
Moat: a Virtual Private Network
Appliance and Services Platform

John S. Denker, Steven M. Bellovin – AT&T Laboratories
Hugh Daniel – FreeS/WAN Project

Nancy L. Mintz, Tom Killian, and Mark A. Plotnick – AT&T Laboratories

ABSTRACT

We have implemented a system for virtual private networking, with special attention to the
needs of telecommuters. In particular, we used off-the-shelf hardware and open-source software
to create a platform to provide IP security and other services for in-home networks.

Our experience has taught us a number of things about the scalability of the FreeS/WAN
IPsec system, about the widespread mis-handling of path-MTU discovery on the internet, and
about the implications of tunnels on the basic architecture of the network.

Additional Keywords: VPN, Linux, Residential Gateway, MSS, fragmentation.

Overview

Extending the Network

Suppose we have some customers who are affili-
ated with a corporation1 that has a good local-area net-
work, possibly even a wide-area network. Further
suppose that there are secondary locations that have
not heretofore been served by the corporate network;
these could include the customers’ homes, or a small-
ish branch office, or whatever.

In many cases, linking the secondary location to
the corporate network is highly desirable. The cus-
tomers may use the secondary location in order to save
the time, money, and risk associated with commuting
to

Physically versus Virtually Private Networks

Over the years, we have used several different
methods for connecting the secondary location to the
main network.

One approach was to use a non-private network.
For example, the customers could use a local ISP to
establish a link from their PCs to the Internet. From
there, they could telnet to some corporate portal. This
has several drawbacks. For one thing, this simple con-
figuration exposes their PCs to attack from all the
hackers on the Internet. To fend off such attacks, they
would need some sort of firewall. Another drawback
is that there are multiple points where their data
(including sensitive information such as passwords)
could be read by eavesdroppers, and even possibly
altered in transit.

Another approach was to arrange it so that each
corporation’s data moved over physically separate
wires. This is sometimes called a Physically Private

1We will extend the term ‘‘corporation’’ to include univer-
sities, government agencies, and other such entities, even if
they don’t meet the precise legal definition of corporation.

Network. We found such systems to have many draw-
backs. Either the secondary locations needed to make
long-distance calls, or multiple strategically-placed
modem banks were required. Each modem bank
required an expensive dedicated ‘‘backhaul’’ link to
the main location. Furthermore, it is getting harder and
harder to physically protect such links against tamper-
ing.

Nowadays, the best approach in most cases is to
transform a non-private network into a virtually pri-
vate network (VPN) using software. The rest of this
paper is devoted to explaining how this is done.

Physical View

A typical telecommuting situation is shown in
Figure 1. (Many variations and extensions are possi-
ble, some of which will be discussed below.)

The networks drawn with double lines constitute
the private network. The objective is to give all
machines on the private network a reasonable degree
of protection against attacks coming from anywhere
outside.

In typical usage, a packet goes from one of the
clients on the in-home network, through the moat, via
the internet, through the security portal, to a host on
the corporate network. The moat and the security por-
tal are the primary subjects of this paper.

In Figure 1, if we dared to connect the client
machines directly to the internet (instead of going
through the moat), we would be exposed to all sorts of
attacks, including the following:

• For starters, a typical machine in our address
space is routinely attacked every couple of days
by probes looking for various well-known secu-
rity loopholes. Our cable provider filters out
attacks against the ms-networking file-sharing
ports; otherwise the number of attacks would
be even larger.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 251

Moat: a Virtual Private Network Appliance and Services Platform Denker, et al.

• Secondly, there is the possibility that evildoers
could compromise one of the routers or other
machines along the way.

• A relatively remote possibility is that a neigh-
bor could attack the signal on the neighborhood
cable. This is harder than you might think,
because of security features in the cable
modems. Each modem (unlike, say, an ethernet
tap) knows what IP addresses it is supposed to
serve, and is programmed to not pass traffic
intended for other modems. This is enforced
with weak link-level encryption.

Printer

UNIX
variant

. .
 .

other
clients

cable
modem

home
LAN

neighborhood
cable

neighbor

. . .

web host

other site

barbarians

moat
cable
modem

router . . .

security
portal

firewall

host 1

host 2

Internet
corporate
 network

Microsoft
 PC

Mac
router
(west)

router
(east)

Figure 1: Telecommuting Setup – Physical View.

