
Crypto	Agility:	
Research,	Industry,	and		
Policy	Implica:ons	

Steven	M.	Bellovin	
h@ps://www.cs.columbia.edu	

5/9/16	

1	



Algorithms	Age—Agility	is	Mandatory	
1996	 2016	 2036	

DES,	3DES	 AES-128	 AES-256?	–	but	are	there	
key	schedule	issues?	

MD5,	SHA-1	 SHA-2-256	 SHA-2-512?		SHA-3-512?	

RSA,	DSA,	DH	 ECDSA,	ECDH	 Post-quantum	algorithm	

5/9/16	

2	

You	can’t	flash-cut	the	Internet!	



Cryptography	is	Hard	
l  Ordinary	cryptographic	nego:a:ons	are	very	hard	to	get	right	

l  Agility	adds	new	failure	modes,	such	as	downgrade	a@acks	
l  Look	at	all	of	the	TLS	problems	stemming	from	the	need	for	exportable	ciphers	

l  Most	organiza:ons	won’t	get	it	right	

5/8/16	

3	



Nego:a:on	
l  Even	the	IETF	got	hash	func:on	nego:a:on	wrong	

l  The	IETF	is	probably	be@er	than	most	at	cryptographic	protocols	

l  Strong	recommenda:on:	most	companies	should	never	design	their	own	
crypto	agility	
l  Well,	or	any	other	part	of	the	crypto	

l  Corollary:	appropriate	organiza:ons	should	design	standard	nego:a:on	
toolkits,	APIs,	code,	etc.	
l  But—given	that	most	companies	shouldn’t	design	their	own	protocols,	does	this	
ma@er?	

5/8/16	

4	



But…	
l  There	are	a	few	situa:ons	that	demand	universal	compa:bility	

l  DNSSEC,	BGPSEC,	etc.	

l  Must	design	for	transi:on	

l  This	is	very	hard—if	nothing	else,	what	are	the	desired	seman:cs	of	dual-
mode?	

l  How	do	we	nego:ate	modes	of	opera:on?		Protocol	versions?	

5/9/16	

5	



Embedded	Systems	
l  Embedded	systems	have	an	upgrade	life:me	of	very	few	years	

l  The	vendor	moves	on	to	a	newer,	more	capable	system,	and	relies	on	the	newer	
capabili:es	

l  Some	systems	last	longer	than	the	embedded	cryptographic	algorithms	
l  Example:	cars	versus	hash	func:ons	

l  If	we	can’t	update	the	system,	how	can	we	add	new	algorithms?	

5/8/16	

6	



Upgrading	Algorithms?	
l  Is	it	possible	to	have	separate,	longer-lived	algorithm	updates?	

l  What	about	devices	without	easy	upgrade	paths?	

l  What	if	the	vendor	disappears?	

l  An	open	API	for	crypto	algorithm	updates?	
l  Note:	implies	the	need	for	variable-length	over-the-wire	fields	
l  Some:mes,	there	are	seman:c	issues,	e.g.,	authen:cated	encryp:on	versus	
separate	encryp:on	and	MAC	

l  Dynamic	downloads?		Crypto	via	downloaded	JavaScript?		How	is	this	protected?!	

5/8/16	

7	



Parameterized	Algorithms	
l  The	life:me	of	many	algorithms	can	be	extended	if	certain	parameters	can	be	
changed	or	increased	

l  Example:	a	higher	itera:on	count,	perhaps	different	S-boxes,	etc.	

l  Nego:ate	these	instead?	

l  Downgrade	a@acks,	correctness,	etc.,	are	s:ll	issues,	but		this	approach	might	
help	agility	for	embedded	systems	

l  Recommenda:on:	new	algorithms	should	be	tunable	this	way—but	are	there	
bounds?			
l  S:ll	need	variable-length	fields	

5/8/16	

8	



What	Algorithms	“Should”	a	Site	Use?	
l  Try	to	prevent	certain	downgrade	a@acks	

l  Is	it	possible	to	have	out-of-band	knowledge	of	a	site’s	“correct”	offerings?	
l  In	the	DNS?	
l  In	a	local	cache?	

l  How	can	a	site	change	that?		What	if	it’s	out	of	sync?	
l  You	never	want	the	same	data	in	two	places	

l  What	if	a	site	needs	to	roll	back	to	a	previous	system	version?	

5/8/16	

9	



Retrofits	
l  Out-of-band	knowledge	is	especially	important	during	transi:ons	

l  During	such	periods,	older	algorithms	will	s:ll	be	common—but	they	should	
be	avoided	if	possible,	because	they’re	probably	too	weak	

l  How	are	downgrade	a@acks	prevented	during	this	interval?	

5/9/16	

10	



Ratche:ng	Up	
l  At	some	point,	old	algorithms	should	no	longer	be	permi@ed	

l  The	same	is	true	for	too-small	parameter	values	

l  How	should	a	system	decide	when	the	“ratchet	point”	is	reached?	
l  Not	all	systems	will	have	knowledgeable	administrators	

l  When	it’s	reached,	weak	choices	must	be	permanently	disabled—a	site	
“ratchets	up”	
l  How	are	other	sites	told	that?	

l  Must	avoid	using	nego:a:on	to	weaken	crypto	

5/8/16	

11	



Undesirable	Algorithms	
l  Some	countries	insist	on	use	of	certain	algorithms,	presumably	because	
they’re	easy	to	crack	

l  Crypto	agility	makes	this	easier	

l  Backwards	compa:bility	is	some:mes	bug-wards	compa:bility—and	this	is	
exploitable	

5/9/16	

12	



Privacy	Impacts	
l  Some	solu:ons	affect	privacy	

l  Example:	how	does	a	client	publish	its	ratchet	point	without	a	sta:c	
iden:ty?	

l  Example:	If	an	embedded	system	dynamically	downloads	new	algorithms,	it	
reveals	what	it	is	doing	
l  What	if	some	porn	movie	requires	2718-bit	RSA	and	314-bit	AES?		Fingerprin:ng?	

5/9/16	

13	



Conclusions	
l  We	must	have	agility—it’s	a	fundamental	requirement	

l  New	algorithms	should	be	designed	for	agility	
l  Itera:ons,	field	sizes,	etc.	
l  Need	to	understand	(and	prove)	bounds	on	these	values	
l  Can	we	parameterize	modes	of	opera:on?	

l  Modes	of	opera:on	and	protocols	are	much	harder—long-term	research	at	best	

l  Data	structures	need	to	accommodate	this	

l  Agility	nego:a:on	must	be	protected	
l  And	must	be	privacy-preserving	

l  Research	is	needed	on	privacy-protec:ng,	secure	ratche:ng	

5/9/16	

14	


