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Abstract

Most dialog systems explicitly confirm
user-provided task-relevant concepts.
User responses to these system confirma-
tions (e.g. corrections, topic changes) may
be misrecognized because they contain
unrequested task-related concepts. In this
paper, we propose aconcept-specific lan-
guage model adaptation strategywhere
the language model (LM) is adapted to
the concept type(s) actually present in
the user’s post-confirmation utterance.
We evaluate concept type classification
and LM adaptation for post-confirmation
utterances in theLet’s Go! dialog system.
We achieve 93% accuracy on concept type
classification using acoustic, lexical and
dialog history features. We also show that
the use of concept type classification for
LM adaptation can lead to improvements
in speech recognition performance.

1 Introduction

In most dialog systems, the system explicitly con-
firms user-provided task-relevantconcepts. The
user’s response to a confirmation prompt such as
“leaving from Waterfront?” may consist of a sim-
ple confirmation(e.g. “yes”), a simplerejection
(e.g. “no”), acorrection(e.g. “no, Oakland”) or a
topic change(e.g. “no, leave at 7” or “yes, and go
to Oakland”). Each type of utterance has implica-
tions for further processing. In particular, correc-
tions and topic changes are likely to contain un-
requested task-relevant concepts that are not well
represented in the recognizer’s post-confirmation
language model (LM)1. This means that they are

1The word error rate on post-confirmationLet’s Go! utter-
ances containing a concept is 10% higher than on utterances

likely to be misrecognized, frustrating the user and
leading to cascading errors. Correct determina-
tion of the content of post-confirmation utterances
can lead to improved speech recognition, fewer
and shorter sequences of speech recognition er-
rors, and improved dialog system performance.

In this paper, we look at user responses to sys-
tem confirmation prompts CMU’s deployedLet’s
Go! dialog system. We adopt a two-pass recogni-
tion architecture (Young, 1994). In the first pass,
the input utterance is processed using a general-
purpose LM (e.g. specific to the domain, or spe-
cific to the dialog state). Recognition may fail
on concept words such as “Oakland” or “61C” ,
but is likely to succeed on closed-class words (e.g.
”yes”, ”no”, ”and”, ”but”, ”leaving”). If the ut-
terance follows a system confirmation prompt, we
then use acoustic, lexical and dialog history fea-
tures to determine the task-relatedconcept type(s)
likely to be present in the utterance. In the second
recognition pass, any utterance containing a con-
cept type is re-processed using a concept-specific
LM. We show that: (1) it is possible to achieve
high accuracy in determining presence or absence
of particular concept types in a post-confirmation
utterance; and (2) 2-pass speech recognition with
concept type classification and language model
adaptation can lead to improved speech recogni-
tion performance for post-confirmation utterances.

The rest of this paper is structured as follows: In
Section 2 we discuss related work. In Section 3 we
describe our data. In Section 4 we present our con-
cept type classification experiment. In Section 5
we present our LM adaptation experiment. In Sec-
tion 6 we conclude and discuss future work.

without a concept.
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2 Related Work

When a dialog system requests a confirmation,
the user’s subsequent corrections and topic change
utterances are particularly likely to be misrecog-
nized. Considerable research has now been done
on the automatic detection of spoken corrections.
Linguistic cues to corrections include the num-
ber of words in the post-confirmation utterance
and the use of marked word order (Krahmer et
al., 2001). Prosodic cues include F0 max, RMS
max, RMS mean, duration, speech tempo, and
percentage of silent frames(Litman et al., 2006;
Hirschberg et al., 2004; Levow, 1998). Discourse
cues include the removal, repetition, addition or
modification of a concept, the system’s dialog act
type, and information about error rates in the dia-
log so far (Krahmer et al., 2001; et al., 2002; Lit-
man et al., 2006; Walker et al., 2000). In our ex-
periments, we use most of these features as well as
additional lexical features.

We can use knowledge of the type or content
of a user utterance to modify system behavior.
For example, in this paper we use the concept
type(s) in the user’s utterance to adapt the recog-
nizer’s LM. It is now common practice to adapt
the recognizer to the type, context or style of in-
put speech (Bellegarda, 2004). LM adaptation
has been used to improve automatic speech recog-
nition performance in automated meeting tran-
scription (Tur and Stolcke, 2007), speech-driven
question answering (Stenchikova et al., 2008),
broadcast news recognition (Gildea and Hofmann,
1999), and spoken dialog systems (Tur, 2005).
LMs in dialog systems can be adapted to the di-
alog state (e.g. (Riccardi and Gorin, 2000; Esteve
et al., 2001)), the topic (Iyer and Ostendorf, 1999;
Gildea and Hofmann, 1999), or the speaker (Tur,
2007).

