Spectral Learning of Latent-Variable PCFGs

Karl Stratos¹

Joint work with Shay Cohen¹, Michael Collins¹, Dean Foster², and Lyle Ungar²

¹Columbia University

²University of Pennsylvania

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Latent-Variable Models for NLP and Speech

Latent-variable models are of huge importance.

- Speech recognition with HMMs
- Gaussian mixture models
- Machine translation with alignments as hidden variables
- Latent-variable PCFGs (Matsuzaki et al., Petrov et al.)
- Many many others
- ► The EM algorithm is remarkably successful. **But**:
 - No guarantee of reaching the global maximum of the likelihood function

- Theoretical problem: parameter estimates not consistent
- Practical problems: local optima difficult to deal with

There is Hope

- Dasgupta (1999): Under separation conditions, it is possible to learn GMMs.
- Moitra and Valiant (2010): Arbitrary GMMs can be learned in polynomial time and sample complexity.
- Hsu, Kakade, and Zhang (2009): Under rank conditions, it is possible to learn HMMs efficiently and consistently.
- Kakade and Foster (2007): Under a wide class of models, CCA projections yield an optimal space for predicting hidden variables.

This Work

- A spectral algorithm for learning latent-variable PCFGs L-PCFGs: Strong parsing performance (Petrov et al., 2006)
- Guaranteed to give consistent parameter estimates under assumptions on singular values

Simple and efficient (SVD and matrix operations)

Overview

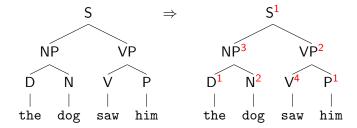
L-PCFGs

The Spectral Algorithm for Parameter Estimation Calculating Parameter Estimates SVD and Projection

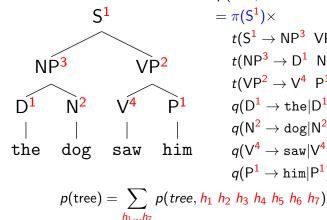
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Justification

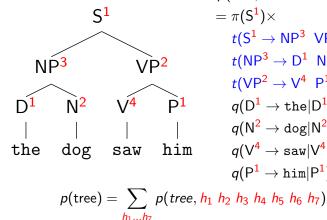
L-PCFGs (Matsuzaki et al., 2005, Petrov et al., 2006)



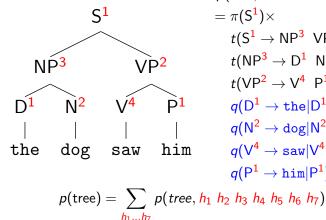
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



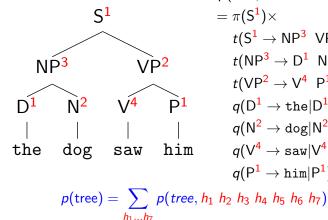
p(tree, 1312241) $t(S^1 \rightarrow NP^3 VP^2|S^1) \times$ $t(NP^3 \rightarrow D^1 N^2 | NP^3) \times$ $t(VP^2 \rightarrow V^4 P^1 | VP^2) \times$ $q(\mathsf{D}^1 \to \mathsf{the}|\mathsf{D}^1) \times$ $q(N^2 \rightarrow dog | N^2) \times$ $q(V^4 \rightarrow saw|V^4) \times$ $q(\mathsf{P}^1 \to \mathsf{him}|\mathsf{P}^1)$



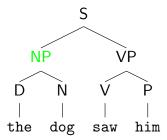
p(tree, 1312241) $t(S^1 \rightarrow NP^3 VP^2|S^1) \times$ $t(NP^3 \rightarrow D^1 N^2 | NP^3) \times$ $t(VP^2 \rightarrow V^4 P^1 | VP^2) \times$ $q(\mathsf{D}^1 \to \mathsf{the}|\mathsf{D}^1) \times$ $q(N^2 \rightarrow dog | N^2) \times$ $q(V^4 \rightarrow saw|V^4) \times$ $q(\mathsf{P}^1 \to \mathsf{him}|\mathsf{P}^1)$



p(tree, 1312241) $t(S^1 \rightarrow NP^3 VP^2|S^1) \times$ $t(NP^3 \rightarrow D^1 N^2 | NP^3) \times$ $t(VP^2 \rightarrow V^4 P^1 | VP^2) \times$ $q(D^1 \rightarrow \text{the}|D^1) \times$ $q(N^2 \rightarrow dog | N^2) \times$ $q(V^4 \rightarrow saw|V^4) \times$ $q(\mathsf{P}^1 \to \min|\mathsf{P}^1)$

