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1 SUGAR COATED HYBRIDIZATION
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Suppose that we have a chunk of
granular material in a cubic shape
(inset) with the total number of
grains A. We are interested in using
our hybrid grains approach to sim-
ulate such material, where we first
set a grid covering the cubic region
with the resolution (number of cells)
N > 0 in each dimension, then set
the outmost ND > 0 layers (in terms of the number of cells) as
purely discrete, their inner NH > 0 layers as hybrid, and the inner-
mostN−2ND−2NH layers as purely continuum.We nowderive the
optimal setting of N , ND and NH that gives us the maximum speed
up over a purely discrete simulation for the entire cubic shaped
chunk of granular material.

1.1 A Model for the Computation Cost
Wefirst describe ourmodel for the per-step computation cost of the
purely discrete and our hybrid simulations. LetCD be the (per-step)
cost for processing each grain in the discrete simulation. Then the
per-step cost of the purely discrete simulation TC is CD multiplied
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by the total number of grains A:

TC = CDA.

The total cost of the hybrid simulation TH is the sum of the costs
of the enrichment, discrete and continuum steps. Let CE be the
(per-step) cost for processing each cell in the enrichment. The to-
tal cost of enrichment per step can then be written as CEN 3. It
scales with N 3 because we compute the level set function for each
cell. In a hybrid simulation, we only have grains in the purely dis-
crete and hybrid regions. The number of cells containing grains
can be computed by subtracting the number of purely continuum
cells (N − 2NH − 2ND )3 from the total number of cells N 3, so
the total number of grains can be written as A{N 3 − (N − 2NH −
2ND )3}/N 3, which gives us the per-step discrete cost asCDA{N 3−
(N −2NH −2ND )3}/N 3. Likewise, the per-step continuum cost can
be described as CC (N − 2ND )3, where CC is the (per-step) cost for
processing each cell in the continuum simulation. In summary, we
have

TH = CEN
3 +CDA

N 3 − (N − 2NH − 2ND )3
N 3 +CC (N − 2ND )3.

In our hybrid simulation, the frequencies of performing enrichment
andmpm integration are lower than that of the discrete integration.
Hence as forCE andCC , we are considering the amortized cost (i.e.,
the true cost during the performance step divided by the interval).

1.2 The Reduction Ratio in the Computation Time
Next, for a fixed number of total effective grains A (we refer to the
number of ‘effective’ grains as the number of total grains in the
purely discrete counterpart), we define the reduction ratio RA in
the computation time between TH and TC as

RA(N ,ND ,NH ) = TH
TC

=
CE
CDA

N 3 +
N 3 − (N − 2NH − 2ND )3

N 3 +
CC
CDA

(N − 2ND )3. (1)

With this model, we seek for the parameters N , ND , and NH that
minimize RA for a maximized speed-up.

1.3 Determining NH

To analyze how RA changes with respect to NH , we compute the
partial derivative of RA with respect to NH as

∂RA(N ,ND ,NH )
∂NH

=
6
N 3 (N − 2NH − 2ND )2 ≥ 0,
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and find that ∂RA
∂NH

is non negative, meaning that RA is a non de-
creasing function with respect to NH . Hence to minimize RA, we
take the smallest possible value for NH . Because NH only takes
positive integer values, we arrive at NH = 1.

1.4 Determining ND

Next, we substitute NH = 1 into (1) and compute the partial deriv-
ative of RA with respect to ND to find the optimal ND :

∂RA(N ,ND ,NH = 1)
∂ND

=
6
N 3 (N − 2 − 2ND )2 − 6

CC
CDA

(N − 2ND )2

= N 2
D

(
24
N 3 − 24CC

CDA

)
α

+ ND

(
−24N − 2

N 3 + 24
NCC
CDA

)
β

+
6(N − 2)2

N 3 − 6CCN 2

CDA
γ

. (2)

(2) is a quadratic function. We let α , β , and γ be the coefficients,
and investigate their characteristics. We introduce RD to denote
the number of grains per cell, with which A and N are related
via A = RDN

3. With this convention, α = 24
N 3

(
1 − CC

CDRD

)
. Note

that CDRD and CC are respectively the per-cell costs of discrete
and continuum simulations. In hybrid grains, we are interested in
making use of continuum homogenization to accelerate the corre-
sponding discrete simulation, therefore CC < CDRD is the typical
use case of hybrid grains. Thus, α > 0. Likewise, with A = RDN

