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Authentication Principles

• There’s a conventional trilogy: something you know, something you
have, something you are

• That’s correct, as far as it goes—but it ignores the systems nature of
authentication

• Systems nature: multiple pieces interact; security requires that all
components be secure, and that their composition be secure.

• You cannot fix authentication by changing only one piece
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Passwords: Something You Know

• A classic means of authentication

• Everyone understands them

• They’re cheap to deploy

• However. . .
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The Trouble with Passwords

• People forget them

• People pick weak passwords
+ Common passwords, in one recent analysis, included “password”,
“12345”, and “123456”

• People share them

• People write them down

• Attackers can replay them
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“Pick Strong Passwords”

• In 1979, Morris and Thompson
warned us about weak passwords

• They were working with hardcopy
terminals with no computational
ability

• No keystroke loggers or phishers

• Most users had one or two
passwords; almost no one had more
than a small handful

• By actual count, I have more than
200 web passwords. . . (Photo courtesy Perry Metzger)
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Old Threats versus New Threats

• Hacker steals
hashed system
password file
from timesharing
machine

• Attacker has
limited CPU
resources for
cracking it
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Old Threats versus New Threats

• Hacker steals
hashed system
password file
from timesharing
machine

• Attacker has
limited CPU
resources for
cracking it

• Hacker steals application—not
system—password file from web server

• May be plaintext, for password recovery

• Secondary authentication questions are
jokes—too easy for a targetier to figure out

• Malware plants keystroke loggers

• Users are lured to phishing websites

• Attacker has botnets, GPUs, cloud services
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The Advice Hasn’t Changed

• “Pick strong passwords”—at least three letters, three digits, one
symbol, and one hieroglyphic or character from Klingon

• “Never write them down”

• “At least 8 characters”

Steven M. Bellovin September 7, 2014 8



Even the Strength Rules Aren’t Great

Rules from a US Government website

• Minimum Length: 8

• Maximum Length: 12

• Maximum Repeated Characters: 2

• Minimum Alphabetic Characters Required: 1

• Minimum Numeric Characters Required: 1

• Starts with a Numeric Character

• No User Name

• No past passwords

• At least one character must be from
˜!@#$%ˆ&*()-_+!+={}[]\|;:/?.,<>"’‘!
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Attacking this Scheme

• The first character must be numeric, so there are only ten choices.

• Only one digit is required; most people will use a consecutive string of
digits followed by a consecutive string of letters.

• A punctuation character is needed, but most people will just put a
period at the end.

• Likely pattern: one or more digits, one or more letters, and a period,
where the total number of digits and letters will be seven.

• Total combinations somewhat less than
∑6
i=1 10

i · 267−i which
comes to 5,003,631,360.

• Easily attackable
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What Has Changed?

• Morris and Thompson threat model: someone (possibly an insider)
grabs the system password file, but has limited resources to use for a
guessing attack

• Today: phishing, keystroke loggers, subverted systems—none of
which are bothered by strong passwords

• Attackers have vast computational resources

• Most logins are for web sites—people have many web site logins, and
web sites have far more users than the largest systems from 1979

• Why should we expect the same defenses to work?
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Phishing

• Phishing sites don’t care about strength rules

• The very first phishing message I saw was from paypa1.com
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Let Me Enlarge That and Change the Font

paypa1.com
versus

paypal.com
The threat model has changed!
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Cyrillic Homograph Attack on “Paypal”

Glyph Unicode value in Cyrillic
P U+0420
a U+0430
y U+0443
p U+0440
a U+0430
l U+006C (ASCII)

Some symbols look the same, but have different values: ordinary
/—technically called “solidus”—is U+002F, but U+2044, “fraction slash”,
looks the same. Think about that in a URL. . .
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Employees and Users

• You can train employees, and insist on certain behaviors

• (Of course, employees can be stubborn, and “change” their
passwords by incrementing a digit, switching among two or three
favorite passwords, etc.)