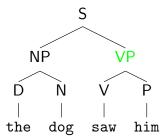


p(tree, 1312241) $t(S^1 \rightarrow NP^3 VP^2|S^1) \times$ $t(NP^3 \rightarrow D^1 N^2 | NP^3) \times$ $t(VP^2 \rightarrow V^4 P^1 | VP^2) \times$ $q(\mathsf{D}^1 \to \mathsf{the}|\mathsf{D}^1) \times$ $q(N^2 \rightarrow dog | N^2) \times$ $q(V^4 \rightarrow saw|V^4) \times$ $q(\mathsf{P}^1 \to \mathsf{him}|\mathsf{P}^1)$



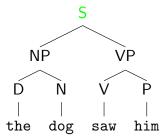
$$b_h^1 = \sum_{h_2,h_3} t(\mathsf{NP}^h \to \mathsf{D}^{h_2} \ \mathsf{N}^{h_3} | \mathsf{NP}^h) \times q(\mathsf{D}^{h_2} \to \mathsf{the} | \mathsf{D}^{h_2}) \times q(\mathsf{N}^{h_3} \to \operatorname{dog} | \mathsf{N}^{h_3})$$

(日)、



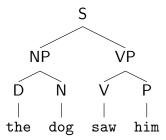
$$\begin{split} b_h^1 &= \sum_{h_2,h_3} t(\mathsf{NP}^h \to \mathsf{D}^{h_2} \ \mathsf{N}^{h_3} | \mathsf{NP}^h) \times q(\mathsf{D}^{h_2} \to \mathsf{the} | \mathsf{D}^{h_2}) \times q(\mathsf{N}^{h_3} \to \mathsf{dog} | \mathsf{N}^{h_3}) \\ b_h^2 &= \sum_{h_2,h_3} t(\mathsf{VP}^h \to \mathsf{V}^{h_2} \ \mathsf{P}^{h_3} | \mathsf{VP}^h) \times q(\mathsf{V}^{h_2} \to \mathsf{saw} | \mathsf{V}^{h_2}) \times q(\mathsf{P}^{h_3} \to \mathsf{him} | \mathsf{P}^{h_3}) \end{split}$$

(日)、



$$\begin{split} b_h^1 &= \sum_{h_2,h_3} t(\mathsf{NP}^h \to \mathsf{D}^{h_2} \ \mathsf{N}^{h_3} | \mathsf{NP}^h) \times q(\mathsf{D}^{h_2} \to \mathsf{the} | \mathsf{D}^{h_2}) \times q(\mathsf{N}^{h_3} \to \mathsf{dog} | \mathsf{N}^{h_3}) \\ b_h^2 &= \sum_{h_2,h_3} t(\mathsf{VP}^h \to \mathsf{V}^{h_2} \ \mathsf{P}^{h_3} | \mathsf{VP}^h) \times q(\mathsf{V}^{h_2} \to \mathsf{saw} | \mathsf{V}^{h_2}) \times q(\mathsf{P}^{h_3} \to \mathsf{him} | \mathsf{P}^{h_3}) \\ b_h^3 &= \sum_{h_2,h_3} t(\mathsf{S}^h \to \mathsf{NP}^{h_2} \ \mathsf{VP}^{h_3} | \mathsf{S}^h) \times b_{h_2}^1 \times b_{h_3}^2 \end{split}$$