Printer

UNIX
variant

. .
 .

other
clients

cable
modem

home
LAN

neighborhood
cable

neighbor

router . . .

web host

other site

barbarians

moat

router . . . router

security
portal

firewall

host 1

host 2

Internet
corporate
 network

Microsoft
 PC

Mac

virtually direct, private link

Figure 2: Telecommuting Setup – Virtual View.

There are two ways to look at how our system
protects the private networks. We begin by discussing
the physical viewpoint, as diagrammed in Figure 1.

On the home network, the client machines (the
PC, the Mac, etc.) are configured so that the moat is
their default router. When an IP packet (which we will

call a raw IP packet) from the client machine arrives at
the moat, it is encrypted. This encrypted data is then
encapsulated (‘‘put into an envelope’’) and sent via the
internet to the security portal at corporate headquar-
ters. The security portal removes the encrypted data
from the envelope, decrypts it, and sends the raw IP
data on its way via the corporate network.

Data flowing in the other direction is treated the
same way.

Because of this system, a hacker cannot deter-
mine the raw contents of the packets flowing between
the home LAN and the corporate network. Further-
more, the hacker cannot determine the identities of the
client machines or the corporate hosts, or even how
many of them there are. The only traffic that flows
over the public internet consists of packets from the
moat to the security portal and vice versa. All such
packets use IP protocol 50 (ESP, i.e., Encapsulated

252 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Denker, et al. Moat: a Virtual Private Network Appliance and Services Platform

Security Payload) so an attacker cannot even deter-
mine the IP protocols that the raw packets are using.

A typical machine on the public internet will
have no route to the client PC except through the cor-
porate firewall. Even if an attacker guesses that the
moat is in a position to forward traffic to the client PC,
the moat refuses to forward traffic that doesn’t come
from the corporate security portal.
Virtual View

Another way to look at this is the virtual view-
point, as diagrammed in Figure 2. It appears to the
users that there is a virtually direct, private connection
from the moat to the security portal.

Indeed, the traceroute command conforms to the
virtual view, reporting that there is a single hop
between the moat the the security portal, no matter
how many physical hops there are in Figure 1.

In the setup shown in Figure 2, the only way a
client machine can contact a server on the public inter-
net is to go out through the firewall at corporate
headquarters.2 In the other direction, a machine on the
public internet cannot initiate a telnet session to any
machine on the private network, because that is disal-
lowed by the corporate firewall.
Goals

This project began as a research project, but
quickly scaled up when a group within AT&T needed
a large number of VPN systems. They found out three
weeks before the deployment deadline that the com-
mercially available hardware and software systems
that they had expected to use were unreliable and/or
unavailable in sufficient quantity. Our main goals, in
approximate order of importance, were:

• available on time.
• reliable.
• suitable for a heterogeneous home network (not

just a single machine running windows 98).
• easy to install, administer, and manage.
• scalable (as discussed in section ‘‘Scalability

Issues’’).
• capable of matching the speed of the cable

modem.
• usable as platform for further research in net-

working and services, e.g., green light for alert-
ing for email).

• affordable.
• quiet (otherwise it will get turned off).
• physically small.

We met all these goals except that the moats in
the first batch were not quite as small as we wished.

Ingredients

Hardware
For the first-generation moats, we chose the fol-

lowing configuration:

2There are other ways to do this, as will be discussed be-
low, but this method is particularly easy to implement, and is
easily shown to be compliant with corporate firewall policy.

• Commercial off-the-shelf PC platform.
• No keyboard, no screen, and no video subsys-

tem.
• No sound subsystem and no CDROM drive.
• Two ethernet network interface cards.
• Minimal RAM (16 MB, which is about 2x

more than needed).
• Cheapest possible hard disk (4 GB, about 100x

more than needed).
• Cheapest possible CPU (K6, 300 MHz).
• Power supply with ultra-quiet fan.
• Floppy drive.
• Serial port.
• BIOS that is happy to boot with no keyboard or

video card.

We arranged with the PC manufacturer to have
the whole batch built with the desired software (listed
below) and our public keys pre-installed.

In the second-generation moats, we used an
LS-120 superfloppy in place of the hard disk and
floppy. Since the disk is used exceedingly rarely
(essentially for boot-up only), wearing out the disk is
not an issue.