3 Data

In this experiment we use annotated dialog tran-
scripts and speech from theLet’s Go! sys-
tem, a telephone-based spoken dialog system that
provides information about bus routes in Pitts-
burgh (Raux et al., 2005). The data we used comes
from the first two months ofLet’s Go! system
operation in 2005 (2411 dialogs), and one month
in 2006 (1430 dialogs). This data has been tran-
scribed, and annotated by hand for concept types.

In order to provide the user with route in-
formation, Let’s Go! must elicit a departure

1 Sys Welcome to the CMU Let’s Go bus informa-
tion system. What can I do for you?

2 User I need to go from Oakland:p
ASR I need to go .from. can’t

3 Sys Where do you wanna leave from?
4 User to Waterfront:p

ASR told. .me. Waterfront
5 Sys Leaving from WATERFRONT . Did I get

that right?
6 User OAKLAND:p

ASR OAKLAND
7 Sys Leaving from OAKLAND . Did I get that

right?

Figure 1: Dialog extract fromLet’s Go!data. User
utterances are annotated with concept types (e.g.
:p for place)

location, a destination, a departure time, and
optionally a bus route number. Each concept
value provided by the user is explicitly con-
firmed by the system (see Figure 1). In the
annotated transcripts, the followingconceptsare
labeled: neighborhood, place, time,
hour, minute, time-of-day, and bus.
For our experiments we collapsed these concepts
into threeconcept types: time, placeandbus.

Let’s Go! has five dialog states corresponding
to the type of user utterance it expects:first-query,
next-query, yes-no, place and time. Its speech
recognizer uses dialog state-specific n-gram LMs
trained on user utterances from the 2005 data.
We focus on user utterances in response to sys-
tem confirmation prompts (theyes-nostate). Ta-
ble 1 shows statistics aboutyes-nostate utterances
in Let’s Go!. Table 2 shows a confusion matrix
for confirmation prompt concept type and post-
confirmation utterance concept type. This table
indicates the potential for misrecognition of post-
confirmation utterances. For example, in the 2006
dataset after a system confirmation prompt for a
bus, abusconcept is used in only 64% of concept-
containing user utterances.

In our experiments, we used the 2006 data to
train concept type classifiers and for testing. We
used the 2005 data to build LMs for our speech
recognition experiment.

4 Concept Classification

4.1 Method

Our goal is to classify each post-confirmation user
utterance by the concept type(s) it contains (place,
time, busor none) for later language-model adap-
tation (see Section 5). From the post-confirmation
user utterances in the 2006 dataset described in
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Event 2005 2006
num % num %

Total dialogs 2411 1430
Total yes-no confirms 9098 100 9028 100
Yes-no confirms with
a concept

2194 24 1635 18.1

Dialog State
Total confirm place
utts

5548 61 5347 59.2

Total confirm bus utts 1763 19.4 1589 17.6
Total confirm time
utts

1787 19.6 2011 22.3

Concept Type Features
Yes-no utts with place 1416 15.6 1007 11.2
Yes-no utts with time 296 3.2 305 3.4
Yes-no utts with bus 584 6.4 323 3.6

Lexical Features
Yes-no utts with ‘yes’ 4395 48.3 3693 40.9
Yes-no utts with ‘no’ 2076 22.8 1564 17.3
Yes-no utts with ‘I’ 203 2.2 129 1.4
Yes-no utts with
‘from’

114 1.3 185 2.1

Yes-no utts with ‘to’ 204 2.2 237 2.6
Acoustic Features

feature mean stdev mean stdev
Duration (seconds) 1.341 1.097 1.365 1.242
RMS mean .037 .033 .055 .049
F0 mean 183.0 60.86 185.7 58.63
F0 max 289.8 148.5 296.9 146.5

Table 1: Statistics on post-confirmation utterances

place bus time
2005 dataset

confirm place 0.86 0.13 0.01
confirm bus 0.18 0.81 0.01
confirm time 0.07 0.01 0.92

2006 dataset
confirm place 0.87 0.10 0.03
confirm bus 0.34 0.64 0.02
confirm time 0.15 0.13 0.71

Table 2: Confirmation state vs. user concept type

Section 3, we extracted the features described in
Section 4.2 below. To identify the correct concept
type(s) for each utterance, we used the human an-
notations provided with the data.

