
Passwords and Authentication

Steven M. Bellovin
https://www.cs.columbia.edu/˜smb

Steven M. Bellovin September 7, 2014 1

https://www.cs.columbia.edu/~smb
https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

Authentication Principles

• There’s a conventional trilogy: something you know, something you
have, something you are

• That’s correct, as far as it goes—but it ignores the systems nature of
authentication

• Systems nature: multiple pieces interact; security requires that all
components be secure, and that their composition be secure.

• You cannot fix authentication by changing only one piece

Steven M. Bellovin September 7, 2014 2

Passwords: Something You Know

• A classic means of authentication

• Everyone understands them

• They’re cheap to deploy

• However. . .

Steven M. Bellovin September 7, 2014 3

The Trouble with Passwords

• People forget them

• People pick weak passwords
+ Common passwords, in one recent analysis, included “password”,
“12345”, and “123456”

• People share them

• People write them down

• Attackers can replay them

Steven M. Bellovin September 7, 2014 4

“Pick Strong Passwords”

• In 1979, Morris and Thompson
warned us about weak passwords

• They were working with hardcopy
terminals with no computational
ability

• No keystroke loggers or phishers

• Most users had one or two
passwords; almost no one had more
than a small handful

• By actual count, I have more than
200 web passwords. . . (Photo courtesy Perry Metzger)

Steven M. Bellovin September 7, 2014 5

Old Threats versus New Threats

• Hacker steals
hashed system
password file
from timesharing
machine

• Attacker has
limited CPU
resources for
cracking it

Steven M. Bellovin September 7, 2014 6

Old Threats versus New Threats

• Hacker steals
hashed system
password file
from timesharing
machine

• Attacker has
limited CPU
resources for
cracking it

• Hacker steals application—not
system—password file from web server

• May be plaintext, for password recovery

• Secondary authentication questions are
jokes—too easy for a targetier to figure out

• Malware plants keystroke loggers

• Users are lured to phishing websites

• Attacker has botnets, GPUs, cloud services

Steven M. Bellovin September 7, 2014 7

The Advice Hasn’t Changed

• “Pick strong passwords”—at least three letters, three digits, one
symbol, and one hieroglyphic or character from Klingon

• “Never write them down”

• “At least 8 characters”

Steven M. Bellovin September 7, 2014 8

Even the Strength Rules Aren’t Great

Rules from a US Government website

• Minimum Length: 8

• Maximum Length: 12

• Maximum Repeated Characters: 2

• Minimum Alphabetic Characters Required: 1

• Minimum Numeric Characters Required: 1

• Starts with a Numeric Character

• No User Name

• No past passwords

• At least one character must be from
˜!@#$%ˆ&*()-_+!+={}[]\|;:/?.,<>"’‘!

Steven M. Bellovin September 7, 2014 9

Attacking this Scheme

• The first character must be numeric, so there are only ten choices.

• Only one digit is required; most people will use a consecutive string of
digits followed by a consecutive string of letters.

• A punctuation character is needed, but most people will just put a
period at the end.

• Likely pattern: one or more digits, one or more letters, and a period,
where the total number of digits and letters will be seven.

• Total combinations somewhat less than
∑6
i=1 10

i · 267−i which
comes to 5,003,631,360.

• Easily attackable

Steven M. Bellovin September 7, 2014 10

What Has Changed?

• Morris and Thompson threat model: someone (possibly an insider)
grabs the system password file, but has limited resources to use for a
guessing attack

• Today: phishing, keystroke loggers, subverted systems—none of
which are bothered by strong passwords

• Attackers have vast computational resources

• Most logins are for web sites—people have many web site logins, and
web sites have far more users than the largest systems from 1979

• Why should we expect the same defenses to work?

Steven M. Bellovin September 7, 2014 11

Phishing

• Phishing sites don’t care about strength rules

• The very first phishing message I saw was from paypa1.com

Steven M. Bellovin September 7, 2014 12

Let Me Enlarge That and Change the Font

paypa1.com
versus

paypal.com
The threat model has changed!

Steven M. Bellovin September 7, 2014 13

Cyrillic Homograph Attack on “Paypal”

Glyph Unicode value in Cyrillic
P U+0420
a U+0430
y U+0443
p U+0440
a U+0430
l U+006C (ASCII)

Some symbols look the same, but have different values: ordinary
/—technically called “solidus”—is U+002F, but U+2044, “fraction slash”,
looks the same. Think about that in a URL. . .

Steven M. Bellovin September 7, 2014 14

Employees and Users

• You can train employees, and insist on certain behaviors

• (Of course, employees can be stubborn, and “change” their
passwords by incrementing a digit, switching among two or three
favorite passwords, etc.)

