Key Agility Requirements for IPsec

Steven M. Bellovin

smb@research.att.com

http://www.research.att.com/~smb

+1 973-360-8656

AT&T Labs Research

Florham Park, NJ 07932

How Important is Key Agility?

- We're now selecting AES how important is key agility?
- Some ciphers have very fast key setup time; others are slow.
- You can (somewhat) compensate for slow key setup by caching key schedules

Our Setup

- FreeS/WAN gateway at central site.
- FreeS/WAN "appliances in people's houses.
- /28 or /29 protected LAN on far side of appliance.

Methodology

- Capture packet headers on plaintext side of our IPsec gateway.
- Intuit SPI (and hence key) from remote address and knowledge of our addressing plan.
- Simulate an infinite-depth LRU cache.
- Calculate how many hits at each depth.
- Calculate cumulative hit rate for each depth.

Measurements

- 145 gateways; 300 different machines protected.
- More packets to the home than from it.
- Many more bytes to the home than from it.
- 406 bytes/packet downstream; 106 bytes/packet upstream.

Downstream Cache

10	9	∞	7	တ	б	4	ω	2	ㅂ	0	Depth
44887	58140	73355	92641	116415	149886	203250	298255	470323	712719	1791239	Packets
95.74	94.67	93.28	91.53	89.32	86.54	82.96	78.11	70.99	59.77	42.76	Cum. %

Upstream Cache

15	14	13	12	11	10	9	∞	7	တ	О	4	ω	2	\vdash	0	Depth
14680	18649	23835	30991	40071	50992	64991	81884	100418	120891	145346	175852	217387	269794	367564	942192	Packets
94.86	94.34	93.67	92.83	91.72	90.30	88.48	86.17	83.26	79.68	75.38	70.21	63.95	56.21	46.61	33.53	Cum. %

Conclusions

- For 80% hit rate, a cache size of 5 is needed for encryption. 8-element cache needed for decryption.
- For 95% hit rate, caches of 11 and 17 elements are needed.
- Smaller packet sizes upstream mean more free time for key setup.
- Difference probably due to delayed acks, smaller packets (and hence more interleaving), and maybe "packet trains" downstream.