We performed a series of 10-fold cross-
validation experiments to examine the impact of
different types of feature on concept type classifi-
cation. We trained three binary classifiers for each
experiment, one for each concept type, i.e. we sep-
arately classified each post-confirmation utterance
asplace +or place -, time +or time -, andbus +or
bus -. We used Weka’s implementation of the J48
decision tree classifier (Witten and Frank, 2005)2.

For each experiment, we report precision (pre+)
and recall (rec+) for determiningpresenceof each
concept type, and overall classification accuracy

2J48 gave the highest classification accuracy compared to
other machine learning algorithms we tried on this data.

for each concept type (place, busand time)3. We
also report overallpre+, rec+, f-measure (f+), and
classification accuracy across the three concept
types. Finally, we report the percentage ofswitch+
errors andswitcherrors.Switch+errors are utter-
ances containingbusclassified astime/place, time
asbus/place, andplaceasbus/time; these are the
errors most likely to cause decreases in speech
recognition accuracy after language model adap-
tation. Switcherrors include utterances with no
concept classified asplace, busor time.

Only utterances classified as containing one of
the three concept types are subject to second-
pass recognition using a concept-specific language
model. Therefore, these are the only utterances on
which speech recognition performance may im-
prove. This means that we want to maximizerec+
(proportion of utterances containing a concept that
are classified correctly). On the other hand, utter-
ances that are incorrectly classified as containing a
particular concept type will be subject to second-
pass recognition using a poorly-chosen language
model. This may cause speech recognition per-
formance to suffer. This means that we want to
minimizeswitch+errors.

4.2 Features

We used the features summarized in Table 3. All
of these features are available at run-time and so
may be used in a live system. Below we give ad-
ditional information about the RAW and LEX fea-
tures; the other feature sets are self-explanatory.

4.2.1 Acoustic and Dialog History Features

The acoustic/prosodic and dialog history features
are adapted from those identified in previous work
on detecting speech recognition errors (particu-
larly (Litman et al., 2006)). We anticipated that
these features would help us distinguish correc-
tions and rejections from confirmations.

4.2.2 Lexical Features

We used lexical features from the user’s current ut-
terance. Words in the output of first-pass ASR are
highly indicative both of concept presence or ab-
sence, and of the presence of particular concept
types; for example,going to suggests the pres-
ence of aplace. We selected the most salient lexi-

3We do not report precision or recall for determiningab-
senceof each concept type. In our data set 82.2% of the ut-
terances do not contain any concepts (see Table 1). Conse-
quently, precision and recall for determining absence of each
concept type are above .9 in each of the experiments.
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Feature type Feature source Features
System confirmation type
(DIA)

system log System’s confirmation prompt concept type (confirm time,
confirm place, or confirmbus)

Acoustic (RAW) raw speech F0 max; RMS max; RMS mean; Duration; Difference be-
tween F0 max in first half and in second half

Lexical (LEX) transcripts/ASR output Presence of specific lexical items; Number of tokens in utter-
ance; [transcribed speech only] String edit distance between
current and previous user utterances

Dialog history (DH1, DH3) 1-3 previous utterances System’s dialog states of previous utterances(place, bus,
time, confirmtime, confirmplace, or confirmbus); [tran-
scribed speech only] Concept(s) that occurred in user’s ut-
terances (YES/NO for each of the conceptsplace, bus, time)

ASR confidence score (ASR) ASR output Speech recognizer confidence score
Concept type match (CTM) transcripts/ASR output Presence of concept-specific lexical items

Table 3: Features for concept type classifiers

cal features (unigrams and bigrams) for each con-
cept type by computing themutual informationbe-
tween potential features and concept types (Man-
ning et al., 2008). For each lexical featuret and
each concept type classc ∈ { place +, place -,
time +, time -, bus +, bus -}, we computedI:

I =
Ntc

N
∗ log2

N ∗ Ntc

Nt. ∗ N.c

+
N0c

N
∗ log2

N ∗ N0c

N0. ∗ N.c

+

Nt0

N
∗ log2

N ∗ Nt0

Nt. ∗ N.0

+
N00

N
∗ log2

N ∗ N00

N0. ∗ N.0

whereNtc= number of utterances wheret co-
occurs withc, N0c= number of utterances withc
but withoutt, Nt0= number of utterances wheret
occurs withoutc, N00= number of utterances with
neither t nor c, Nt.= total number of utterances
containingt, N.c= total number of utterances con-
tainingc, and N = total number of utterances.

