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Abstract. The conventional method of describing a graph as a pair (V,E),
where V and E repectively denote the sets of vertices and edges, is simple to

understand and adopted in many applications. It, however, does not provide

a very rich foundation for mathematical endeavor. An alternative approach is
to construct a graph in algebraic topological way. In this paper, we explore

how this different perspective can help us better understand group theory and

topology as well as the theory of graph.

1. Introduction

A graph is an extremely universal data structure that is used to represent nu-
merous real-life problems, from finding one’s way in a city to automated planning.
It is easy to manipulate and its concept is intuitive to humans. Consequently, it
has been widely employed in various applications. For instance, the two examples
above are actually used today in the Global Positioning System (GPS) and robotics.

Most of the time, all the properties of a graph that are relevant to its given use
can be described with only its vertices (points) and edges (lines). Hence a graph
is usually defined by two sets, one of vertices and the other of edges. Also, the
literature distinguishes two types of graphs: directed and undirected. To illustrate,
here is the definitions of a directed and an undirected graph from a canonical
computer science algorithm book. [1]

Definition 1.1. A directed graph (or digraph) G is a pair (V,E), where V is
a finite set and E is a binary relation on V . The set V is called the vertex set
of G, and its elements are called vertices. The set E is called the edge set of G,
and its elements are called edges.

Here is an example of a directed graph G = (V,E) with V = (1, 2, 3, 4) and
E = {(1, 2), (2, 3), (3, 1), (4, 4), (4, 2)}. Note that self-loops are allowed.

Figure 1
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Definition 1.2. In an undirected graph G = (V,E), the edge set E consists
of unordered pairs of vertices, rather than ordered pairs. That is, an edge is a set
{u, v}, where u, v ∈ V and u 6= v.

Self-loops are forbidden in an undirected graph. Here is an example with the
same set V from above but with E = {{1, 2}, {2, 3}, {1, 3}{4, 2}}.

Figure 2

With these definitions, one can easily prove most of the usefual properties of
graphs, such as the number of all edges incident on vertices (i.e. degrees) is twice
the number of edges. However, we can define a graph in a different way and
use it as a tool to gain insight in group theory and topology. We begin by giving
definitions and examples. We assume that the reader is familiar with basic concepts
in topology.

2. Basic Definitions

Henceforth, consider a graph from the viewpoint of algebraic topology. Here,
the corresponding entity to an edge is an arc. An arc A is a space homeomorphic
to the unit interval [0,1]. The corresponding entity to a vertex is an end point.
The end points of the arc A are the points p, q that map to 0 and 1 under the
homeomorphism. They are the only points such that when removed, A remains
connected. This connected remnant, A with its end points deleted, is called the
interior of an arc A. [2]

Figure 3



A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY 3

Definition 2.1. A linear graph is a space X that is the union of a collection of
subspaces Aα, each of which is an arc, such that

(1) The intersection Aα ∩Aβ of two arcs is either empty or consists of a single
point that is an end point of each.

(2) The toplogy of X is coherent with the subspaces Aα.

The arcs Aα are (still) called the edges of X, and their interiors are called the
open edges of X. Their endpoints are (still) called the vertices of X. We denote
the set of vertices of X by X0.

Recall that a topology of X is coherent with the subspaces Aα if each space Aα
is a subspace of X in this topology. In other words, a coherent topology is one that
is uniquely determined by a family of subspaces; it is a topological union of those
subspaces. Equivalently, X is coherent with C if one of the following holds: [3]

(1) A subset U ∈ X is open if and only if U ∩ Cα is open in Cα for each α.
(2) A subset U ∈ X is closed if and only if U ∩ Cα is closed in Cα for each α.

If C is a subset of a linear graph X such that it is a union of edges and vertices
of X, then C is closed in X. This is because the intersection of C with any edge
Aα is either empty, the entire Aα, a vertex, or both vertices of Aα. In every case,
it is closed. It follows that each edge of X is a closed subset of X. In addition, the
set of vertices X0 is a closed discrete subspace of X, since any subset of vertices is
closed in X.