Software

Running on the typical moat we have
• Linux – operating system.
• FreeS/WAN – IP security system.
• ssh – secure shell.
• configuration scripts.
• network monitoring scripts.
• dhcp client – to get the moat’s wild-side IP

address from the ISP.
• dhcpd* – to assign IP addresses to client

machines.
• xntpd* – time-of-day setting system.
• named* – Domain Name System secondary.

where the three services marked with (*) are accessi-
ble from the private-side interface (facing the in-home
network) and not from the wild-side interface (facing
the cable modem).

Xntpd is more important than you might think; it
allows the logfiles on the moat and the security portal
to be compared.

The reason why the moat provides DHCP and
DNS service on its own, rather than simply forwarding
such requests through the IPsec tunnel, is that we want
users to be able to use their in-home networks even if
the wide-area network is temporarily down.

Software for the moat is cross-compiled; that is,
the moat does not contain its own development envi-
ronment. On the machine where we do the compila-
tions, we rely on gcc and the gnu development tools,
and cvs.

It is also worth noting that the services listed
above are the only ones running. In particular the moat
provides:

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 253

Moat: a Virtual Private Network Appliance and Services Platform Denker, et al.

• no web server,
• no telnetd,
• no ftpd, and
• none of the basic inetd services. The moat liter-

ally will not give you the time of day (port 37).

Scalability Issues

A stated goal of the FreeS/WAN project is to
encourage very wide adoption of IP security. Simi-
larly, AT&T is committed to providing secure IP ser-
vice over shared media (e.g., cable modems) on a
large scale. To us, if it’s not scalable, it’s not interest-
ing.

Therefore it is not sufficient to have an IPsec
implementation that supports just a few tunnels per
portal, lovingly configured by an expert.

The system must be database driven, so that hun-
dreds or thousands of customers can be transferred
from one system to another, without requiring labori-
ous manual re-entry of data.

The system must not assume that the configura-
tion is known and unchanging. When you have hun-
dreds or thousands of tunnels per portal, something is
always changing.

At our behest, the FreeS/WAN team added many
‘‘scalability’’ features to the IPsec system. These
include:

• The system can add, delete, or reconfigure tun-
nels on the fly. The configuration file, which in
small-scale systems could be a single flat file,
implements an include directive which allows
us to implement a database with one record per
moat. Note that we are using the Linux direc-
tory/file system as our database, using one file
per record.

• If one of the tunnels cannot be brought up, the
system does not hang waiting for it, but goes on
to the next.

Configuration Procedure

Databases
We have a simple database that lists all the moat cus-
tomers. The key fields include

• the wild-side IP address (in case the ISP stati-
cally assigns one to this customer) or an indica-
tion that the wild-side address will be assigned
dynamically via DHCP.

• the range of private-side IP addresses (which
we assign arbitrarily).

• the email address to which we send the ‘‘wel-
come’’ message and instructions for configur-
ing the client machines.

We have a collection of shell scripts (about 1000
lines total) that extracts the required information from
the database and configures the moat. Without these
scripts the configuration would be quite laborious and
error prone. There are more than a dozen configura-
tion files that are affected.

Identification Without Static IP Addresses
The current versions of the FreeS/WAN IPsec

package provide only one way for a moat to identify
itself, namely, its wild-side IP address. This is a disas-
ter in cases where the ISP assigns a non-constant
address to the moat. To overcome this limitation, we
devised a complex procedure:

• The moat gets its wild-side IP address du jour
from the ISP via DHCP.

• The moat rewrites its IPsec configuration files
accordingly.

• The moat contacts the security portal using ssh.
Note that this does not require the IPsec tunnel
to be operational.

• The security portal infers the moat identifica-
tion based on what ssh key the moat presents,
and can see what IP address the moat is using.

• The security portal rewrites its IPsec configura-
tion files accordingly.

• Both sides bring up the tunnel using the new
configuration.

The IPsec RFCs envision other forms of identifi-
cation, such as using the Fully Qualified Domain
Name (FQDN) but they have not yet been imple-
mented in FreeS/WAN.

Comparison Against Alternatives

• We have seen hardware solutions that provide
features comparable to the moat, but they were
more than twice the price of the moat, and were
hard to administer.

• Our cable provider charges extra for more than
one IP address, and won’t provide more than
three IP addresses at any price. This affects all
VPNs implemented in software.