• If user—that is, customer—password requirements for your web site
are too annoying, they’ll shop somewhere else

• (Password strength requirements correlate more with lack of choice
(employer, government) than with the assets at risk
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Mandating Password Changes

• People are stubborn, and rarely cooperate properly

• People often forget new passwords, which forces more reliance on
secondary authentication—and that’s generally very weak

• Experiments have shown that new passwords can be derived
algorithmically from old ones, with reasonably high accuracy—41%
overall, and 17% in 5 or fewer guesses

• The rationale for frequent changes is poor—or rather, it’s set out in an
equation, but the values to plug in are unknowable, and don’t take
today’s threat model into account
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What is the Threat Model?

• Online or offline guessing attacks?

• Are the attacks targeted or random?

• What are the enemy’s abilities?

The classic “just pick strong passwords” defense gets most of this wrong!
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The Password Dilemma

• We each have very many logins

• We need to use strong passwords for them

• Reusing passwords is very dangerous

• We can’t possibly remember them all

• They have to be stored—somehow
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Storing Passwords: Users

• Requirements: security, stability, usability—these can conflict. . .

• A piece of paper is usually usable and usually secure—unless you’re
being targeted by a high-level adversary

+ However—not very usable or very secure for mobile devices, and
often hard to back up

• Higher-tech version: password manager

• For usability, the password store should be “near” the browser; for
security, it should be away from it
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Password Managers

• Specialized programs that store per-site passwords

• Storage is generally encrypted

• Many managers will synchronize passwords between different
devices, including mobile devices

– Cloud storage?

– USB device?

– Special LAN protocol?

– Which are secure? Which are convenient?

• Many are integrated with browsers
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Password Managers and Browsers

• Many password managers use browser extensions

• Very convenient—they can autofill passwords on login pages

• Protects against most phishing attacks—they’ll only supply the
password for the correct site

+ These are the advantages of “near the browser”

• But—if the browser is compromised, the attack code can probably get
at the passwords via the manager’s browser extension

+ This is the problem with “near”
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Lost Passwords

• If you run a production site, some users will forget their passwords

• You have to provide some way to recover—but how you do it is
heavily dependent on the threat model and the operational model

• If people (e.g., your help desk or your customer support line) are
involved, be extremely careful about the procedures they follow, and
do not let them deviate.
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Secondary Authentication

• Questions must be memorable to the users, but hard to find by
attackers

• Very challenging, in an age of social networks, and harder for public
figures

• The classic question—“What is your mother’s maiden name?”—was
used at least as early as 1882:

(from an old telegraph codebook)

• Targetiers can learn the answer fairly easily, but in many places,
marriage and birth records are online; it’s not hard to automate the
guessing process
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Reset or Recovery?

• Always reset the password; don’t send the original

• You can only send the original if you have it, and that’s very
dangerous

• Often, the new password is emailed to the user—ok for modest-value
accounts, but it makes the email password the most valuable one the
user has

• Reset important passwords by paper mail, text message, or even
in-person

• Rarely much reason to force the user to change the password after
reset—unless it’s a higher-value account and you don’t want to risk
the new one being stored in the user’s mailbox
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Password File Compromise

• The odds on it happening are moderately high—it’s happened to
enough sophisticated companies that there’s little reason to think
you’re safe

• You must reset all passwords

• Were your secondary authentication answers compromised?

• How were the passwords stored?
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Storing Passwords: Servers

• Never store plaintext passwords—if you do, any compromise is a
disaster

• One site apparently used encryption (in ECB mode!); this is almost as
bad, since the attacker can probably steal the decryption key, too

• First decent approach: hash the password

• Server takes the user-supplied password, hashes it, and compares
against the stored value.

• Better, yet,“salt”, hash, and iterate
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Basic Attack on Hashed Passwords

for i in large_dictionary:

for j in variants_of(i):

if H(j) in stolen_password_file:

print j, stolen_password_file[j]
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Why Iterate?