The condition (2) can be satisfied with the Hausdorff condition if we have a
finite graph, since the Hausdorff condition guarantees each subspace is preserved
under the topology. If we have an infinite graph, the Hausdorff condition no longer
gives such a guarantee, so we have to include the coherence condition. In fact, this
condition is more comprehensive, since it contains the normal (and thus Hausdorff)
condition.

Lemma 2.2. Every linear graph X is normal.

Proof. Let B and C be disjoint closed subsets of X. We can assume every vertex of
X belongs to either B or to C since if there is one that does not belong to either, we
can always extend one of the closed subsets to include that vertex. We construct
disjoint open sets containing B and C as follows. For each α, choose disjoint open
subsets Uα and Vα of the edge Aα that contain B ∩ Aα and C ∩ Aα, respectively.
Then U =

⋃
Uα and V =

⋃
Vα are the desired open sets.

Clearly, U contains B and V contains C. To show U and V are disjoint, suppose
there is some point x in the intersection U ∩ V . Then x ∈ Uα ∩ Vβ for some α 6= β.
This means two different edges contain the point x, implying x is a vertex of X.
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Figure 4

But this is impossible. By assumption, every vertex is in either B or C. If x ∈ B,
then by construction x cannot belong to any set Vα, and if x ∈ C, then similarly x
cannot belong to any Uα.

To show U and V are open in X, using the coherence of X with the subspaces
Aα, it suffices to show that U ∩Aα = Uα for each α. By definition, U ∩Aα contains
Uα. Suppose there is a point x ∈ U ∩ Aα that is not in Uα. Then x is in some
different Uβ . This means two distince edges Aα and Aβ contain x, so x must be a
vertex (see again Figure 4). But this is impossible, since if x ∈ B, then x ∈ Uα by
definition of Uα, and if x ∈ C, then x cannot belong to U . The case for V being
open goes likewise. �

Now we turn to a few simple examples for illustration.
Example The following flower-like set X of circles joined at a point p can be
expressed as a linear graph.

Figure 5

Break each circle into three edges by inserting two vertices other than p. Then
this set is a union of arcs Aα. To show the topology of X is coherent with the
resulting collection of arcs, note that if D ∩ Aα is closed in Aα for each arc Aα,
then since the intersection of D with a circle is the union of three sets of the form
D ∩Aα, it is closed in the circle. Then D is closed in X by definition.
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Example If J is a discrete space and E = [0, 1] × J , then the quotient space
X obtained from E by collapsing the set {0} × J to a point p is a linear graph.
The quotient map π : E → X is a closed map. If C ⊂ E, then π−1π(C) equals
C ∪ ({0} × J) if C contains a point of {0} × J and equals C otherwise; in either
case, π−1π(C) is closed in E, so π(C) is closed in X. Therefore, π maps each
space [0, 1]× α homeomorphically onto its image Aα. This means Aα is an arc by
definition. Since a quotient space is coherent, the topology of X generated by π is
coherent with subspaces Aα.

3. Subgraphs

Next we turn to subgraphs. It can be shown that if Y is a subspace of X that is
a union of edges of X, then Y is itself a linear graph.

Proposition 3.1. Let X be a linear graph, and Y ⊂ X be a subspace that is a
union of edges of X. Then Y is closed in X and is a linear graph, which we call a
subgraph of X.

Proof. Since Y is already a union of arcs, to show Y is a linear graph we need only
prove that the subspace topology on Y is coherent with the set of edges of Y . If
a subset D of Y is closed in the subspace topoloy, then D is closed in X so that
D ∩Aα is closed in Aα for each edge of X (including each edge of Y ). Conversely,
suppose D ∩ Aβ is closed in Aβ for each edge Aβ of Y . If an edge Aα of X is not
contained in Y , then D∩Aα is either empty or a singleton, so it is closed in Aα. �

Subgraphs help us visualize topological properties by “translating” them to graph
representation. For example, it turns out that any compact subspace of a linear
graph can always be contained in a finite subgraph.

Lemma 3.2. Let X be a linear graph. If C is a compact subspace of X, there
exists a finite subgraph Y of X that contains C. Moreover, if C is connected, then
Y can be made connected as well.