(日)、



$$\begin{split} b_h^1 &= \sum_{h_2,h_3} t(\mathsf{NP}^h \to \mathsf{D}^{h_2} \ \mathsf{N}^{h_3} | \mathsf{NP}^h) \times q(\mathsf{D}^{h_2} \to \mathsf{the} | \mathsf{D}^{h_2}) \times q(\mathsf{N}^{h_3} \to \mathsf{dog} | \mathsf{N}^{h_3}) \\ b_h^2 &= \sum_{h_2,h_3} t(\mathsf{VP}^h \to \mathsf{V}^{h_2} \ \mathsf{P}^{h_3} | \mathsf{VP}^h) \times q(\mathsf{V}^{h_2} \to \mathsf{saw} | \mathsf{V}^{h_2}) \times q(\mathsf{P}^{h_3} \to \mathsf{him} | \mathsf{P}^{h_3}) \\ b_h^3 &= \sum_{h_2,h_3} t(\mathsf{S}^h \to \mathsf{NP}^{h_2} \ \mathsf{VP}^{h_3} | \mathsf{S}^h) \times b_{h_2}^1 \times b_{h_3}^2 \end{split}$$

$$p(\text{tree}) = \sum_{h} \pi(S^{h}) \times b_{h}^{3}$$

Marginals of a Sentence

• Given a sentence x, a marginal is defined as

$$\mu(a, i, j) = \sum_{t \in \tau(x): (a, i, j) \in t} p(t)$$

for all (a, i, j) tuples.

- These marginals can be computed using a variant of the inside-outside algorithm.
- A dynamic programming algorithm (Goodman, 1996) can be used to find the optimal parse defined as

$$t^* = \arg \max_{t \in \tau(x)} \sum_{(a,i,j) \in t} \mu(a,i,j)$$

Parameter Estimation

So this is a **parameter estimation** problem.

- Given only skeletal trees, can we estimate π , t and q?
- ▶ Past work used EM (Matsuzaki et al., 2005, Petrov et al. 2006).
 - No guarantee of converging to the correct distribution
 - Prone to local optima
- We present a spectral estimation method.
 - Under assumptions on singular values, gives consistent parameter estimates

Relatively simple, efficient

Overview

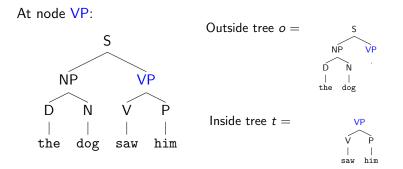
L-PCFGs

The Spectral Algorithm for Parameter Estimation Calculating Parameter Estimates SVD and Projection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Justification

Inside and Outside Trees



Conditionally independent given the label and the hidden state

 $p(o, t|\mathsf{VP}, h) = p(o|\mathsf{VP}, h) \times p(t|\mathsf{VP}, h)$

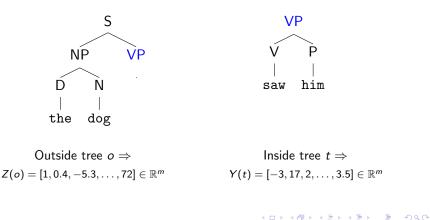
Vector Representation of Inside and Outside Trees

Assume functions Z and Y:

Z maps any outside tree to a vector of length m.

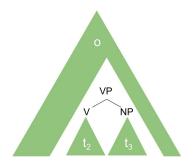
Y maps any inside tree to a vector of length m.

Convention: m is the number of hidden states under the L-PCFG.



Parameter Estimation for Binary Rules

Take *M* samples of nodes with rule $VP \rightarrow V$ NP.



At sample *i*

• $o^{(i)} =$ outside tree at VP

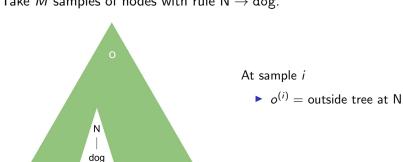
•
$$t_2^{(i)} = \text{inside tree at V}$$

•
$$t_3^{(i)} = \text{inside tree at NP}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\hat{t}(\mathsf{VP}^{h_1} \to \mathsf{V}^{h_2} \ \mathsf{NP}^{h_3}|\mathsf{VP}^{h_1}) = \frac{\operatorname{count}(\mathsf{VP} \to \mathsf{V} \ \mathsf{NP})}{\operatorname{count}(\mathsf{VP})} \times \frac{1}{M} \sum_{i=1}^M \left(Z_{h_1}(o^{(i)}) \times Y_{h_2}(t_2^{(i)}) \times Y_{h_3}(t_3^{(i)}) \right)$$

Parameter Estimation for Unary Rules



Take *M* samples of nodes with rule
$$N \rightarrow dog$$
.

