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The Problem

• We have to deploy new hash functions — if not today, at some point
soon

• We try for algorithm-agility in our protocols — but certificates are a
special case

• Certificates rely on hashes

• Goal: maintain security while new code is deployed

• Did we get it right?

• No. . .
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Gradual Conversions

• We cannot upgrade all systems at once

• Support for new hash (and signature) algorithms will appear gradually

• Newer systems need to be able to “switch-hit” — use new algorithms
when talking to other newer systems, but fall back to old algorithms
when talking to legacy systems

• This requires some sort of signaling

• The signaling has to be secure, to prevent downgrade attacks
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Protocols Analyzed

• We looked at S/MIME, TLS, and IPsec/IKE/IKEv2; we have
preliminary results for DNSSEC

• None of them got it right

• Note: for brevity, this talk will not discuss hash functions use with
HMAC or as PRFs; see the paper for details
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The Root of the Problem

• We had MD5 in 1992, and SHA-1 in 1995. In other words, for the
entire commercial life of the Internet we have had the same two
algorithms

• Everyone supported both; there was no need for signaling

• Unused protocol paths are just as bad as unused code paths
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S/MIME

• If the sender has more that one certificate, which should be used for
signing email?

• If you don’t have the receiver certificate, you have to use old
algorithms (but never use MD5 for signing)

• Eventually, switch to the newer algorithm as the default; users can
resend if needed (mail clients should cache such information)

• Multiple signatures are defined in the spec, but many
implementations won’t handle this case properly

• If you have the receiver’s certificate(s), use the newest algorithms
possible

• There is a proposed SMIMECapabilities certificate extension, but it’s
not yet standardized, let alone implemented
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TLS

• TLS server certificates are the most important case for upgrades

• Need TLS extension (or, possibly), overloaded ciphersuite for client
signaling to server

• Similarly, the server should be able to signal what client certificates it
can accept (though client-side certificates are rare)

• Other situations: RSA digital signatures in TLS use MD5
concatenated with SHA-1. Best option: have newer implementations
use the hash algorithm from the signer’s certificate

• Similar considerations for the TLS Finished message
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IPsec and IKE

• IKEv2 and IKE Main Mode have negotiation messages at the right
time, but there is no negotiation of certificate hash function or
certificate signature algorithms

• It is possible to overload the meaning one option to select hash
function

• IKE Aggressive Mode (which has four different variants) uses hash
functions before any negotiation

• In some situations, heuristics based on certificates can be used

• Possible practical solution: IPsec is used primarily in closed
environments

Steven M. Bellovin October 12, 2005 8



Deploying Hashes

Preliminary Analysis of DNSSEC

• Difficult, because no possibility of negotiation; server must send out
all possible signatures

• To guard against downgrade, the over-the-wire protocol is probably
sufficient

• The DS message should be overloaded to indicate which algorithms
should be expected

• This is a change in interpretation, and hence requires a new RFC and
code changes

• This will increase DNS message size
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Signature Algorithms

• Most of our analysis applies to signature algorithms, too

• Note that DSA can only be used with SHA-1

• Adapting to new signature algorithms is harder than new hash
functions, since the heuristics we sometimes suggest won’t work
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Estimated Conversion Timeline

1 year Design of new protocol features by the IETF
1-2 years Design, code, and test of new features by vendors
2-5 years Deployment by the user community — note that

many machines are never upgraded, merely
replaced

Standardization of a new hash function can proceed in parallel with
protocol redesigns. If a new hash technique requires a different API, it
may lengthen the design/code/test time.

Given the modest threat posed by collision attacks (except, of course, for
signed email), the speed of the upgrades may be driven by support for
ECC.
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Recommendations

S/MIME Support multiple signatures properly; stop using MD5; add
SMIMECapabilities certficate extension

TLS Add signaling for server and client certificates; change
digitally-signed element and Finished message definition

IPsec Add hash function signaling in the initial SA exchange

DSA Define DSA-2 or way to use DSA with other hashes

Vendors Add policy and preference knobs, for users and administrators
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Conclusions

• Agility is hard to get right unless you actually try deploying a new
algorithm

• All of the protocols we looked at need more work. Other protocols — ,
SECSH, OpenPGP, and more — should be examined by the
appropriate WGs.
☞ Most protocols need either an updated version or a BCP
describing how to manage the transition.

• Implementors need to think about it, too

• Most of our analysis applies to new signature algorithms
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