• If user—that is, customer—password requirements for your web site
are too annoying, they’ll shop somewhere else

• (Password strength requirements correlate more with lack of choice
(employer, government) than with the assets at risk

Steven M. Bellovin September 7, 2014 15

Mandating Password Changes

• People are stubborn, and rarely cooperate properly

• People often forget new passwords, which forces more reliance on
secondary authentication—and that’s generally very weak

• Experiments have shown that new passwords can be derived
algorithmically from old ones, with reasonably high accuracy—41%
overall, and 17% in 5 or fewer guesses

• The rationale for frequent changes is poor—or rather, it’s set out in an
equation, but the values to plug in are unknowable, and don’t take
today’s threat model into account

Steven M. Bellovin September 7, 2014 16

What is the Threat Model?

• Online or offline guessing attacks?

• Are the attacks targeted or random?

• What are the enemy’s abilities?

The classic “just pick strong passwords” defense gets most of this wrong!

Steven M. Bellovin September 7, 2014 17

The Password Dilemma

• We each have very many logins

• We need to use strong passwords for them

• Reusing passwords is very dangerous

• We can’t possibly remember them all

• They have to be stored—somehow

Steven M. Bellovin September 7, 2014 18

Storing Passwords: Users

• Requirements: security, stability, usability—these can conflict. . .

• A piece of paper is usually usable and usually secure—unless you’re
being targeted by a high-level adversary

+ However—not very usable or very secure for mobile devices, and
often hard to back up

• Higher-tech version: password manager

• For usability, the password store should be “near” the browser; for
security, it should be away from it

Steven M. Bellovin September 7, 2014 19

Password Managers

• Specialized programs that store per-site passwords

• Storage is generally encrypted

• Many managers will synchronize passwords between different
devices, including mobile devices

– Cloud storage?

– USB device?

– Special LAN protocol?

– Which are secure? Which are convenient?

• Many are integrated with browsers

Steven M. Bellovin September 7, 2014 20

Password Managers and Browsers

• Many password managers use browser extensions

• Very convenient—they can autofill passwords on login pages

• Protects against most phishing attacks—they’ll only supply the
password for the correct site

+ These are the advantages of “near the browser”

• But—if the browser is compromised, the attack code can probably get
at the passwords via the manager’s browser extension

+ This is the problem with “near”

Steven M. Bellovin September 7, 2014 21

Lost Passwords

• If you run a production site, some users will forget their passwords

• You have to provide some way to recover—but how you do it is
heavily dependent on the threat model and the operational model

• If people (e.g., your help desk or your customer support line) are
involved, be extremely careful about the procedures they follow, and
do not let them deviate.

Steven M. Bellovin September 7, 2014 22

Secondary Authentication

• Questions must be memorable to the users, but hard to find by
attackers

• Very challenging, in an age of social networks, and harder for public
figures

• The classic question—“What is your mother’s maiden name?”—was
used at least as early as 1882:

(from an old telegraph codebook)

• Targetiers can learn the answer fairly easily, but in many places,
marriage and birth records are online; it’s not hard to automate the
guessing process

Steven M. Bellovin September 7, 2014 23

Reset or Recovery?

• Always reset the password; don’t send the original

• You can only send the original if you have it, and that’s very
dangerous

• Often, the new password is emailed to the user—ok for modest-value
accounts, but it makes the email password the most valuable one the
user has

• Reset important passwords by paper mail, text message, or even
in-person

• Rarely much reason to force the user to change the password after
reset—unless it’s a higher-value account and you don’t want to risk
the new one being stored in the user’s mailbox

Steven M. Bellovin September 7, 2014 24

Password File Compromise

• The odds on it happening are moderately high—it’s happened to
enough sophisticated companies that there’s little reason to think
you’re safe

• You must reset all passwords

• Were your secondary authentication answers compromised?

• How were the passwords stored?

Steven M. Bellovin September 7, 2014 25

Storing Passwords: Servers

• Never store plaintext passwords—if you do, any compromise is a
disaster

• One site apparently used encryption (in ECB mode!); this is almost as
bad, since the attacker can probably steal the decryption key, too

• First decent approach: hash the password

• Server takes the user-supplied password, hashes it, and compares
against the stored value.

• Better, yet,“salt”, hash, and iterate

Steven M. Bellovin September 7, 2014 26

Basic Attack on Hashed Passwords

for i in large_dictionary:

for j in variants_of(i):

if H(j) in stolen_password_file:

print j, stolen_password_file[j]

Steven M. Bellovin September 7, 2014 27

Why Iterate?

