
Spectral Learning of Latent-Variable PCFGs

Karl Stratos1

Joint work with Shay Cohen

1

, Michael Collins

1

, Dean Foster

2

, and Lyle Ungar

2

1

Columbia University

2

University of Pennsylvania



Latent-Variable Models for NLP and Speech

I Latent-variable models are of huge importance.
I Speech recognition with HMMs
I Gaussian mixture models
I Machine translation with alignments as hidden variables
I Latent-variable PCFGs (Matsuzaki et al., Petrov et al.)
I Many many others

I The EM algorithm is remarkably successful. But:
I No guarantee of reaching the global maximum of the likelihood

function
I Theoretical problem: parameter estimates not consistent
I Practical problems: local optima di�cult to deal with



There is Hope

I Dasgupta (1999): Under separation conditions, it is possible
to learn GMMs.

I Moitra and Valiant (2010): Arbitrary GMMs can be learned in
polynomial time and sample complexity.

I Hsu, Kakade, and Zhang (2009): Under rank conditions, it is
possible to learn HMMs e�ciently and consistently.

I Kakade and Foster (2007): Under a wide class of models,
CCA projections yield an optimal space for predicting hidden
variables.



This Work

I A spectral algorithm for learning latent-variable PCFGs
L-PCFGs: Strong parsing performance (Petrov et al., 2006)

I Guaranteed to give consistent parameter estimates under
assumptions on singular values

I Simple and e�cient (SVD and matrix operations)



Overview

L-PCFGs

The Spectral Algorithm for Parameter Estimation
Calculating Parameter Estimates
SVD and Projection

Justification



L-PCFGs (Matsuzaki et al., 2005, Petrov et al., 2006)
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The Probability of a Tree
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Calculating Tree Probability with Dynamic Programming
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Marginals of a Sentence

I Given a sentence x , a marginal is defined as

µ(a, i , j) =
X

t2⌧(x):(a,i ,j)2t

p(t)

for all (a, i , j) tuples.

I These marginals can be computed using a variant of the
inside-outside algorithm.

I A dynamic programming algorithm (Goodman, 1996) can be
used to find the optimal parse defined as

t⇤ = arg max
t2⌧(x)

X

(a,i ,j)2t

µ(a, i , j)



Parameter Estimation

I So this is a parameter estimation problem.
I Given only skeletal trees, can we estimate ⇡, t and q?

I Past work used EM (Matsuzaki et al., 2005, Petrov et al. 2006).
I No guarantee of converging to the correct distribution
I Prone to local optima

I We present a spectral estimation method.
I Under assumptions on singular values, gives consistent

parameter estimates
I Relatively simple, e�cient
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Inside and Outside Trees

At node VP:
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p(o, t|VP, h) = p(o|VP, h)⇥ p(t|VP, h)



Vector Representation of Inside and Outside Trees

Assume functions Z and Y :

Z maps any outside tree to a vector of length m.

Y maps any inside tree to a vector of length m.

Convention: m is the number of hidden states under the L-PCFG.
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Parameter Estimation for Binary Rules

Take M samples of nodes with rule VP ! V NP.

At sample i

I o(i) = outside tree at VP
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Parameter Estimation for Unary Rules

Take M samples of nodes with rule N ! dog.

At sample i

I o(i) = outside tree at N

q̂(Nh ! dog|Nh) =
count(N !dog)
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Parameter Estimation for the Root

Take M samples of the root S.

At sample i

I t(i) = inside tree at S

⇡̂(Sh) =
count(root=S)

count(root)
⇥ 1

M

MX
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Y
h
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Calculating Tree Probability with Dynamic Programming:
Revisited
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Deriving Z and Y

Design functions  and �:

 maps any outside tree to a vector of length d 0

� maps any inside tree to a vector of length d
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Z and Y will be reduced dimensional representations of  and �.



Reducing Dimensions via a Singular Value Decomposition
Have M samples of a node with non-terminal a. At sample i , o(i) is
the outside tree rooted at a and t(i) is the inside tree rooted at a.
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Consistency and Sample Complexity

If the d ⇥ d 0 matrix

⌦a = E[�(T ) (O)T |label = a]

has rank m, these projections yield consistent parameter estimates
with high probability. The required number of samples grows
polynomially in

I m: the number of hidden states

I logR : where R is the number of rules

I Spectral properties of the grammar (e.g., max 1

�a

where �a is
the mth largest singular value of ⌦a)



A Summary of the Algorithm

1. Design feature functions � and  for inside and outside trees.

2. Use SVD to compute vectors
Y (t) 2 Rm for inside trees
Z (o) 2 Rm for outside trees

3. Estimate the parameters t̂, q̂, and ⇡̂ from the training data.

4. Parse a new sentence by computing its marginals with these
parameters.
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Tensor Definition

A third-order tensor C 2 Rm⇥m⇥m is a set of m3 values [C ]
j,k,l . It can be

viewed as a function C : Rm ⇥ Rm ! Rm that takes two vectors
y
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Tensor Form of the Parameters

For each non-terminal a, define a vector ⇡a 2 Rm with entries

[⇡a]
h

= ⇡(ah)

For each rule a ! x , define a vector q
a!x

2 Rm with entries

[q
a!x

]
h

= q
a!x

(ah ! x |ah)

For each rule a ! b c , define a tensor T a!b c 2 Rm⇥m⇥m with entries

[T a!b c ]
h
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Dynamic Programming in Tensor Form
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Thought Experiment

I We want the parameters (in tensor form)

⇡a 2 Rm

q
a!x

2 Rm

T a!b c(y
2

, y
3

) 2 Rm

I What if we had an invertible matrix G a 2 Rm⇥m for every
non-terminal a?

I And what if we had instead
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c
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Cancellation of the Linear Operators
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Estimation Guarantees

I Basic argument: If ⌦a has rank m, parameters Ĉ a!b c , ĉ
a!x

,
and ĉa converge to

C a!b c(y
2

, y
3

) = T a!b c(y
2

Gb, y
3

G c)(G a)�1

c
a!x

= q
a!x

(G a)�1

ca = G a⇡a

for some G a that is invertible.

I Because the parameters converge, the estimated distribution
p̂(tree) converges to the true distribution p(tree), and the
estimated marginal µ̂(a, i , j) converges to the true marginal
µ(a, i , j).



Preliminary Experiments

The algorithm is much faster than EM.

I SVD: modern algorithms are very e�cient

I Parameter calculation: takes less time than a single iteration
of EM

A straightforward implementation lags behind EM by about 1-2%
in F1 measure.

Current work: experiments focused on understanding the method
and improving performance



Summary

We presented a spectral algorithm that yields a consistent
estimator for L-PCFGs

I Simple and e�cient: SVD and standard matrix operations

Future work includes

I Pushing the empirical side of the algorithm

I Deriving spectral algorithms for other latent-variable models
in NLP
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