• We have evaluated software solutions. The
leading contender...

• is not reliable for windows 95. Even on
windows 98 it has been known to crash
in such a way as to wipe out your C
drive.

• is not available for non-microsoft sys-
tems.

• requires laborious and error-prone instal-
lation per PC.

• requires laborious re-configuration every
time the ISP changes the client’s wild-
side IP address. Note that some ISPs
change the IP address multiple times per
week.

• The microsoft implementation of PPTP has half
a dozen known security holes.

• We probably could have achieved comparable
results using other operating systems and/or
IPsec packages. There are so many of them that
we could not possibly evaluate them all.

Multiple In-Home Networks

In many homes, there are multiple computers,
and having them all connected to the same virtual

254 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Denker, et al. Moat: a Virtual Private Network Appliance and Services Platform

private network may not be the optimal configuration.
• For example, there may be kids in the house

who want to surf the internet. The kids have
their own computer(s) and should not be using
the corporate work-at-home computers.

• As another example, there may be two or more
adults with different employers, each of which
needs a separate VPN.

Printer

UNIX
variant

. .
 .

other
clients

cable
modem

home neighborhood
cable

neighbor

router . . .

web host

other site

barbarians

cable
modem

router . . . router

security
portal

firewall

host 1

host 2

Internet
corporate
 network

Mac

corporate LAN

moat

hubPC−a

PC−b

Figure 3: Multi-Net Hardware Solution.

Printer

UNIX
variant

. .
 .

other
clients

cable
modem

home neighborhood
cable

neighbor

router . . .

web host

other site

barbarians

moat
cable
modem

router . . . router

security
portal

firewall

host 1

host 2

Internet
corporate
 network

Mac

corporate LAN

PC−a

PC−b

Figure 4: Multi-Net Software Solution.

Brute-Force Solutions

Right now the kid-net feature can be imple-
mented as shown in Figure 3, where PC-a is connected
directly to the wild internet. The user puts a hub
between the moat and the cable modem, and arranges
with the cable provider to get N + 1 IP addresses (one
for the moat, plus one for each of the non-corporate
client machines). Typically the cable provider imposes
a modest charge for each additional IP address, and
some providers impose a limit of three IP addresses
per customer, or some other low limit.

A lame approximation of this feature can be
achieved without paying for a second IP address. You
take turns plugging the moat or the kids’ computer
directly to the cable modem. The cable modem must
be reset each time (because it otherwise remembers
the Media-Access address of the host to which it is
connected, and refuses to talk to any other host). Each
reset takes about three minutes. Sigh.
Moat-Based Solutions

A more-elegant solution to the same problem is
shown in Figure 4. The wild-side interface of the moat
is physically capable of accessing the entire internet.
We can put another connector on the moat, imple-
menting another subnet that the kids could use. An
advantage of this over the previous solution is that the
moat would offer this subnet some minimal firewall
service.

A similar solution, again employing multiple
interfaces on the moat, could provide for multiple
VPNs.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 255

Moat: a Virtual Private Network Appliance and Services Platform Denker, et al.

This is 100% possible in principle. Like many
things, doing it badly would be easy, but doing it well
is not so easy. With N interfaces on the moat, there are
N factorial paths that packets could take, most of
which are disallowed. For N > 2, a solution that pre-
serves security with high assurance would require
more careful work than we have yet been able to give,
so this is still in the experimental stage.

Distributed Firewalls
We now consider the internet connectivity of PC-

b as shown in Figure 4. This machine (unlike PC-a)
has access to the corporate VPN.

source

FW1 FW2 West East

Router

sink

internet tunnel

minimum MTU

Figure 5: Interior Minimum MTU.

Given a sufficiently fast link to the main corpo-
rate network, it works just fine for traffic between PC-
b and generic hosts on the public internet to go
through the corporate firewall. However, it would be
more elegant, and in some cases more efficient, if the
moat itself could implement corporate firewall policy
itself, and route such traffic to/from the internet
directly. This is discussed in [3].

Tunneling & Fragmentation

It is quite possible for a tunnel that is fully RFC-
compliant to be unable to interoperate with a very
large percentage of the sites on the internet, because of
fragmentation and MTU problems, as we now explain.

Keep in mind that the objective is reliable and
efficient communication. That’s all.