• The attacker has some guess rate n tries/second

• If you use Hm(password) instead of H(password), you cut the guess
rate to n/m

• The attacker can make fewer guesses per unit time

• Guesses are cheap, but n 6=∞
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What is Salt?

• Pick a random number s

• Calculate Hm(password||s); store that and s

• It stops attackers from precalculating a hashed dictionary

• It hides that fact that two hashed passwords correspond to the same
plaintext

• (The Morris/Thompson design used a 12-bit salt, which was fine
when a large site had a few hundred users. A large site today has 10s
of millions—and Facebook has over a billion. I’d recommend at least
64 bits of salt today.)
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Which Hash Function? How Many Iterations?

• The goal is to slow down guessing attacks

• Any non-invertible function will suffice; if it’s too fast, iterate longer

• (Yes, MD5 is fine.)

• Caveat: don’t use a function that limits input length or character set
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Lamport’s Algorithm
• Conventional passwords are replayable—this is at the heart of

phishing attacks. We can do better

• Server stores n,Hn(password). User enters Hn−1(password)

• Server calculates H(Hn−1(password)); if it matches, the entered
value and n− 1 are stored for next time

• The user could have local computational capability—or the user can
print out Hn−1, Hn−2, . . . , Hn−i and have i passwords to use on a
trip

• These passwords are not repayable (but guessing attacks are still
possible)

• Note: inherent limit to the number of logins possible before a
password change, determined by the initial value of n

+ The math requires periodic password changes. . .
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One-Time Passwords

• Lamport’s algorithm is a form of one-time password : a password
that’s usable only once

• Most other forms require some sort of device or token: “something
you have”

• Cryptography is sometimes used, but not always

• Generally used with a PIN or password, to guard against misuse of
stolen devices.
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Advantages of Tokens

• Guessing attacks don’t work—they use strong secrets

• If one is lent out, the proper owner doesn’t have it

• Generally speaking, the authentication code isn’t repayable

• But—can be lost, reverse-engineered, etc.
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Challenge-Response Authentication

• The server sends x to the user; the user replies with F (x)

• Common cryptographic form of challenge-response: F (x) = Ek(x),
where Ek is encryption with a key k known to the server and to the
user’s device

• Non-cryptographic variant: send the challenge as a text message to
the user’s mobile phone
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Paypal Login Screen
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Paypal Challenge
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Phones as Tokens

• Virtually all computer users have mobile phones

• Phone loss is serious for personal reasons; people guard them and
notice their loss

• But—smart phones can be hacked; there are already malware apps
that intercept challenge/response messages

• You’re also trusting the phone company; it’s not an encrypted channel
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The SecurID Token

• Token (or software-based
equivalent) knows time T , key k

• Device displays Ek(T ); user sends
that

• Server matches that for
t ∈ [T ′ − ε, T ′+ ε]

• (Reality is more complicated: server
measures historical skew of token’s
clock and uses that to calculate T ′)

(Photo by Alexander Klink, via Wikimedia)
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What Must the Server Know?

• For cryptographic challenge-response or the SecurID, the server
must have a database of keys

• This database is obviously very sensitive—tokens are commonly
tamper-resistant to keep k from the users

• We can’t risk storing plaintext passwords, but we have to store
plaintext keys. . .

• Oops
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Provisioning k

• Where does k come from?

• More precisely, the IT department has just received a shipment of
1,000 tokens. How do k1, k2, . . . , k1000 get entered into the
database and associated with the proper token?

• It appears to come in a file from the vendor—so the vendor knows, or
at least knew, the keys

• Lockheed was penetrated a few years ago, using data that was
apparently stolen from RSA by (Chinese?) attackers
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My Theory on the RSA Attack

• Assume that s is a token’s serial number. Perhaps ki = EK(si) or
ki = H(K, s) where K is a per-customer key

• Alternatively, perhaps RSA produces random ki and stores a
per-customer file of 〈si, ki〉 pairs, to help customers who have lost
their copy

• Either this file or Lockheed’s K was stolen

• Note: Users supply a login name; tokens are indexed by serial
number s. How did the attackers find Lockheed login names and map
these to token serial numbers?
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Lost Tokens

• What do you do about lost tokens?