Proof. C contains only finitely many vertices of X, since C∩X0 is a closed discrete
subspace of C that has no limit point. Likewise, there are only finitely many edges
Aα of which C contains an interior point. To see why, choose all possible points xα
that are in both C and the interior of Aα. We obtain a collection B = {xα} whose
intersection with each edge Aβ is a one-point set or empty. Hence, every subset of
B is closed in X. This means B is a closed discrete subspace of C and thus finite.

Now, we construct Y by choosing, for each vertex x of X belonging to C, an
edge of X having x as a vertex, and adjoining to these edges all edges Aα whose
interiors contain points of C. Then Y is a finite subgraph containing C.

If C is connected, then Y is the union of a collection of arcs each of which
intersects C, so that Y is connected. �

4. Locally Path Connected, Semilocally Simply Connected, Covering
Spaces

There are more topological properties that are retained by linear graphs. Every
linear graph is locally path connected and semilocally simply connected. Further-
more, its covering space is itself a linear graph. We will review the terminologies
here before we proceed with the theorems.
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Given points x and y of the space X, a path in X from x to y is a continuous
map f : [a, b]→ X of some closed interval in the real line into X such that f(a) = x
and f(b) = y. X is called path connected if every pair of points X can be joined
by a path in X. X is called locally path connected if, given any point x ∈ X,
for every neighborhood U of x we can find a path-connected neighborhood V of x
contained in U . In addition, the relation on X defined by x ∼ y if and only if there
is a path in X from x to y dictates an equivalence relation, and the equivalence
classes are called the path components of X.

A space X is said to be semilocally simply connected if for each x ∈ X,
there is a neighborhood U of x such that the homomorphism

i∗ : π1(U, x)→ π1(X,x)

induced by inclusion is trivial. Roughly speaking, there is a lower bound on the
sizes of the “holes” in X. An alternative definition is X is semilocally simply
connected if every point in X has a neighborhood U with the property that every
loop in U can be contracted to a single point within X. [3] A loop is just a path
that begins and ends at the same point.

Now we prove the above remarks.

Theorem 4.1. If X is a linear space, then X is locally path connected and semilo-
cally simply connected.

Proof. Pick a point x in X. If x lies interior to some edge. Then every neighborhood
of x is a neighborhood of x homeomorphic to an open interval of R, which is path
connected. If x is a vertex and U is a neighborhood of x, then for each edge Aα
having x as an end point, we can choose a neighborhood Vα of x in Aα lying in U
that is homeomorphic to the half-open interval [0,1). Then

⋃
Vα is a neighborhood

of x in X lying in U , and it is path connected, being is a union of path connected
spaces having the point x in common. This shows X is locally path connected.

To show X is semilocally simply connected, we prove that if x is in X, then x
has a neighborhood U such that π1(U, x) is trivial. If x lies interior to some edge,
then we are done since the interior of this edge is the desired neighborhood. If x
is a vertex, let St(x) (“star of x”) denote the union of those edges that have x as
an end point, and let St(x) denote the subspaces of St(x) obtained by deleting all
vertices other than x.

Figure 6
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The set St(x) is open in X, since its complement is a union of arcs and vertices.
To show π1(Stx, x) is trivial, let f be a loop in Stx based at x. Then the image set
f(I) is compact, so it lies in some finite union of arcs of St(x). Any such union is
homeomorphic to the union of a finite set of line segments in the plane having an
endpoint in common. And for any loop in such a space, the straight-line homotopy
will shrink it to the constant loop at x. �

Let p : E → B be a continuous and surjective map from the space E to the space
B. Recall that if every point b ∈ B has a neighborhood U that is evenly covered
by p, 1 then p is called a covering map, and E is called a covering space of B.

Theorem 4.2. Let p : E → X be a covering map, where X is a linear graph.
If Aα is an edge of X and B is a path component of p−1(Aα), then p maps B
homeomorphically onto Aα. Furthermore, the space E is a linear graph, with the
path components of the spaces p−1(Aα) as its edges.

Proof. First, let us show that p maps B homeomorphically onto Aα. Since the
arc Aα is path connected and locally path connected, the map p0 : B → Aα
obtained by restricting p is a covering map. Since B is path connected, the lifting
correspondence φ : π1(Aα, a)→ p−1

0 (a) is surjective. Since Aα is simply connected,
p−1
0 (a) contains only a single point. Hence p0 is a homeomorphism.