$$\hat{q}(\mathsf{N}^{h}
ightarrow ext{dog}|\mathsf{N}^{h}) = rac{ ext{count}(\mathsf{N}
ightarrow ext{dog})}{ ext{count}(\mathsf{N})} imes rac{1}{M} \sum_{i=1}^{M} Z_{h}(o^{(i)})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

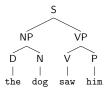
Parameter Estimation for the Root

Take M samples of the root S. S

At sample *i* • $t^{(i)} =$ inside tree at S

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\hat{\pi}(\mathsf{S}^{h}) = \frac{\operatorname{count}(\operatorname{root}=\mathsf{S})}{\operatorname{count}(\operatorname{root})} \times \frac{1}{M} \sum_{i=1}^{M} Y_{h}(t^{(i)})$$



$$\begin{split} \hat{b}_{h}^{1} &= \sum_{h_{2},h_{3}} \hat{t}(\mathsf{NP}^{h} \to \mathsf{D}^{h_{2}} \ \mathsf{N}^{h_{3}} | \mathsf{NP}^{h}) \times \hat{q}(\mathsf{D}^{h_{2}} \to \mathsf{the} | \mathsf{D}^{h_{2}}) \times \hat{q}(\mathsf{N}^{h_{3}} \to \mathsf{dog} | \mathsf{N}^{h_{3}}) \\ \hat{b}_{h}^{2} &= \sum_{h_{2},h_{3}} \hat{t}(\mathsf{VP}^{h} \to \mathsf{V}^{h_{2}} \ \mathsf{P}^{h_{3}} | \mathsf{VP}^{h}) \times \hat{q}(\mathsf{V}^{h_{2}} \to \mathsf{saw} | \mathsf{V}^{h_{2}}) \times \hat{q}(\mathsf{P}^{h_{3}} \to \mathsf{him} | \mathsf{P}^{h_{3}}) \\ \hat{b}_{h}^{3} &= \sum_{h_{2},h_{3}} \hat{t}(\mathsf{S}^{h} \to \mathsf{NP}^{h_{2}} \ \mathsf{VP}^{h_{3}} | \mathsf{S}^{h}) \times \hat{b}_{h_{2}}^{1} \times \hat{b}_{h_{3}}^{2} \end{split}$$

$$p(\text{tree}) = \sum_{h} \hat{\pi}(S^{h}) \times \hat{b}_{h}^{3}$$

・ロト ・ 雪 ト ・ ヨ ト

Overview

L-PCFGs

The Spectral Algorithm for Parameter Estimates Calculating Parameter Estimates SVD and Projection

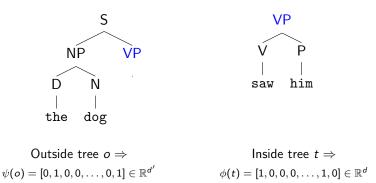
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Justification

Deriving Z and Y

Design functions ψ and ϕ :

 ψ maps any outside tree to a vector of length d' ϕ maps any inside tree to a vector of length d



Z and Y will be reduced dimensional representations of ψ and ϕ .

Reducing Dimensions via a Singular Value Decomposition

Have *M* samples of a node with non-terminal *a*. At sample *i*, $o^{(i)}$ is the outside tree rooted at *a* and $t^{(i)}$ is the inside tree rooted at *a*.

- Compute a matrix $\hat{\Omega}^a \in \mathbb{R}^{d \times d'}$ with entries

$$[\hat{\Omega}^{a}]_{j,k} = \frac{1}{M} \sum_{i=1}^{M} \phi_{j}(t^{(i)}) \psi_{k}(o^{(i)})$$

Reducing Dimensions via a Singular Value Decomposition

Have *M* samples of a node with non-terminal *a*. At sample *i*, $o^{(i)}$ is the outside tree rooted at *a* and $t^{(i)}$ is the inside tree rooted at *a*.

- Compute a matrix $\hat{\Omega}^a \in \mathbb{R}^{d imes d'}$ with entries

$$[\hat{\Omega}^{a}]_{j,k} = \frac{1}{M} \sum_{i=1}^{M} \phi_{j}(t^{(i)}) \psi_{k}(o^{(i)})$$

An SVD:

 $\underbrace{\hat{\Omega}^{a}}_{d \times d'} \approx \underbrace{U^{a}}_{d \times m} \underbrace{\Sigma^{a}}_{m \times m} \underbrace{(V^{a})^{T}}_{m \times d'}$

Reducing Dimensions via a Singular Value Decomposition

Have *M* samples of a node with non-terminal *a*. At sample *i*, $o^{(i)}$ is the outside tree rooted at *a* and $t^{(i)}$ is the inside tree rooted at *a*.