• What do you do about lost tokens by traveling users?

• How are they authenticated? Are they allowed to log in before the
new token is shipped to them?

• Token authentication can be very secure—but in some cases, such
as stolen key files or lost tokens, the problems and recovery
mechanisms are just about the same as for passwords

• Authentication is a systems problem!
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Cryptographic Authentication

• Authentication is a side-effect of a cryptographic negotiation to
establish a session key

• Examples: Kerberos; client-side certificates in TLS

• Attractive, since you probably need the session key to protect the rest
of the session

• There are limits to its security. . .
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Limits of Cryptographic Authentication

• Cryptographic authentication is based on a private or secret
key—how is it protected?

• Stored on the user’s computer? Again, how is it protected? A
password? (Guessing attacks may still be possible.)

• How do you synchronize the private key amongst multiple client
devices? How is it protected during synchronization?

• You can store the key in outboard hardware (e.g., a USB widget), but
that doesn’t work well for mobile devices

• You still need ways to recover from lost devices and/or USB widgets

• On the other hand, if public key cryptography is used, the server’s key
store isn’t sensitive
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Biometric Authentication

• “Something you are”

• Common forms: fingerprint, iris scan, retina scan, facial recognition

• Other types: typing rhythm, voiceprint, hand geometry

• Marketing materials suggest that this is “perfectly” secure

• Not so fast. . .
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Limits of Biometric Authentication

• If the server’s database is stolen, can an attacker construct a fake
biometric?

+ Candy fingerprints and life-size pictures have fooled sensors!

• There’s at least one report of a severed finger being used to start a
car
Defense: liveness detectors

• How do you change your “password”?

• Can you use a biometric to encrypt/decrypt a key store (e.g., the
Keychain on MacOS)?

• Nothing to forget or lose, but what about injuries, illnesses, and
oddities? (About 5% of people do not have easily scannable
fingerprints.)
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False Accept/False Reject

• Technology is improving, though still well short of perfect

• There are always false accepts and false rejects

• In fact, there’s a tradeoff—the lower the false accept rate, the higher
the false reject rate

• Is the false accept rate low enough for security?

• How do you cope with false rejects?

Steven M. Bellovin September 7, 2014 47



Federated Authentication

• Log in to one site—Google, Facebook, Microsoft, others—and let it
vouch for you to all other sites

• Can use strong (or weak. . . ) authentication to that one site

• Is the site trustable? Do you use your company badge to get in to
work, or a credit card from your bank?

• What if that site is compromised?

• There are privacy issues: this one site learns everywhere else you go

• Not very popular yet for organizational use; some uptake on the Web
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Authentication as a Systems Problem

• The many different forms of authentication have a great deal in
common:

– Secondary authentication

– Dealing with server compromise

– Susceptibility to guessing attacks

– Administrative infrastructure

• These pieces interact
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Properties of Authentication Mechanisms
Guessing Forgetting Device Server file Temp access External

loss compromise trust
Passwords # # ! # ! !

Lamport’s Maybe # # # ? !

Chall/resp ! ! # ## # !

SMS ! ! ? ! # ?
Time-based ! ! # ## ? #

Crypto ! ! ? #,! ? !

Biometric ! ! ? # # !

Federated ? ? ! ! ? #

! No particular problem; strength of this mechanism

? Some trouble or implementation-dependent
# Significant risk
## Very serious risk
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There Are No Perfect Solutions

• All mechanisms have their shortcomings

• Most of the effort thus far has focused on eliminating passwords,
because of the problem of guessing

+ But other schemes have different shortcomings (including cost)
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Passwords Aren’t Going Away

• They’re simple; everyone understands them

• They’re low-cost

• Well, the cost isn’t that low, when you account for recovery from
forgotten passwords

• Other types of authentication have their own challenges

• We have to learn to handle them properly
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