To identify the most relevant lexical features,
we extracted from the data all the transcribed user
utterances. We removed all words that realize con-
cepts (e.g. “61C”, “Squirrel Hill”), as these are
likely to be misrecognized in a post-confirmation
utterance. We then extracted all word unigrams
and bigrams. We computed the mutual informa-
tion between each potential lexical feature and
concept type. We then selected the 30 features
with the highest mutual information which oc-
curred at least 20 times in the training data4.

For transcribed speech only, we also compute
the string edit distance between the current and
previous user utterances. This gives some indica-
tion of whether the current utterance is a correc-
tion or topic change (vs. a confirmation). How-

4We aimed to select equal number of features for each
class with information measure in the top 25%. 30 was an
empirically derived threshold for the number of lexical fea-
tures to satisfy the desired condition.

ever, for recognized speech recognition errors re-
duce the effectiveness of this feature (and of the
concept features in the dialog history feature set).

4.3 Baseline

A simple baseline for this task,No-Concept, al-
ways predictsnone in post-confirmation utter-
ances. This baseline achieves overall classifica-
tion accuracy of 82% butrec+ of 0. At the other
extreme, theConfirmation State baseline assigns
to each utterance the dialog system’s confirmation
prompt type (using the DIA feature). This base-
line achievesrec+ of .79, but overall classification
accuracy of only 14%. In all of the models used in
our experiments, we include the current confirma-
tion prompt type (DIA) feature.

4.4 Experiment Results

In this section we report the results of experiments
on concept type classification in which we exam-
ine the impact of the feature sets presented in Ta-
ble 3. We report performance separately for recog-
nized speech, which is available at runtime (Table
5); and for transcribed speech, which gives us an
idea of best possible performance (Table 4).

4.4.1 Features from the Current Utterance

We first look at lexical (LEX) and prosodic (RAW)
features from the current utterance. For both rec-
ognized and transcribed speech, the LEX model
achieves significantly higherrec+ and overall ac-
curacy than the RAW model (p < .001). For
recognized speech, however, the LEX model has
significantly moreswitch+ errors than the RAW
model (p < .001). This is not surprising since the
majority of errors made by the RAW model are
labeling an utterance with a concept asnone. Ut-
terances misclassified in this way are not subject to
second-pass recognition and do not increase WER.
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Features Place Time Bus Overall
pre+ rec+ acc pre+ rec+ acc pre+ rec+ acc pre+ rec+ f+ acc switch+ switch

No Concept 0 0 .86 0 0 0.81 0 0 .92 0 0 0 0.82 0 0
Confirmation State 0.87 0.85 0.86 0.64 0.54 0.58 0.71 0.87 0.78 0.14 0.79 0.24 0.14 17 72.3

RAW 0.65 0.53 0.92 0.25 0.01 0.96 0.38 0.07 0.96 0.67 0.34 0.45 0.85 6.43 4.03
LEX 0.81 0.88 0.96 0.77 0.48 0.98 0.83 0.59 0.98 0.87 0.72 0.79 0.93 7.32 3.22
LEX RAW 0.83 0.84 0.96 0.75 0.54 0.98 0.76 0.59 0.98 0.88 0.70 0.78 0.93 7.39 3.00

DH1 LEX 0.85 0.91 0.97 0.72 0.63 0.98 0.89 0.83 0.99 0.88 0.81 0.84 0.95 5.48 2.85
DH3 LEX 0.85 0.87 0.97 0.72 0.59 0.98 0.92 0.82 0.99 0.89 0.78 0.83 0.94 5.22 2.62

Table 4: Concept type classification results: transcribed speech (all models include feature DIA). Best
overall values in each group are highlighted in bold.