As a means to that end, it is better to send a
smaller number of large packets, rather than a larger
number of small packets. If a packet is fragmented in
transit and reassembled before delivery, it magnifies
the effect of packet loss in transit. That is because the
higher levels of the protocol, which are responsible for
retransmission, are forced to retransmit the whole
packet, not just the fragment that got lost.

Therefore it is sometimes true that the most-effi-
cient packet size is the largest size that can be trans-
mitted without fragmentation, i.e., the path MTU
(Maximum Transmission Unit). But this is not always
true, as discussed below.

As a means to attempt path-MTU discovery,
hosts often begin by sending large packets with the DF
bit set, and seeing if they get through. But remember
this trick is at least two assumptions removed from the

actual goal of reliable and efficient communication.
See http://www.ietf.org/rfc/rfc1191.html for details.

Many TCP clients (notably microsoft) make an
optimistic guess and set their initial MSS (Maximum
Segment Size) to the largest plausible value. This is
perfectly proper, and should typically result in effi-
ciency if other players do their part. This initial guess
is necessarily made with no knowledge of the actual
path-MTU.

The large initial MSS makes it likely that early in
the session, packets will be sent that exceed the MTU
of some router along the path – especially when there
is encapsulation going on at some point, such as an
IPsec tunnel. Remember that the MSS concept is
applicable at the TCP layer, while the MTU concept is
applicable at a much lower layer. The assumption that
an MSS of size X will correspond to an MTU of size
X + 40 is invalidated by the overhead bytes intro-
duced by the encapsulation.

Suppose an oversized packet (with the DF bit
set) arrives at a router. The RFC says ‘‘In this case the
gateway must discard the datagram and may return a
destination unreachable message.’’ Specifically this
message is ICMP type 3 code 4 and it explains that
fragmentation is needed and suggests a new packet
size. See http://www.ietf.org/rfc/rfc792.html for
details.

Note that the frag-needed messages are optional
according to the RFC.

We note that path-MTU discovery without them
is at best rather inefficient. But in real life, the situa-
tion is much worse than that. We observe that the vast
majority of the world’s web servers improperly
assume that the routers must return a frag-needed mes-
sage. The microsoft web site is one of the few that is
both efficient and robust. . . efficient in that it starts
out by sending large packets, and robust that it will
(even in the absence of frag-needed messages) reduce
its MSS if large packets don’t get through. See obser-
vations section below.

There are some firewalls (the Firewall-One
brand in particular, and quite likely others) that in their
usual configuration do not pass the ICMP frag-needed
datagrams. We consider this a weakness in the fire-
walls. This is a pain in the neck to fix, but overcomes

256 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Denker, et al. Moat: a Virtual Private Network Appliance and Services Platform

the naughty behavior of about half the world’s web
sites; see details below.

What’s much much worse is that the persons
administering typical IPsec tunnels cannot in general
fix the frag-needed problem by fixing their own fire-
walls. Consider the situation shown in Figure 5, where
there is a tunnel between West and East. Suppose you
control FW2 and everything to the right thereof,
whereas FW1 and everything to the left thereof belong
to somebody else like aol.com.

Site MTU Observation

www.microsoft.com efficient and robust; large initial MSS but notches down
www.ibm.com inefficient: always requests a small MSS
www.snap.com inefficient: always requests a small MSS
www.toad.com inefficient: never sets DF, always sends small packets
www.sandelman.ottawa.on.ca inefficient: never sets DF, always sends small packets
www.hotbot.com semi-naughty: eventually reduces MSS, but is horribly slow about it
www.netscape.com naughty
www.altavista.com naughty
www.yahoo.com naughty
www.clinet.fi naughty
www.sgi.com naughty
www.psi.net naughty
www.cygnus.com naughty
www.quintillion.com naughty
akpublic.research.att.com naughty
www.aol.com incorrigible
www.intel.com incorrigible
www.compaq.com incorrigible

Table 1: MTU bug observations.

It appears that something like 15% of the server-
sites in the world assume that there will be ‘‘no inte-
rior minima’’ in the MTUs along a path. They create
their own black hole, and then improperly fail to per-
form black-hole detection. Your clients will hang
when trying to contact such servers, and there ’s
almost nothing you can do about it.

Similarly it appears that more than half of the
world’s sites improperly require the frag-needed mes-
sages when there are interior minima.