Because X is the union of the arcs Aα, the space E is the union of the arcs B
that are path components of the spaces p−1(Aα). Let B and B′ be distinct path
components of p−1(Aα) and p−1(Aβ), respectively. Now, B and B′ intersect in
at most a common end point, since if Aα and Aβ are equal, then B and B′ are
disjoint, and if Aα and Aβ are disjoint, so are B and B′. In other words, if B
and B′ intersect, Aα and Aβ must intersect in an end point x of each; ten B ∩ B′
contains only a single point, which must be an end point of each.

We must show that E has the topology coherent with the arcs B. For each arc
B of E, let W be a subset of E such that W ∩B is open in B. We show W is open
in E. We do this in three stages.

First, we show that p(W ) is open in X. If Aα is an edge of X, then p(W )∩Aα is
the union of the sets p(W ∩B), as B ranges over all path components of p−1(Aα).
Each of these sets p(W ∩B) is open in Aα since p maps B homeomorphically onto
Aα. Hence their union p(W )∩Aα is open in Aα. Since X has the topology coherent
with the subspaces Aα, the set p(W ) is open in X.

Second, we prove for a special case in which the set W is contained in one of the
slices V of p−1(U), where U is an open set of X that is evenly covered by p. By
the result just proved, we know that p(W ) is open in X, so it is also open in U .
Because the map of V onto U obtained by restricting p is a homeomorphism, W
must be open in V and hence open in E.

Third, we prove for a general case. Pick a covering A of X by open sets U that
are evenly covered by p. Then the slices V of the sets p−1(U), for U ∈ A, cover E.
For each such slice V, let WV = W ∩V . The set WV has the property that for each
arc B of E, the set WV ∩ B is open in B, since WV ∩ B = (W ∩ B) ∩ (V ∩ B) by

1i.e. the inverse image p−1(U) is a union of disjoint open sets Vα in E such that for each α, the
restriction of p to Vα is a homeomorphism of Vα onto U . The collection {Vα} is called a partition

of p−1(U) into slices.
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distributivity of intersection and both W ∩B and V ∩B are open in B. The result
of the second stage implies that WV is open in E. Since W is the union of the sets
WV , it is also open in E.

We have shown that the topology of E is coherent with the arcs B. This com-
pletes the proof that E is a linear graph itself. �

5. The Fundamental Group of a Graph

We will end our algebraic topological examination of graphs by presenting an
elegant fact that the fundamental group of any linear graph is a free group.

Definition 5.1. Let X be a space; let x0 be a point of X. The set of path homotopy
classes of loops based at x0, with the operation *, is called the fundamental
group of X relative to the base point x0. This fundamental group is denoted by
π1(X,x0).

Appealing to intuition, one can think of a fundamental group the following way.
Start with a space and some point in it, and all the loops both starting and ending
at this point. Two loops can be combined together in an obvious way: travel along
the first loop, then along the second. Two loops are considered equivalent if one
can be deformed into the other without breaking. The set of all such loops with
this method of combining and this equivalence between them is the fundamental
group. [3]

Definition 5.2. We say G is the free product of the groups Gα if for each x ∈ G,
there is only one reduced word in the groups Gα that represent x. Let {aα} be
a family of elements of a group G. Suppose each aα generates an infinite cycle
subgroup Gα of G. If G is the free product of the groups {Gα}, then G is said to
be a free group, and the family {aα} is called a system of free generators for
G.

A tree T in the graph X is simply a subgroup that is connected and contains
no closed reduced edge paths (i.e. cycles). A maximal tree in X is a tree such
that there is no tree in X that properly contains T .

Theorem 5.3. Let X be a connected graph that is not a tree. Then the fundamental
group of X is a nontrivial free group.

Indeed, if T is a maximal tree in X, then the fundamental group of X has a
system of free generators that is in bijective correspondence with the collection of
edges of X that are not in T .

Proof. Let T be a maximal tree in X so that it contains all the vertices of X. Fix a
vertex x0 of T . For each vertex x of X, choose a path γx in T from x0 to x. Then
for each edge A of X that is not in T , define a loop gA in X as follows. Orient A,
let fA be the linear path in A from its initial end point x to its final end point y,
and set

gA = γx ∗ (fA ∗ γy).