Features Place Time Bus Overall
pre+ rec+ acc pre+ rec+ acc pre+ rec+ acc pre+ rec+ f+ acc switch+ switch

No Concept 0 0 .86 0 0 0.81 0 0 .92 0 0 0 0.82 0 0
Confirmation State 0.87 0.85 0.86 0.64 0.54 0.58 0.71 0.87 0.78 0.14 0.79 0.24 0.14 17 72.3

RAW 0.65 0.53 0.92 0.25 0.01 0.96 0.38 0.07 0.96 0.67 0.34 0.45 0.85 6.43 4.03
LEX 0.70 0.70 0.93 0.67 0.15 0.97 0.65 0.62 0.98 0.75 0.56 0.64 0.89 9.94 4.93
LEX RAW 0.70 0.72 0.93 0.66 0.38 0.97 0.68 0.57 0.98 0.76 0.60 0.67 0.90 10.32 5.10

DH1 LEX RAW 0.71 0.68 0.93 0.68 0.38 0.97 0.78 0.63 0.98 0.77 0.60 0.67 0.90 8.15 4.55
DH3 LEX RAW 0.71 0.70 0.93 0.67 0.42 0.97 0.79 0.63 0.98 0.77 0.62 0.68 0.90 7.20 4.57

ASR DH3 LEX
RAW

0.71 0.70 0.93 0.69 0.42 0.97 0.79 0.63 0.98 0.77 0.62 0.68 0.90 7.20 4.54

CTM DH3 LEX
RAW

0.82 0.82 0.96 0.86 0.71 0.99 0.76 0.68 0.98 0.85 0.74 0.79 0.93 3.89 2.94

CTM ASR DH3
LEX RAW

0.82 0.81 0.96 0.86 0.69 0.99 0.76 0.68 0.98 0.85 0.74 0.79 0.93 4.27 3.01

Table 5: Concept type classification results: recognized speech (all models include feature DIA). Best
overall values in each group are highlighted in bold.

For transcribed speech, the LEXRAW model
does not perform significantly differently from the
LEX model in terms of overall accuracy,rec+, or
switch+ errors. However, for recognized speech,
LEX RAW achieves significantly higherrec+ and
overall accuracy than LEX (p < .001). Lexical
content from transcribed speech is a very good in-
dicator of concept type. However, lexical content
from recognized speech is noisy, so concept type
classification from ASR output can be improved
by using acoustic/prosodic features.

We note that models containing only features
from the current utterance perform significantly
worse than theconfirmation statebaseline in terms
of rec+ (p < .001). However, they have signif-
icantly better overall accuracy and fewerswitch+
errors (p < .001) .

4.4.2 Features from the Dialog History

Next, we add features from the dialog history
to our best-performing models so far. For tran-
scribed speech, DH1LEX performs significantly
better than LEX in terms of overall accuracy,rec+,
and switch+ errors (p < .001). DH3 LEX per-
forms significantly worse than DH1LEX in terms
of rec+ (p < 0.05). For recognized speech,
neither DH1LEX RAW nor DH3 LEX RAW is
significantly different from LEXRAW in terms
of rec+ or overall accuracy. However, both

DH1 LEX RAW and DH3LEX RAW do per-
form significantly better than LEXRAW in terms
of switch+ errors (p < .05). There are
no significant performance differences between
DH1 LEX RAW and DH3LEX RAW.

4.4.3 Features Specific to Recognized Speech

Finally, we add the ASR and CTM features to
models trained on recognized speech.

We hypothesized that the classifier can use the
recognizer’s confidence score to decide whether
an utterance is likely to have been misrecognized.
However, ASRDH3 LEX RAW is not signifi-
cantly different from DH3LEX RAW in terms of
rec+, overall accuracy orswitch+ errors.

We hypothesized that the CTM feature will im-
prove cases where a part of (but not the whole)
concept instance is recognized in first-pass recog-
nition5. The generic language model used in first-
pass recognition recognizes some concept-related
words. So, if in the utteranceMadison avenue,
avenue(but not Madison), is recognized in the
first-pass recognition, the CTM feature can flag
the utterance with a partial match forplace, help-
ing the classifier to correctly assign theplace

5We do not try the CTM feature on transcribed speech be-
cause there is a one-to-one correspondence between presence
of the concept and the CTM feature, so it perfectly indicates
presence of a concept.
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type to the utterance. Then, in the second-pass
recognition the utterance will be decoded with
a place concept-specific language model, poten-
tially improving speech recognition performance.
Adding the CTM feature to DH3LEX RAW and
ASR DH3 LEX RAW leads to a large statistically
significant improvement in all measures: a 12%
absolute increase inrec+, a 3% absolute increase
in overall accuracy, and decreases inswitch+ er-
rors (p< .001). There are no statistically signifi-
cant differences between these two models.

