
Deploying Hashes

Deploying New Hash Functions

Steven M. Bellovin Eric K. Rescorla
smb@cs.columbia.edu ekr@networkresonance.com

Steven M. Bellovin October 12, 2005 1



Deploying Hashes

The Problem

• We have to deploy new hash functions — if not today, at some point
soon

• We try for algorithm-agility in our protocols — but certificates are a
special case

• Certificates rely on hashes

• Goal: maintain security while new code is deployed

• Did we get it right?

• No. . .

Steven M. Bellovin October 12, 2005 2



Deploying Hashes

Gradual Conversions

• We cannot upgrade all systems at once

• Support for new hash (and signature) algorithms will appear gradually

• Newer systems need to be able to “switch-hit” — use new algorithms
when talking to other newer systems, but fall back to old algorithms
when talking to legacy systems

• This requires some sort of signaling

• The signaling has to be secure, to prevent downgrade attacks

Steven M. Bellovin October 12, 2005 3



Deploying Hashes

Protocols Analyzed

• We looked at S/MIME, TLS, and IPsec/IKE/IKEv2; we have
preliminary results for DNSSEC

• None of them got it right

• Note: for brevity, this talk will not discuss hash functions use with
HMAC or as PRFs; see the paper for details

Steven M. Bellovin October 12, 2005 4



Deploying Hashes

The Root of the Problem

• We had MD5 in 1992, and SHA-1 in 1995. In other words, for the
entire commercial life of the Internet we have had the same two
algorithms

• Everyone supported both; there was no need for signaling

• Unused protocol paths are just as bad as unused code paths

Steven M. Bellovin October 12, 2005 5



Deploying Hashes

S/MIME

• If the sender has more that one certificate, which should be used for
signing email?

• If you don’t have the receiver certificate, you have to use old
algorithms (but never use MD5 for signing)

• Eventually, switch to the newer algorithm as the default; users can
resend if needed (mail clients should cache such information)

• Multiple signatures are defined in the spec, but many
implementations won’t handle this case properly

• If you have the receiver’s certificate(s), use the newest algorithms
possible

• There is a proposed SMIMECapabilities certificate extension, but it’s
not yet standardized, let alone implemented

Steven M. Bellovin October 12, 2005 6



Deploying Hashes

TLS

• TLS server certificates are the most important case for upgrades

• Need TLS extension (or, possibly), overloaded ciphersuite for client
signaling to server

• Similarly, the server should be able to signal what client certificates it
can accept (though client-side certificates are rare)

• Other situations: RSA digital signatures in TLS use MD5
concatenated with SHA-1. Best option: have newer implementations
use the hash algorithm from the signer’s certificate

• Similar considerations for the TLS Finished message

Steven M. Bellovin October 12, 2005 7



Deploying Hashes

IPsec and IKE

• IKEv2 and IKE Main Mode have negotiation messages at the right
time, but there is no negotiation of certificate hash function or
certificate signature algorithms

• It is possible to overload the meaning one option to select hash
function

• IKE Aggressive Mode (which has four different variants) uses hash
functions before any negotiation

• In some situations, heuristics based on certificates can be used

• Possible practical solution: IPsec is used primarily in closed
environments

Steven M. Bellovin October 12, 2005 8



Deploying Hashes

Preliminary Analysis of DNSSEC

• Difficult, because no possibility of negotiation; server must send out
all possible signatures

• To guard against downgrade, the over-the-wire protocol is probably
sufficient

• The DS message should be overloaded to indicate which algorithms
should be expected

• This is a change in interpretation, and hence requires a new RFC and
code changes

• This will increase DNS message size

Steven M. Bellovin October 12, 2005 9



Deploying Hashes

Signature Algorithms

• Most of our analysis applies to signature algorithms, too

• Note that DSA can only be used with SHA-1

• Adapting to new signature algorithms is harder than new hash
functions, since the heuristics we sometimes suggest won’t work

Steven M. Bellovin October 12, 2005 10



Deploying Hashes

Estimated Conversion Timeline

1 year Design of new protocol features by the IETF
1-2 years Design, code, and test of new features by vendors
2-5 years Deployment by the user community — note that

many machines are never upgraded, merely
replaced

Standardization of a new hash function can proceed in parallel with
protocol redesigns. If a new hash technique requires a different API, it
may lengthen the design/code/test time.

Given the modest threat posed by collision attacks (except, of course, for
signed email), the speed of the upgrades may be driven by support for
ECC.

Steven M. Bellovin October 12, 2005 11



Deploying Hashes

Recommendations

S/MIME Support multiple signatures properly; stop using MD5; add
SMIMECapabilities certficate extension

TLS Add signaling for server and client certificates; change
digitally-signed element and Finished message definition

IPsec Add hash function signaling in the initial SA exchange

DSA Define DSA-2 or way to use DSA with other hashes

Vendors Add policy and preference knobs, for users and administrators

Steven M. Bellovin October 12, 2005 12



Deploying Hashes

Conclusions

• Agility is hard to get right unless you actually try deploying a new
algorithm

• All of the protocols we looked at need more work. Other protocols — ,
SECSH, OpenPGP, and more — should be examined by the
appropriate WGs.
☞ Most protocols need either an updated version or a BCP
describing how to manage the transition.

• Implementors need to think about it, too

• Most of our analysis applies to new signature algorithms

Steven M. Bellovin October 12, 2005 13