3,
we have β = − 24

N 2

((
1 − 2

N

)
− CC

CDRD

)
. As N increases, 1 − 2

N ap-

proaches 1, and following the discussion of α ,
(
1 − 2

N

)
> CC

CDRD is

our typical use case, so β < 0. Finally, γ = 6
N

((
1 − 2

N

)2
− CC

CDRD

)
,

and again, we typically have
(
1 − 2

N

)2
> CC

CDRD , so γ > 0.
With α > 0, β < 0, and γ > 0, we know that the quadratic

function ∂RA
∂ND

is convex downward, and that the two solutions η1
and η2 (with η1 < η2) of ∂RA

∂ND
= 0 are both positive. Thus, the

function of RA with respect to ND increases while ND < η1, then,
it has a local maximum at ND = η1, starts to decrease while η1 <
ND < η2, has a local minimum at η2 and then increases for ND >

η2. Thus, in the region ND > 0, the global minimum is either at
ND = 1 or ND = η2. Now we see that ND = η2 is not appropriate.
First, we compute

η2 =
−β/2 +

√
(β/2)2 − αγ

α
=

N (1 − CC
CDRD ) + 2(

√
CC

CDRD − 1)

2(1 − CC
CDRD )

=
N

2
− 1√

CC
CDRD + 1

>
N − 2
2
.

With ND = η2, we have a violation 2(ND + NH ) > N , and hence
inappropriate. Thus we arrive at ND = 1.
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Fig. 1. We show how the acceleration ratio of our hybrid grains (1/RA(N ))
according to N (horizontal axis) and A (vertical axis). Reddish color indi-
cates the case where the hybrid grains is slower than the purely discrete,
and darker blue indicates more speed up with hybrid grains.

1.5 Determining N

With NH = 1 and ND = 1, RA becomes

RA(N ) = CE
CDA

N 3 +
12N 2 − 48N + 64

N 3 +
CC
CDA

(N − 2)3.

Figure 1 shows a plot of the acceleration ratio 1.0/RA(N ) for vari-
ous N and A. To find the optimal N , we compute
∂RA(N )
∂N

=
3CE
CDA

N 2 − 12
N 2 +

96
N 3 − 192

N 4 +
3CC
CDA

(N − 2)2

=
3
N 4

(
CE
CDA

N 6 +
CC
CDA

N 4(N − 2)2 − 4(N − 4)2
)

=
12
N 4

(
CE +CC
4CDA

1
K

N 4
(
N 2 +

4CC
CE +CC

B

(1 − N )
)
− (N − 4)2

)

=
12
N 4

(
N 4

K

(
N 2 + B(1 − N )

)
− (N − 4)2

)
,

where we have set 1
K =

CE+CC
4CDA , and B = 4CC

CE+CC . Note that K
scales with A linearly.

When ∂RA(N )
∂N = 0, any changes in the discrete computation time

will be (marginally) balanced by the changes in the enrichment and
continuum computation time.

Finding the local extrema of RA(N ) amounts to solving

f (N ) := N 4

K

(
N 2 + B(1 − N )

)
− (N − 4)2 = 0. (3)

f (N ) = 0 has two types of solutions. One is in the form N = 4 + ϵ ,
because when A (and consequently K ) is large, the first term van-
ishes and the second term becomes dominant. However, this type
of solutions is not our interest, because N = 4 + ϵ is almost purely
discrete. The other type of solutions is N = ±K1/4(1 + ϵ), because
then N 4

K ≈ 1 and the remaining terms are both second order with
opposite signs, so they cancel out. We are interested in positive N ,
so N = K1/4(1 + ϵ).
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Now, we will see that N = K1/4 is truly the asymptotic solution
to f (N ) = 0. By assumption, ϵ ≪ 1, and we will see that ϵ → 0 as
K → ∞. Substituting N = K1/4(1+ ϵ) into (3) and dropping higher
orders of ϵ , we have

f (N = K1/4(1 + ϵ))

≈ ϵ
(
4K1/2 + (8 − 5B)K1/4 + 4B

)
+
(
(8 − B)K1/4 + B − 16

)
. (4)

Solving (4) for f = 0 gives us

ϵ =
16 − B − (8 − B)K1/4

4K1/2 + (8 − 5B)K1/4 + 4B
=

16−B
K 1/2 − (8−B)

K 1/4

4 + (8−5B)
K 1/4 +

4B
K 1/2

,

which goes to 0 as K → ∞, hence

N = K1/4 =
(

4CDA
CE +CC

)1/4
(5)

is the asymptotic solution. Since f (N ) → ∞ as N → ∞, the largest
solution (i.e., N = K1/4) for f (N ) = 0 corresponds to a local mini-
mum of RA(N ), which is what we are interested in.