Note that a verrrry large fraction of the world’s
clients blissfully (and properly!) negotiate for the
biggest MSS they can get.

Finally note that we want the tunnel to interoper-
ate with the world as it actually exists. This is a
stricter requirement than merely complying with the
RFCs.

Therefore our policy is to have the tunnel imple-
ment a virtually-large MTU. This will in some cases
require that packets (with DF set) that arrive at one
portal (West) be encapsulated in multiple envelopes.
When these envelopes arrive at the other portal (East)
they will be re-assembled so that an unfragmented

packet can be sent on its way toward the final destina-
tion (sink).

This policy comes as a shock to some people,
because it eliminates any possibility of the source/sink
pair being able to discover the effective MTU of the
path inside the tunnel. However this is the way it has
to be. Suppose for instance that the path inside the tun-
nel had (at the real-IP level) an MTU equal to the
smallest permissible internet packet. If we tried to
force the incoming raw packet to be sent in a single
envelope, there would be no room for the encapsula-
tion header overhead, and therefore no connectivity at
all. An extreme way to make the same point is this:
suppose we are sending IP over ATM, which uses
48-byte packets. Setting the DF bit cannot possibly
prevent fragmentation of the IP packet into multiple
ATM cells.

The basic, essential function of the DF bit is to
ensure that packets that leave the source with the DF
bit arrive at the destination in one piece. This is impor-
tant, because not all hosts are capable of reassembling
fragments. Note that any packets that are fragmented
on entrance to the tunnel are reassembled upon exit,
thereby upholding this essential meaning of the DF
bit.

Note that this virtually-large MTU is consistent
with the fact that (at the abstract level) there is only
one hop between the two ends of the tunnel (as
reported by, e.g., traceroute) no matter how many hops
there are (at the real-IP level) inside the tunnel.

This inability of the endpoints to discover the
MTU of the tunnel will in some cases lead to reduced
efficiency. In our application (and we believe in most
applications) this inefficiency is vastly preferable to

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 257

Moat: a Virtual Private Network Appliance and Services Platform Denker, et al.

the alternative, which is complete inability to reach
incorrigible sites such as aol.com and intel.com.

Observations
Terminology: ‘‘naughty’’ means the server site

(meaning the source/FW1 combination) does not
recover properly when we start out with an MSS that
cannot be supported by the actual path-MTU, unless
an ICMP frag-needed message is emitted by FW2.
Similarly ‘‘incorrigible’’ means that it does not
recover even if the frag-needed messages are being
generated and passed by FW2; presumably they are
being blocked by FW1 or some such.

Table 1 gives a partial list of servers we’ve
checked.
Summary: Tunnel MTU

• There are lots of firewalls out there that eat
ICMP.

• There are lots of naughty sites out there that act
as if gateways must generate frag-needed mes-
sages, even though the RFC doesn’t require it.

• There are more than a few incorrigible sites out
there which (perhaps because of their own fire-
walls) don’t do the right thing even when frag-
needed messages are being sent toward them.

• There are clients (notably microsoft) that nego-
tiate for the largest possible MSS. The source
and sink make an initial guess based on infor-
mation about the MTU of the first link at each
end of the path, but they have no initial knowl-
edge of the real path-MTU. This behavior
appears to be fully compliant with the RFCs.

• The foregoing can be summed up as follows:
many sites make the implicit, improper
assumption that the path will have no interior
minima.

• Tunneling software is quite likely to break that
assumption.

• In special cases, it may be possible to get
enough control over the clients so that the tun-
nel can advertise its real MTU, thereby gaining
efficiency . . . but this cannot be the default.

• More generally, to achieve a good level of
interoperation with the world as it exists, warts
and all, a tunnel needs to have a virtually-large
MTU.

Routing

The main points of this section are:
• Every portal is a router, and needs to act like

one.
• The existence of tunnels requires us to re-think

basic internet architecture.

Before explaining these points, we must distin-
guish a couple of concepts: The kernel (Linux in this
case) implements a ‘‘kernel routing table’’. This
allows packets within a given host to be routed to the
correct interface (eth0, eth1, et cetera). Given a prop-
erly set up routing table, the host can function as a
gateway, so packets that come in on one interface can

be forwarded to another. We will call this level of
functionality a micro router.