The classes [gA] form a system of free generators for the fundamental group π1(X,x0).
To see why, (1) we first prove (by induction) for the case in which there are only
finitely many edges of X not in T . Let A1, · · · , An be the edges of X not in T ,
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where n > 1. Orient these edges and let gi denote the loop gAi
. For each i, choose

a point pi interior to Ai. Let

U = X − p2 − · · · − pn and V = X − p1.

Then U and V are open in X, and the space U ∩ V = X − p1 − · · · − pn is simply
connected, since it has T as a deformation retract. Thus π1(X,x0) is the free
product of the groups π1(U, x0) and π1(V, x0).

The space U has T ∪ A1 as a deformation retract, so π1(U, x0) is free on the
generator [g1]. The space V has T ∪ A2 ∪ · · · ∪ An as a deformation retract, so it
is free on the generators [g2], · · · , [gn] by the inductive hypothesis. It follows that
π1(X,x0) is free on the generators [g1], · · · , [gn].

(2) Now, we prove for the case in which there is only one edge D of X that is
not in T . Orient D, we show π1(X,x0) is infinite cyclic with generator [gD]. Let
a0 and a1 be the initial and final points of D, repectively. Write D as the union of
three arcs: D1 with end points a0 and a, D2 with end points a and b, and D3 with
end points b and a1.

Figure 7

Let f1, f2, and f3 be the linear paths in D from a0 to a, a to b, and b to a1,
respectively. Choose a point p interior to the arc D2. Set U = D − a0 − a1 and
V = X − p. Then U and V are open sets in X whose union is X. The space U is
simply connected because it is an open arc. And the space V is simply connected
because it has the tree T as a deformation retract. The space U ∩ V equals U − p,
and it has two path components. Let A be the one containing a and B be the one
containing b. Then the path α = f2 is a path in U from a to b. If we set γ0 = γa0

and γ1 = γa1 , then the path β = (f3 ∗ (γ1 ∗ (γ0 ∗ f1)) is a path in V from b to a.
That means π1(U, x0) is generated by the class

[α ∗ β] = [f2] ∗ [f3] ∗ [γ1] ∗ [γ0] ∗ [f1].

It follows that π1(U, x0) is generated by δ̂[α ∗ β], where δ is the path f1 ∗ γ0 from
a to x0. Computation shows that δ̂[α ∗ β] = [gD], so [gD] generates π1(U, x0). The
element [gD] has infinite order since [α ∗ β] has infinite order in π1(U, x0).
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(3) Finally, we prove for the case in which the collection of edges of X not in T
is infinite. Note that any loop in X based at x0 lies in the space

X(α1, · · · , αn) = T ∪Aα1 ∪ · · · ∪Aαn

for some finite set of indices αi, and any path homotopy between such loops also lies
in such a space. By this means this infinite case is reduced to the finite case. �

6. Conclusion

We have started from a simplie-minded definition of a graph that is most fre-
quently used, and expanded the concept by defining it in terms of algebraic topol-
ogy. In particular, we have observed how open sets and their operation are perfectly
suited to describe a linear graph; how a graph reflects topological properties such as
Hausdorff, normal, locally path connected, and semilocally simply connected. We
have seen there are tools such as subgraphs and covering maps to construct new
structures. Last, we have shown the fundamental group of a linear graph is a free
group.

Now, it turns out that one can prove an important theorem in group theory that
states any subgroup of a free group is free using the facts that we have proven: that
a covering space of a linear graph is itself a linear graph, and that the fundamental
group of a linear graph is a free group. Here is a sketch illustration. If H is
a subgroup of a free group F , we consider a system of free generators for F and
circles associated with them. We break each circle into three arcs as in the previous
example (Figure 5), and we provide a path-connected covering map p with the
covering space E such that the fundamental group π1(E, e0) (e0 is some point of
p−1(x0), where x0 is the common point of the circles) is isomorphic to H. By
Theorem 4.2, E is a linear graph, and by Theorem 5.3, its fundamental group is a
free group.

Therefore, by turning away from an easy, intuitive perspective of graphs and
instead adopting a more rich, rigorous base for them, one can in fact use the concept
of graphs to broaden the understanding of deeper laws of mathematics.
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