure is a set of binary classifiers for predicting the part-of-speech tag of a word in
a sentence. But during training, these classifiers took advantage of the shared structure Θ̂ in the task of
predicting the current word given neighboring words. Since these two tasks are very related, the original
problem will benefit from using Θ̂.

Ando and Zhang (2005) report very good performance on sequence labeling tasks such as named-entity
recognition. But because this framework is formulated entirely in terms of binary classification, they use
their own sequence labeling method which also formulates the problem in terms of binary classification,
which is out of the scope of this note.

References

Ando, R. K. and Zhang, T. (2005). A framework for learning predictive structures from multiple tasks
and unlabeled data. The Journal of Machine Learning Research, 6, 1817–1853.

5