A fully-featured internet router requires other
functions. It needs to run a program such as routed(8).
That is, it needs to send and receive routing messages,
so that it and its peers can keep their routing tables up
to date in the face of ever-changing network connec-
tivity. A host with this level of functionality we will
call a macro router.

Layers of Routing
Next, we must distinguish three or four levels of

routing that must occur:

First, there is routing that occurs well below the
IPsec layer. Consider the routers shown in Figure 1.
They must maintain their routing tables to reflect the
routes that connect them. This occurs at the raw-IP
layer, and the portals at the ends of the IPsec tunnels
generally do not and cannot know anything about this.

Next, there is routing that should occur below the
IPsec layer but which is actually done at the IPsec
level. The current FreeS/WAN implementation does
not trust the kernel routing tables to send the IPsec
traffic over the right route. Therefore, as part of the
IPsec configuration, FreeS/WAN must be told about
the ‘‘next-hop’’ router. That is, in Figure 1, the moat
must be told the IP address of the ‘‘west’’ router, and
the corporate security portal must be told the IP
address of the ‘‘east’’ router.

Next, there is routing that must occur at the IPsec
layer. The linux 2.0xx kernel routing mechanism can
only route traffic based on the destination IP address.
However, the IPsec specifications require that deci-
sions about how to encrypt, and how to route traffic,
must be made on an assortment of ‘‘selectors’’ includ-
ing destination address, source address, protocol type,
et cetera. The current version of FreeS/WAN only
implements the source and destination selectors.

Another type of routing occurs at or above the
IPsec layer. This occurs when a given host has more
than one tunnel that serves the same subnet. In Figure
1, imagine that there were redundant security portals
on the corporate wide-area network, located at a num-
ber of different sites. The IPsec implementation on
the moat would need to choose which of these tunnels
to use. This decision would be based on information
from lower protocol layers, i.e., how efficiently each
tunnel can carry traffic, whether it is up at the
moment, et cetera.

Finally, there is routing that must occur above
the IPsec layer. A portal creates a route to the
machines on the far end of the tunnel. In general, the
portal should act like a macro-router; i.e., it should
advertise this route. For instance, in the case of multi-
ple portals just described, hosts and routers on the cor-
porate network would have a choice of which portal to
use when sending traffic to the moat. This would
depend not only on the efficiency of the tunnel (once

258 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Denker, et al. Moat: a Virtual Private Network Appliance and Services Platform

the traffic reached the portal) but on how efficiently a
given host could reach a given portal.

The current version of FreeS/WAN cannot han-
dle redundant tunnels. It does not perform high-level
macro-routing (i.e., advertising its routes). It does not
gracefully handle low-level macro-routing (e.g.,
changes in the address of the ‘‘west’’ router). These
are hard problems, and are very high on our wish-list.

Grand Implications

Consider the following chain of implications:
• There are many good reasons to widely deploy

IPsec.
• IPsec requires tunneling. This is the first good

reason for really wide application of tunneling.
• The existence of tunnels requires a re-think of

the basic design of the internet.

The existing procedures for macro-routing do not
appear to scale very well. There are too many routes,
and too many updates to the routing tables.

The deployment of large numbers of tunnels
could greatly increase the number of routes. This can
be expected to put additional stress on the routers.

Furthermore, we must examine the notion that
the tunnel is layered on top of the raw-IP link. Link
failures break this notion, cutting across the layer
boundaries. If (in Figure 1) the route from ‘‘west’’ to
‘‘east’’ changes, that’s no big deal, but if ‘‘west’’
totally loses its connection to ‘‘east’’, then the moats
(possibly a very great number of moats) must be noti-
fied.

The technique of sending routine enquiries
(‘‘keep-alive’’ messages) to check on the health of a
path scales exceedingly poorly. If every endpoint of
every conversation tried to do this, very soon the
entire bandwidth of the net would be used for keep-
alive messages. A better strategy is for each node to
keep track of the health of its immediate neighbors.
Then, if there is an outage, it can send appropriate
notifications using higher-level protocols.

The present situation has at some interesting
upsides. For example, the IPsec header contains a
sequence number. If packets arrive out of sequence, it
is a sensitive indicator of loss – more sensitive than
the sequencers built into the higher-level protocols.
Having a good loss indicator is very important, since
loss is practically the only usable indicator of conges-
tion.