- Compute a matrix $\hat{\Omega}^a \in \mathbb{R}^{d imes d'}$ with entries

$$[\hat{\Omega}^{a}]_{j,k} = \frac{1}{M} \sum_{i=1}^{M} \phi_{j}(t^{(i)}) \psi_{k}(o^{(i)})$$

An SVD:

$$\underbrace{\hat{\Omega}^{a}}_{d \times d'} \approx \underbrace{U^{a}}_{d \times m} \underbrace{\sum^{a}}_{m \times m} \underbrace{(V^{a})^{T}}_{m \times d'}$$

Projection:

$$Y(t^{(i)}) = \underbrace{(U^a)^T}_{m \times d} \underbrace{\phi(t^{(i)})}_{d \times 1} \in \mathbb{R}^m$$
$$Z(o^{(i)}) = \underbrace{(\Sigma^a)^{-1}}_{m \times m} \underbrace{(V^a)^T}_{m \times d'} \underbrace{\psi(o^{(i)})}_{d' \times 1} \in \mathbb{R}^m$$

Consistency and Sample Complexity

If the $d \times d'$ matrix

$$\Omega^{a} = \mathbf{E}[\phi(T)\psi(O)^{T} | \text{label} = a]$$

has rank m, these projections yield consistent parameter estimates with high probability. The required number of samples grows polynomially in

- m: the number of hidden states
- $\log R$: where R is the number of rules
- Spectral properties of the grammar (e.g., max ¹/_{σ^a} where σ^a is the mth largest singular value of Ω^a)

A Summary of the Algorithm

- 1. Design feature functions ϕ and ψ for inside and outside trees.
- 2. Use SVD to compute vectors

 $Y(t) \in \mathbb{R}^m$ for inside trees $Z(o) \in \mathbb{R}^m$ for outside trees

- 3. Estimate the parameters \hat{t} , \hat{q} , and $\hat{\pi}$ from the training data.
- 4. Parse a new sentence by computing its marginals with these parameters.

Overview

L-PCFGs

The Spectral Algorithm for Parameter Estimation Calculating Parameter Estimates SVD and Projection

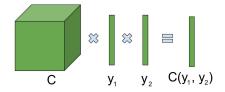
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Justification

Tensor Definition

A third-order tensor $C \in \mathbb{R}^{m \times m \times m}$ is a set of m^3 values $[C]_{j,k,l}$. It can be viewed as a function $C : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ that takes two vectors $y_1, y_2 \in \mathbb{R}^m$ as input and returns a vector $C(y_1, y_2) \in \mathbb{R}^m$ as output. The output vector has entries

$$[C(y_1, y_2)]_h = \sum_{h_2, h_3} \left([C]_{h, h_2, h_3} \times [y_1]_{h_2} \times [y_2]_{h_3} \right)$$



Tensor Form of the Parameters

For each non-terminal *a*, define a vector $\pi^a \in \mathbb{R}^m$ with entries

$$[\pi^a]_h = \pi(a^h)$$

For each rule $a \to x$, define a vector $q_{a \to x} \in \mathbb{R}^m$ with entries

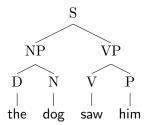
$$[q_{a\to x}]_h = q_{a\to x}(a^h \to x|a^h)$$

For each rule $a \to b c$, define a tensor $T^{a \to b c} \in \mathbb{R}^{m \times m \times m}$ with entries

$$[T^{a \to b c}]_{h_1, h_2, h_3} = t(a^{h_1} \to b^{h_2} c^{h_3} | a^{h_1})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Dynamic Programming in Tensor Form



$$T^{S \to NP VP}(T^{NP \to D N}(q_{D \to the}, q_{N \to dog}), T^{VP \to VP}(q_{V \to saw}, q_{P \to him})) \pi^{S}$$
$$|||$$
$$p(tree) = \sum_{P \to T} p(tree, h_1 h_2 h_3 h_4 h_5 h_6 h_7)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $h_1...h_7$