1.6 Asymptotic Behavior of RA for Larger A
With (5), RA(N ) becomes

RA =
4CE

CE +CC

1
K1/4 +

12
K1/4 − 48

K2/4 +
64

K3/4 +
4CC

CE +CC

(1 − 2
K 1/4 )3

K1/4 .

Therefore, as A → ∞, K → ∞, and then RA → 0, meaning that
the speed up with our hybrid approach is unbounded and becomes
arbitrarily large as we increase the total number of effective grains
A (as in Figure 1). The key is to set the grid resolution N according
to (5), with NH = 1 and ND = 1.

1.7 Intuitive Explanation
It is important to note that N scales with A in the power of 1/4,
not 1/3. An intuitive explanation is that if we refine both the dis-
crete and continuum elements equally (this corresponds to setting
N ∝ A1/3) while keeping the discrete layer thickness to be min-
imum, then the discrete computation time will scale in the order
of N 2 whereas the continuum in N 3, so eventually the continuum
computation time will be dominant, and we will hit a bound. How-
ever, if we refine them differently and maintain a balance between
the two (i.e., setting N ∝ A1/4), then the acceleration continues.

2 LAYERED HYBRIDIZATION

Discrete

Hybrid

Con nuum

N

N

H

D

N

N

hN

Now, suppose that we have a chunk of
granular material in a cuboid shape (in-
set) with equal width and depth, the
height h times larger than the width and
depth, and the total number of grains A.
In the layered hybridization, we first set
a grid (with the same cubic cells as the
sugar-coated hybridization) covering the
cuboid region with the resolution (number of cells) N in the hori-
zontal dimensions and hN in the vertical dimension. Then we set
the top ND > 0 layers (in terms of the number of cells) as purely
discrete, their inner NH > 0 layers as hybrid, and the bottom

N − ND − NH layers as purely continuum. We now derive the op-
timal setting of N , ND and NH that gives us the maximum speed
up over a purely discrete simulation for the entire cuboid shaped
chunk of granular material.

2.1 A Model for the Computation Cost
Same as the sugar-coated hybridization, let CD , CE , and CC be the
amortized, per-step cost for processing each discrete grain, each
cell in the enrichment and each cell in the continuum simulation,
respectively. The per-step cost of the purely discrete simulationTC
is CDA, and that of the hybrid simulation TH is given by

TH = CEhN
3 +CDA

(ND + NH )N 2

hN 3 +CC (hN − ND )N 2.

2.2 The Reduction Ratio in the Computation Time
The reduction ratio RA in the computation time between TH and
TC for a fixed number of total effective grains A is given by

RA(N ,ND ,NH ) = TH
TC

=
CE
CDA

hN 3 +
ND + NH

hN
+

CC
CDA

(hN − ND )N 2. (6)

We seek for the parameters N , ND , and NH that minimize RA for
a maximized speed-up.

2.3 Determining NH

The partial derivative of RA with respect to NH is given by

∂RA(N ,ND ,NH )
∂NH

=
1
hN

≥ 0.

Again, this is non negative, and we find NH = 1.

2.4 Determining ND

Next, we substitute NH = 1 into (6) and compute the partial deriv-
ative of RA with respect to ND . Noting thatA = RDhN

3, where RD
is the number of grains per cell, we have

∂RA(N ,ND ,NH = 1)
∂ND

=
1
hN

− CC
CDA

N 2 =
1
hN

(
1 − CC

CDRD

)
> 0.

Thus the optimal ND is ND = 1.

2.5 Determining N

With NH = 1 and ND = 1, RA becomes

RA(N ) = CE
CDA

hN 3 +
2
hN
+

CC
CDA

(hN − 1)N 2. (7)
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To find the optimal N , we compute

∂RA(N )
∂N

=
3hCE
CDA

N 2 − 2
hN 2 +

CC
CDA

(3hN 2 − 2N )

=
2

hN 3

(
3h2(CE +CC )

2CDA
N 5 − hCC

CDA
N 4 − N

)
=

2
hN 3

(
3h2(CE +CC )

2CDA
1
K

N 4
(
N − 2CC

3h(CE +CC )
B

)
− N

)

=
2

hN 3

(
N 4

K
(N − B) − N

)
,

where we have set 1
K =

3h2(CE+CC )
2CDA , and B = 2CC

3h(CE+CC ) . Note that
K scales with A linearly.