It may be possible to exploit this and other prop-
erties of the IPsec protocol to solve some problems.
Since the IPsec protocol is not 100% set in stone at
this point, we have what may be a once-in-lifetime
opportunity to design in additional features to solve
important problems that heretofore seemed only tan-
gentially (or less) related to the basic objectives of
IPsec.

Other Lessons Learned

• Until recently, the ethernet drivers for Linux
were quite intolerant of small variations in the
ethernet cards. We found many cases where a
driver worked OK with a name-brand card, but
failed miserably with clones, even clones that
work perfectly well under MS windows.
Furthermore, we found that even with name-
brand cards, many of the drivers failed under
high-load conditions. This was particularly seri-
ous because the FreeS/WAN Linux-IPsec sys-
tem appears to stress cards and drivers in ways
that ordinary network traffic does not.
Recent drivers seem much better behaved.

• Linux is remarkably vulnerable to having its
power turned off when the filesystems have not
been cleanly unmounted.

Since the moat has no screen or keyboard, a
filesystem inconsistency that cannot be fixed by
‘‘fsck -a’’ or other automatic procedure inca-
pacitates the system totally and permanently.
We fixed this by mounting a ramdisk on /, mak-
ing /usr read-only, and arranging that if /var
fails fsck, it is restored from a read-only
backup.

• In the home environment, people are quite
intolerant of machines with noisy fans.

Performance

The round-trip ‘‘ping’’ time between a typical
client machine and a typical host on the corporate net-
work is routinely less than 25 milliseconds for short
packets and less than 85 milliseconds for 1400 byte
packets. Almost all of this time is attributable to the
link between the moat and the security portal at the
real-IP level; the encryption and encapsulation takes at
most 1 ms for the short packets and at most 15 ms for
the long packets.

On a laboratory link with negligible delay at the
real-IP level, the system is observed to sustain a
throughput of 6.9 megabits per second. This is at or
near the limit imposed by the CPU cycles required to
perform the triple-DES encryption of the data stream.

Hardware reliability has been good. During
roughly 2000 moat-weeks of operation, we have not
had any failures in the field except for one case where
it appears the cable modem and moat were destroyed
by a lightning strike, one hard-disk crash, and one
transient outage attributed to overheating in an un-air-
conditioned location in midsummer.

Software reliability has been good. We discov-
ered one race condition that would cause a tunnel to
fail with a probability of about 0.1% per day per moat.
The FreeS/WAN authors quickly fixed this. The only
large-scale outage resulted from a failure of syslogd of
all things, due in turn to the Linux kernel’s highly sub-
optimal implementation of fsync(). It uses an N2

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 259

Moat: a Virtual Private Network Appliance and Services Platform Denker, et al.

algorithm, which cannot keep up when the log file
gets too big.

Far and away the biggest performance problems
are at the raw-IP layer. Remember, IPsec is layered on
top of raw IP. If the lower layer is broken, there’s not
much the higher layers can do about it. We have
learned that it is important to give the users (and sup-
port staff) enough access to the various layers that,
when there is a problem, they can tell whether it is the
raw-IP layer or the IPsec layer that needs attention.

Conclusions

• Our customers have been delighted with their
moats. The combination of moat and cable
modem gives the in-home LAN such good per-
formance that customers usually find it indistin-
guishable from being at work.

• Our system administrators have been very
happy with the moats, because they are more
reliable and easier to administer than the alter-
natives.

• Using off-the-shelf hardware allowed us to
meet a very tight time schedule at a very rea-
sonable price.

• Using open software was a real joy. When
things go wrong, you can fix them. When you
want to add features, you can just do it.

• Our experience with the moats has given us a
much greater understanding of which features
are needed in an in-home service platform.

Acknowledgements

We are profoundly grateful to the authors of
FreeS/WAN and the software mentioned in the ‘‘Soft-
ware’’ subsection. Other folks who have made impor-
tant contributions to the moat project include Norm
Schryer, Sharon Gray, Sam Alexander, and Steven
Gao.

References

[1] Technical information on IPsec can be found at
http://www.ietf.org/rfc/rfc2401.txt and references
therein.

[2] The FreeS/WAN home page is at http://www.
xs4all.nl/˜freeswan and includes links to detailed
documentation.

[3] Distributed Firewalls by Steven M. Bellovin,
http://www.research.att.com/˜smb/papers/distfw.ps .

260 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