Thought Experiment

We want the parameters (in tensor form)

$$\pi^{a} \in \mathbb{R}^{m}$$
 $q_{a o x} \in \mathbb{R}^{m}$
 $T^{a o b \ c}(y_{2}, y_{3}) \in \mathbb{R}^{m}$

- What if we had an invertible matrix G^a ∈ ℝ^{m×m} for every non-terminal a?
- And what if we had instead

$$c^{a} = G^{a}\pi^{a}$$

$$c_{a \to x} = q_{a \to x}(G^{a})^{-1}$$

$$C^{a \to b \ c}(y_{2}, y_{3}) = T^{a \to b \ c}(y_{2}G^{b}, y_{3}G^{c})(G^{a})^{-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Cancellation of the Linear Operators

$$\mathcal{C}^{\mathrm{S} o \mathrm{NP} \, \mathrm{VP}}(\mathcal{C}^{\mathrm{NP} o \mathrm{D} \, \mathrm{N}}(\mathcal{c}_{\mathrm{D} o \mathrm{the}}, \mathcal{c}_{\mathrm{N} o \mathrm{dog}}), \mathcal{C}^{\mathrm{VP} o \mathrm{VP}}(\mathcal{c}_{\mathrm{V} o \mathrm{saw}}, \mathcal{c}_{\mathrm{P} o \mathrm{him}})) \ \mathcal{c}^{\mathrm{S}}$$

$$|||$$

$$T^{\mathrm{S} \to \mathrm{NP} \mathrm{VP}}(T^{\mathrm{NP} \to \mathrm{D} \mathrm{N}}(q_{\mathrm{D} \to \mathrm{the}}(G^{\mathrm{D}})^{-1}G^{\mathrm{D}}, q_{\mathrm{N} \to \mathrm{dog}}(G^{\mathrm{N}})^{-1}G^{\mathrm{N}})(G^{\mathrm{NP}})^{-1}G^{\mathrm{NP}},$$

$$T^{\mathrm{VP} \to \mathrm{VP}}(q_{\mathrm{V} \to \mathrm{saw}}(G^{\mathrm{V}})^{-1}G^{\mathrm{V}}, q_{\mathrm{P} \to \mathrm{him}}(G^{\mathrm{P}})^{-1}G^{\mathrm{P}})(G^{\mathrm{VP}})^{-1}G^{\mathrm{VP}})(G^{\mathrm{S}})^{-1}G^{\mathrm{S}}\pi^{\mathrm{S}}$$
$$|||$$

$$T^{S \to NP VP}(T^{NP \to D N}(q_{D \to the}, q_{N \to dog}), T^{VP \to VP}(q_{V \to saw}, q_{P \to him})) \pi^{S}$$

$$|||$$

$$p(tree) = \sum_{h_1...h_7} p(tree, h_1 h_2 h_3 h_4 h_5 h_6 h_7)$$

Estimation Guarantees

► Basic argument: If Ω^a has rank *m*, parameters $\hat{C}^{a \to b c}$, $\hat{c}_{a \to x}$, and \hat{c}^a converge to

$$C^{a \to b c}(y_2, y_3) = T^{a \to b c}(y_2 G^b, y_3 G^c)(G^a)^{-1}$$
$$c_{a \to x} = q_{a \to x}(G^a)^{-1}$$
$$c^a = G^a \pi^a$$

for some G^a that is invertible.

• Because the parameters converge, the estimated distribution $\hat{p}(\text{tree})$ converges to the true distribution p(tree), and the estimated marginal $\hat{\mu}(a, i, j)$ converges to the true marginal $\mu(a, i, j)$.

Preliminary Experiments

The algorithm is much faster than EM.

- SVD: modern algorithms are very efficient
- Parameter calculation: takes less time than a single iteration of EM

A straightforward implementation lags behind EM by about 1-2% in F1 measure.

Current work: experiments focused on understanding the method and improving performance

Summary

We presented a spectral algorithm that yields a consistent estimator for L-PCFGs

Simple and efficient: SVD and standard matrix operations

Future work includes

- Pushing the empirical side of the algorithm
- Deriving spectral algorithms for other latent-variable models in NLP