4.4.4 Summary and Discussion

In this section we evaluated different models for
concept type classification. The best perform-
ing transcribed speech model, DH1LEX, signif-
icantly outperforms theConfirmation State base-
line on overall accuracy and onswitch+andswitch
errors (p< .001), and is not significantly different
on rec+. The best performing recognized speech
model, CTMDH3 LEX RAW, significantly out-
performs theConfirmation State baseline on
overall accuracy and onswitch+ and switch er-
rors, but is significantly worse onrec+ (p < .001).
The best transcribed speech model achieves signif-
icantly higherrec+ and overall accuracy than the
best recognized speech model (p< .01).

5 Speech Recognition Experiment

In this section we report the impact of concept type
prediction on recognition of post-confirmation ut-
terances inLet’s Go! system data. We hypothe-
sized that speech recognition performance for ut-
terances containing a concept can be improved
with the use of concept-specific LMs. We (1) com-
pare the existingdialog state-specificLM adap-
tation approach used inLet’s Go! with our pro-
posed concept-specificadaptation; (2) compare
two approaches toconcept-specificadaptation (us-
ing the system’s confirmation prompt type and us-
ing our concept type classifiers); and (3) evaluate
the impact of different concept type classifiers on
concept-specificLM adaptation.

5.1 Method

We used the PocketSphinx speech recognition en-
gine (et al., 2006) with gender-specific telephone-
quality acoustic models built for Communica-
tor (et al., 2000). We trained trigram LMs us-
ing 0.5 ratio discounting with the CMU language

modeling toolkit (Xu and Rudnicky, 2000)6. We
built state- and concept-specific hierarchical LMs
from theLet’s Go! 2005 data. The LMs are built
with [place], [time] and[bus] submodels.

We evaluate speech recognition performance
on the post-confirmation user utterances from the
2006 testing dataset. Each experiment varies in 1)
the LM used for the final recognition pass and 2)
the method of selecting a LM for use in decoding.

5.1.1 Language models

We built seven LMs for these experiments. The
state-specificLM contains all utterances in the
training data that were produced in theyes-nodi-
alog state. Theconfirm-place, confirm-busand
confirm-timeLMs contain all utterances produced
in theyes-nodialog state followingconfirm place,
confirm bus and confirm time system confirma-
tion prompts respectively. Finally, theconcept-
place, concept-busandconcept-timeLMs contain
all utterances produced in theyes-nodialog state
that contain a mention of aplace, busor time.

5.1.2 Decoders

In the baseline,1-pass generalcondition, we
use thestate-specificLM to recognize all post-
confirmation utterances. In the1-pass stateex-
perimental condition we use theconfirm-place,
confirm-bus and confirm-time LMs to recog-
nize testing utterances produced following acon-
firm place, confirm busandconfirm time prompt
respectively7. In the 1-pass conceptexperimen-
tal condition we use theconcept-place, concept-
busandconcept-timeLMs to recognize testing ut-
terances produced following aconfirm place, con-
firm busandconfirm timeprompt respectively.

In the 2-passconditions we perform first-pass
recognition using thegeneralLM. Then, we clas-
sify the output of the first pass using a concept
type classifier. Finally, we perform second-pass
recognition using theconcept-place, concept-bus
or concept-timeLMs if the utterance was classi-
fied asplace, busor time respectively8. We used
the three classification models with highest overall
rec+: DH3 LEX RAW, ASR DH3 LEX RAW,

6We chose the same speech recognizer, acoustic models,
language modeling toolkit, and LM building parameters that
are used in the liveLet’s Go! system (Raux et al., 2005).

7As we showed in Table 2, most, but not all, utterances in
a confirmation state contain the corresponding concept.