When ∂RA(N )
∂N = 0, any changes in the discrete computation time

will be (marginally) balanced by the changes in the enrichment and
continuum computation time.
Finding the local extrema of RA(N ) amounts to solving

f (N ) := N 4

K
(N − B) − N = 0. (8)

f (N ) = 0 has two types of solutions. One is in the form N = ϵ ,
because when A (and consequently K ) is large, the first term van-
ishes and the second term becomes dominant. However, this type
of solutions is not our interest, because N = ϵ is almost purely
discrete. The other type of solutions is N = ±K1/4(1 + ϵ), because
then N 4

K ≈ 1 and the remaining terms are both first order with op-
posite signs, so they cancel out. We are interested in positive N , so
N = K1/4(1 + ϵ).
Now, we will see that N = K1/4 is truly the asymptotic solution

to f (N ) = 0. By assumption, ϵ ≪ 1, and we will see that ϵ → 0 as
K → ∞. Substituting N = K1/4(1+ ϵ) into (8) and dropping higher
orders of ϵ , we have

f (N = K1/4(1 + ϵ)) = (1 + ϵ)4(K1/4(1 + ϵ) − B) − K1/4(1 + ϵ)

≈ (1 + 4ϵ)(K1/4ϵ + K1/4 − B) − K1/4 − K1/4ϵ

≈ ϵ(4K1/4 − 4B) − B. (9)

Solving (9) for f = 0 gives us

ϵ =
B

4K1/4 − 4B
=

B
4K 1/4

1 − B
K 1/4

,

which goes to 0 as K → ∞, hence

N = K1/4 =
(

2CDA
3h2(CE +CC )

)1/4
(10)

is the asymptotic solution. Since f (N ) → ∞ as N → ∞, the largest
solution (i.e., N = K1/4) for f (N ) = 0 corresponds to a local mini-
mum of RA(N ), which is what we are interested in.

2.6 Asymptotic Behavior of RA for Larger A
With (10), RA(N ) becomes

RA =
2CE

3h(CE +CC )K1/4 +
2

hK1/4 +
2CC

3h2(CE +CC )K1/4

(
h − 1

K1/4

)
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Fig. 2. (a) The acceleration ratio of layered hybridization (1/RA) with re-
spect to the aspect ratio h (horizontal axis) and A (vertical axis). Reddish
color means the hybrid grains is slower than the purely discrete, and darker
blue indicates more speed up with hybrid grains. (b) The optimal N com-
puted according to (10).

Therefore, as A → ∞, K → ∞, and then RA → 0, meaning that
the speed up of the layered hybridization with cubic cells is also
unbounded and becomes arbitrarily large as we increase the total
number of effective grains A (as in Figure 2). The key is to set the
grid resolution N according to (10), with NH = 1 and ND = 1.

3 LAYERED HYBRIDIZATION IN 2D
Now, suppose that we have a chunk of granular material in a rect-
angular shapewith the heighth times larger than thewidth, and the
total number of grainsA. We first set a grid (with cubic cells) cover-
ing the granular regionwith the number of cellsN in the horizontal
dimension and hN in the vertical dimension. Then we set the top
ND > 0 layers (in terms of the number of cells) as purely discrete,
their inner NH > 0 layers as hybrid, and the bottom N −ND −NH
layers as purely continuum. We now derive the optimal setting of
N , ND and NH that gives us the maximum speed up over a purely
discrete simulation for the entire rectangular shaped chunk of gran-
ular material.

3.1 A Model for the Computation Cost
Same as the sugar-coated hybridization, let CD , CE , and CC be the
amortized, per-step cost for processing each discrete grain, each
cell in the enrichment and each cell in the continuum simulation,
respectively. The per-step cost of the purely discrete simulationTC
is CDA, and that of the hybrid simulation TH is given by

TH = CEhN
2 +CDA

(ND + NH )N
hN 2 +CC (hN − ND )N .