• The attacker has some guess rate n tries/second

• If you use Hm(password) instead of H(password), you cut the guess
rate to n/m

• The attacker can make fewer guesses per unit time

• Guesses are cheap, but n 6=∞

Steven M. Bellovin September 7, 2014 28

What is Salt?

• Pick a random number s

• Calculate Hm(password||s); store that and s

• It stops attackers from precalculating a hashed dictionary

• It hides that fact that two hashed passwords correspond to the same
plaintext

• (The Morris/Thompson design used a 12-bit salt, which was fine
when a large site had a few hundred users. A large site today has 10s
of millions—and Facebook has over a billion. I’d recommend at least
64 bits of salt today.)

Steven M. Bellovin September 7, 2014 29

Which Hash Function? How Many Iterations?

• The goal is to slow down guessing attacks

• Any non-invertible function will suffice; if it’s too fast, iterate longer

• (Yes, MD5 is fine.)

• Caveat: don’t use a function that limits input length or character set

Steven M. Bellovin September 7, 2014 30

Lamport’s Algorithm
• Conventional passwords are replayable—this is at the heart of

phishing attacks. We can do better

• Server stores n,Hn(password). User enters Hn−1(password)

• Server calculates H(Hn−1(password)); if it matches, the entered
value and n− 1 are stored for next time

• The user could have local computational capability—or the user can
print out Hn−1, Hn−2, . . . , Hn−i and have i passwords to use on a
trip

• These passwords are not repayable (but guessing attacks are still
possible)

• Note: inherent limit to the number of logins possible before a
password change, determined by the initial value of n

+ The math requires periodic password changes. . .
Steven M. Bellovin September 7, 2014 31

One-Time Passwords

• Lamport’s algorithm is a form of one-time password : a password
that’s usable only once

• Most other forms require some sort of device or token: “something
you have”

• Cryptography is sometimes used, but not always

• Generally used with a PIN or password, to guard against misuse of
stolen devices.

Steven M. Bellovin September 7, 2014 32

Advantages of Tokens

• Guessing attacks don’t work—they use strong secrets

• If one is lent out, the proper owner doesn’t have it

• Generally speaking, the authentication code isn’t repayable

• But—can be lost, reverse-engineered, etc.

Steven M. Bellovin September 7, 2014 33

Challenge-Response Authentication

• The server sends x to the user; the user replies with F (x)

• Common cryptographic form of challenge-response: F (x) = Ek(x),
where Ek is encryption with a key k known to the server and to the
user’s device

• Non-cryptographic variant: send the challenge as a text message to
the user’s mobile phone

Steven M. Bellovin September 7, 2014 34

Paypal Login Screen

Steven M. Bellovin September 7, 2014 35

Paypal Challenge

Steven M. Bellovin September 7, 2014 36

Phones as Tokens

• Virtually all computer users have mobile phones

• Phone loss is serious for personal reasons; people guard them and
notice their loss

• But—smart phones can be hacked; there are already malware apps
that intercept challenge/response messages

• You’re also trusting the phone company; it’s not an encrypted channel

Steven M. Bellovin September 7, 2014 37

The SecurID Token

• Token (or software-based
equivalent) knows time T , key k

• Device displays Ek(T); user sends
that

• Server matches that for
t ∈ [T ′ − ε, T ′+ ε]

• (Reality is more complicated: server
measures historical skew of token’s
clock and uses that to calculate T ′)

(Photo by Alexander Klink, via Wikimedia)

Steven M. Bellovin September 7, 2014 38

What Must the Server Know?

• For cryptographic challenge-response or the SecurID, the server
must have a database of keys

• This database is obviously very sensitive—tokens are commonly
tamper-resistant to keep k from the users

• We can’t risk storing plaintext passwords, but we have to store
plaintext keys. . .

• Oops

Steven M. Bellovin September 7, 2014 39

Provisioning k

• Where does k come from?

• More precisely, the IT department has just received a shipment of
1,000 tokens. How do k1, k2, . . . , k1000 get entered into the
database and associated with the proper token?

• It appears to come in a file from the vendor—so the vendor knows, or
at least knew, the keys

• Lockheed was penetrated a few years ago, using data that was
apparently stolen from RSA by (Chinese?) attackers

Steven M. Bellovin September 7, 2014 40

My Theory on the RSA Attack

• Assume that s is a token’s serial number. Perhaps ki = EK(si) or
ki = H(K, s) where K is a per-customer key

• Alternatively, perhaps RSA produces random ki and stores a
per-customer file of 〈si, ki〉 pairs, to help customers who have lost
their copy

• Either this file or Lockheed’s K was stolen

• Note: Users supply a login name; tokens are indexed by serial
number s. How did the attackers find Lockheed login names and map
these to token serial numbers?