8We treat utterances classified as containing more than
concept type asnone. In the 2006 data, only 5.6% of ut-
terances with a concept contain more than one concept type.
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Recognizer Concept type Language Overall Concept utterances
classifier model WER WER Concept recall

1-pass general state-specific 38.49% 49.12% 50.75%
1-pass confirm state confirm-{place,bus,time} 38.83% 48.96% 51.36%
1-pass confirm state concept-{place,bus,time},

state-specific
46.47%♠ 50.73%♣ 52.9%∗

2-pass DH3 LEX RAW concept-{place,bus,time},
state-specific

38.48% 47.56%♠ 53.2%∗

2-pass ASR DH3 LEX
RAW

concept-{place,bus,time},
state-specific

38.51% 47.99%♣ 52.7%

2-pass CTM ASR DH3
LEX RAW

concept-{place,bus,time},
state-specific

38.42% 47.86%♣ 52.6%

2-pass oracle concept-{place,bus,time},
state-specific

37.85%♠ 45.94%♠ 54.91%♠

Table 6: Speech recognition results.♠ indicates significant difference (p<.01). ♣ indicates significant
difference (p<.05). * indicates near-significant trend in difference (p<.07). Significance for WER is
computed as a paired t-test. Significance for concept recallis an inference on proportion.

and CTMASR DH3 LEX RAW. To get an idea
of “best possible” performance, we also report 2-
pass oracle recognition results, assuming an oracle
classifier that always outputs the correct concept
type for an utterance.

5.2 Results

In Table 6 we report average per-utterance word
error rate (WER) on post-confirmation utterances,
average per-utterance WER on post-confirmation
utterances containing a concept, and average con-
cept recall rate (percentage of correctly recog-
nized concepts) on post-confirmation utterances
containing a concept. In slot-filling dialog sys-
tems likeLet’s Go!, the concept recall rate largely
determines the potential of the system to under-
stand user-provided information and continue the
dialog successfully. Our goal is to maximize con-
cept recall and minimize concept utterance WER,
without causing overall WER to decline.

As Table 6 shows, the1-pass stateand1-pass
concept recognizers perform better than the1-
pass generalrecognizer in terms of concept recall,
but worse in terms of overall WER. Most of these
differences are not statistically significant. How-
ever, the1-pass conceptrecognizer has signifi-
cantly worse overall and concept utterance WER
than the1-pass generalrecognizer (p< .01).

All of the 2-pass recognizers that use au-
tomatic concept prediction achieve significantly
lower concept utterance WER than the1-pass
general recognizer (p< .05). Differences be-
tween these recognizers in overall WER and con-
cept recall are not significant.

The 2-pass oraclerecognizer achieves signif-
icantly higher concept recall and significantly

lower overall and concept utterance WER than
the 1-pass generalrecognizer (p< .01). It
also achieves significantly lower concept utterance
WER than any of the 2-pass recognizers that use
automatic concept prediction (p< .01).

Our2-pass conceptresults show that it is possi-
ble to use knowledge of the concepts in a user’s ut-
terance to improve speech recognition. Our1-pass
concept results show that this cannot be effec-
tively done by assuming that the user will always
address the system’s question; instead, one must
consider the user’s actual utterance and the dis-
course history (as in our DH3LEX RAW model).

6 Conclusions and Future Work

In this paper, we examined user responses to sys-
tem confirmation prompts in task-oriented spoken
dialog. We showed that these post-confirmation
utterances may contain unrequested task-relevant
concepts that are likely to be misrecognized. Us-
ing acoustic, lexical, dialog state and dialog his-
tory features, we were able to classify task-
relevant concepts in the ASR output for post-
confirmation utterances with 90% accuracy. We
showed that use of a concept type classifier can
lead to improvements in speech recognition per-
formance in terms of WER and concept recall.

Of course, any possible improvements in speech
recognition performance are dependent on (1) the
performance of concept type classification; (2)
the accuracy of the first-pass speech recognition;
and (3) the accuracy of the second-pass speech
recognition. For example, with our general lan-
guage model, we get a fairly high overall WER
of 38.49%. In future work, we will systematically
vary the WER of both the first- and second-pass
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speech recognizers to further explore the interac-
tion between speech recognition performance and
concept type classification.

The improvements our two-pass recognizers
achieve have quite small local effects (up to 3.18%
absolute improvement in WER on utterances con-
taining a concept, and less than 1% on post-
confirmation utterances overall) but may have
larger impact on dialog completion times and task
completion rates, as they reduce the number of
cascading recognition errors in the dialog (et al.,
2002). Furthermore, we could also use knowledge
of the concept type(s) contained in a user utterance
to improve dialog management and response plan-
ning (Bohus, 2007). In future work, we will look
at (1) extending the use of our concept-type clas-
sifiers to utterances following any system prompt;
and (2) the impact of these interventions on overall
metrics of dialog success.
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