3.2 The Reduction Ratio in the Computation Time
The reduction ratio RA in the computation time between TH and
TC for a fixed number of total effective grains A is given by

RA(N ,ND ,NH ) = TH
TC

=
CE
CDA

hN 2 +
ND + NH

hN
+

CC
CDA

(hN − ND )N . (11)

We seek for the parameters N , ND , and NH that minimize RA for
a maximized speed-up.
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3.3 Determining NH

The partial derivative of RA with respect to NH is given by

∂RA(N ,ND ,NH )
∂NH

=
1
hN

≥ 0.

Again, this is non negative, and we find NH = 1.

3.4 Determining ND

Next, we substitute NH = 1 into (11) and compute the partial de-
rivative of RA with respect to ND . Noting that A = RDhN

2, where
RD is the number of grains per cell, we have

∂RA(N ,ND ,NH = 1)
∂ND

=
1
hN

− CC
CDA

N =
1
hN

(
1 − CC

CDRD

)
> 0.

Thus the optimal ND is ND = 1.

3.5 Determining N

With NH = 1 and ND = 1, RA becomes

RA(N ) = CE
CDA

hN 2 +
2
hN
+

CC
CDA

(hN − 1)N . (12)

To find the optimal N , we compute

∂RA(N )
∂N

=
2hCE
CDA

N − 2
hN 2 +

CC
CDA

(2hN − 1)

=
2

hN 3

(
h2(CE +CC )

CDA
N 4 − hCC

2CDA
N 3 − N

)
=

2
hN 3

(
h2(CE +CC )

CDA
1
K

N 3
(
N − CC

2h(CE +CC )
B

)
− N

)

=
2

hN 3

(
N 3

K
(N − B) − N

)
,

where we have set 1
K =

h2(CE+CC )
CDA , and B = CC

2h(CE+CC ) . Note that
K scales with A linearly.

When ∂RA(N )
∂N = 0, any changes in the discrete computation time

will be (marginally) balanced by the changes in the enrichment and
continuum computation time.
Finding the local extrema of RA(N ) amounts to solving

f (N ) := N 3

K
(N − B) − N = 0. (13)

f (N ) = 0 has two types of solutions. One is in the form N = ϵ ,
because when A (and consequently K ) is large, the first term van-
ishes and the second term becomes dominant. However, this type
of solutions is not our interest, because N = ϵ is almost purely
discrete. The other type of solutions is N = ±K1/3(1 + ϵ), because
then N 3

K ≈ 1 and the remaining terms are both first order with op-
posite signs, so they cancel out. We are interested in positive N , so
N = K1/3(1 + ϵ).
Now, we will see that N = K1/3 is truly the asymptotic solution

to f (N ) = 0. By assumption, ϵ ≪ 1, and we will see that ϵ → 0
as K → ∞. Substituting N = K1/3(1 + ϵ) into (13) and dropping
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Fig. 3. (a) The acceleration ratio of layered hybridization (1/RA) with re-
spect to the aspect ratio h (horizontal axis) and A (vertical axis). Reddish
color means the hybrid grains is slower than the purely discrete, and darker
blue indicates more speed up with hybrid grains. (b) The optimal N com-
puted according to (15).

higher orders of ϵ , we have

f (N = K1/3(1 + ϵ)) = (1 + ϵ)3(K1/3(1 + ϵ) − B) − K1/3(1 + ϵ)

≈ (1 + 3ϵ)(K1/3ϵ + K1/3 − B) − K1/3 − K1/3ϵ

≈ ϵ(3K1/3 − 3B) − B. (14)

Solving (14) for f = 0 gives us

ϵ =
B

3K1/3 − 3B
=

B
3K 1/3

1 − B
K 1/3

,

which goes to 0 as K → ∞, hence

N = K1/3 =
(

CDA

h2(CE +CC )

)1/3
(15)

is the asymptotic solution. Since f (N ) → ∞ as N → ∞, the largest
solution (i.e., N = K1/3) for f (N ) = 0 corresponds to a local mini-
mum of RA(N ), which is what we are interested in.

3.6 Asymptotic Behavior of RA for Larger A
With (15), RA(N ) becomes

RA =
CE

h(CE +CC )K1/3 +
2

hK1/3 +
CC

h2(CE +CC )K1/3

(
h − 1

K1/3

)
Therefore, as A → ∞, K → ∞, and then RA → 0, meaning that
the speed up of the layered hybridization with cubic cells is also
unbounded and becomes arbitrarily large as we increase the total
number of effective grains A (as in Figure 3). The key is to set the
grid resolution N according to (15), with NH = 1 and ND = 1.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 283. Publication date: November 2018.