Steven M. Bellovin September 7, 2014 41

Lost Tokens

• What do you do about lost tokens?

• What do you do about lost tokens by traveling users?

• How are they authenticated? Are they allowed to log in before the
new token is shipped to them?

• Token authentication can be very secure—but in some cases, such
as stolen key files or lost tokens, the problems and recovery
mechanisms are just about the same as for passwords

• Authentication is a systems problem!

Steven M. Bellovin September 7, 2014 42

Cryptographic Authentication

• Authentication is a side-effect of a cryptographic negotiation to
establish a session key

• Examples: Kerberos; client-side certificates in TLS

• Attractive, since you probably need the session key to protect the rest
of the session

• There are limits to its security. . .

Steven M. Bellovin September 7, 2014 43

Limits of Cryptographic Authentication

• Cryptographic authentication is based on a private or secret
key—how is it protected?

• Stored on the user’s computer? Again, how is it protected? A
password? (Guessing attacks may still be possible.)

• How do you synchronize the private key amongst multiple client
devices? How is it protected during synchronization?

• You can store the key in outboard hardware (e.g., a USB widget), but
that doesn’t work well for mobile devices

• You still need ways to recover from lost devices and/or USB widgets

• On the other hand, if public key cryptography is used, the server’s key
store isn’t sensitive

Steven M. Bellovin September 7, 2014 44

Biometric Authentication

• “Something you are”

• Common forms: fingerprint, iris scan, retina scan, facial recognition

• Other types: typing rhythm, voiceprint, hand geometry

• Marketing materials suggest that this is “perfectly” secure

• Not so fast. . .

Steven M. Bellovin September 7, 2014 45

Limits of Biometric Authentication

• If the server’s database is stolen, can an attacker construct a fake
biometric?

+ Candy fingerprints and life-size pictures have fooled sensors!

• There’s at least one report of a severed finger being used to start a
car
Defense: liveness detectors

• How do you change your “password”?

• Can you use a biometric to encrypt/decrypt a key store (e.g., the
Keychain on MacOS)?

• Nothing to forget or lose, but what about injuries, illnesses, and
oddities? (About 5% of people do not have easily scannable
fingerprints.)

Steven M. Bellovin September 7, 2014 46

False Accept/False Reject

• Technology is improving, though still well short of perfect

• There are always false accepts and false rejects

• In fact, there’s a tradeoff—the lower the false accept rate, the higher
the false reject rate

• Is the false accept rate low enough for security?

• How do you cope with false rejects?

Steven M. Bellovin September 7, 2014 47

Federated Authentication

• Log in to one site—Google, Facebook, Microsoft, others—and let it
vouch for you to all other sites

• Can use strong (or weak. . .) authentication to that one site

• Is the site trustable? Do you use your company badge to get in to
work, or a credit card from your bank?

• What if that site is compromised?

• There are privacy issues: this one site learns everywhere else you go

• Not very popular yet for organizational use; some uptake on the Web

Steven M. Bellovin September 7, 2014 48

Authentication as a Systems Problem

• The many different forms of authentication have a great deal in
common:

– Secondary authentication

– Dealing with server compromise

– Susceptibility to guessing attacks

– Administrative infrastructure

• These pieces interact

Steven M. Bellovin September 7, 2014 49

Properties of Authentication Mechanisms
Guessing Forgetting Device Server file Temp access External

loss compromise trust
Passwords # # ! # ! !

Lamport’s Maybe # # # ? !

Chall/resp ! ! # ## # !

SMS ! ! ? ! # ?
Time-based ! ! # ## ? #

Crypto ! ! ? #,! ? !

Biometric ! ! ? # # !

Federated ? ? ! ! ? #

! No particular problem; strength of this mechanism

? Some trouble or implementation-dependent
Significant risk
Very serious risk

Steven M. Bellovin September 7, 2014 50

There Are No Perfect Solutions

• All mechanisms have their shortcomings

• Most of the effort thus far has focused on eliminating passwords,
because of the problem of guessing

+ But other schemes have different shortcomings (including cost)

Steven M. Bellovin September 7, 2014 51

Passwords Aren’t Going Away

• They’re simple; everyone understands them

• They’re low-cost

• Well, the cost isn’t that low, when you account for recovery from
forgotten passwords

• Other types of authentication have their own challenges

• We have to learn to handle them properly

Steven M. Bellovin September 7, 2014 52

