
Privacy-Enhanced Searches Using Encrypted Bloom Filters

Steven M. Bellovin
smb@research.att.com

AT&T Labs Research

William R. Cheswick
ches@lumeta.com

Lumeta

Abstract

It is often necessary for two or more or more parties that
do not fully trust each other to selectively share data.
We propose a search scheme based on Bloom filters and
Pohlig-Hellman encryption. A semi-trusted third party
can transform one party’s search queries to a form suit-
able for querying the other party’s database, in such a
way that neither the third party nor the database owner
can see the original query. Furthermore, the encryption
keys used to construct the Bloom filters are not shared
with this third party. Provision can be made for third-
party “warrant servers”, as well as “censorship sets” that
limit the data to be shared.

1 Introduction

It is often necessary for two or more or more parties that
do not fully trust each other to selectively share data. For
example, two intelligence agencies may wish to let each
other query their databases, while only disclosing clearly
relevant documents to the other party. Even then, there
may be be restrictions that must be observed.

Assume there are two principals, a querier and an infor-
mation provider. Ideally, we would like the following
properties to hold:

a. The querier gains no knowledge of the contents of
the provider’s database, except for documents that
are matched by valid queries.

b. The provider gains no knowledge of the contents of
the queries; if possible, that should include infer-
ences based on the documents retrieved.

This is a draft paper and should not be mirrored or
archived.

c. An independent party may restrict the set of legiti-
mate queries.

d. No third parties may gain any knowledge of the
queries or the documents.

Conventional search techniques do not have these prop-
erties. We propose a new scheme that does satisfy our
requirements, based on encrypted Bloom filters [1].

We will often speak of some party’s “filter”, in the sin-
gular. While that will sometimes be the case, in gen-
eral each party will have very many filters, one per doc-
ument. In addition, there may be “union filters” for
distinct collections of documents, or for optimization
in searching. Fundamentally, little of that matters for
our purposes, though we do discuss some aspects of
this. When we say “search Bob’s filter”, we really mean
“search all of the Bloom filters owned by Bob and pro-
tected by his key”. In some situations, such a search can
be optimized; in other cases, it cannot.

It should be emphasized that our scheme is not a total so-
lution to the problem of information sharing. Just know-
ing that someone has some information on a topic is use-
ful. Indeed, an absence of public discussion has been
useful; in 1940, the lack of American publications on
nuclear physics persuaded the Soviets that atomic bomb
research was under way [2].

We are concerned with solving one problem: provid-
ing a controlled way for one party to learn something
about documents owned by others, without disclosing
the query. Exactly what happens next will vary, depend-
ing on the circumstances; we outline a few possibilities,
but we emphasize that there are many more ways matters
can proceed from that point.

Section 2 reviews the basics of Bloom filters. Section 3
explains encrypted Bloom filters, and shows how to use
Pohlig-Hellman encryption to satisfy one of our require-
ments. Further privacy-protecting enhancements are dis-
cussed in Section 4.



From there, we move to more practical concerns. Sec-
tion 5 shows how a semi-trusted third party can be pro-
vided with certain special keys, while never having any
keys to permit decryption of messages. Section 6 dis-
cusses system design considerations for this work. We
conclude with a discussion of related work and some fi-
nal thoughts.

2 Bloom Filters

A Bloom filter is a very efficient way to store informa-
tion about the existence of a record in a database. It
is susceptible to false positives, but the probability of a
false positive can be made as small as desired.

A Bloom filter is an array B of m bits, initialized to
zero. It requires a set of n independent hash functions Hi

that produce uniformly distributed output in the range
[0,m − 1] over all possible inputs.

To add an entry W to the filter, calculate

b1 = H1(W )

b2 = H2(W )

. . .

bn = Hn(W )

∀i, 1 ≤ i ≤ n, set B[bi] = 1

To check if W is in the database, the same bi are calcu-
lated and bits B[bi] are examined. If any of the bits are 0,
the entry does not exist; if all are 1, the record probably
does exist.

The values for m and n are dependent on the number of
records to be indexed and on the desired upper bound on
the false positive rate; see [1] for details. If, as suggested
there, we pick m and n so that approximately half the ar-
ray is populated, the false positive rate is .5n. But these
parameters are not particularly important to this work,
and will not be discussed further here. (Some consider-
ations relating to the density of 1 bits are discussed in
Appendix B.)

3 Queries with Encrypted Bloom Filters

3.1 Group Ciphers as Hash Functions

To produce an encrypted Bloom filter, we use an encryp-
tion algorithm for our hash functions. For example, we
could define

Hi(W ) = {W}ki

or
Hi(W ) = {W‖i}k

where {X}k denotes the encryption of plaintext X using
key k. This would be expected to work well, as modern
cryptosystems are designed to produce uniformly dis-
tributed pseudo-random output across the range of input
space. In fact, a usual criterion (besides unpredictability
– a sin qua non for encryption!), changing one input bit
should change approximately half of the output bits.) A
Bloom filter scheme using encryption for hash functions
has been described by Goh [3].

But that requires distribution of the ki to all parties,
which does not meet one of our original goals. Instead,
we use a specialized form of encryption function where
operations can be done on encrypted data. In particu-
lar, we will employ a cipher that forms an Abelian group
over its keys when encrypting any given element. More
formally, we employ a cipher such that for all encryption
input values W , the set of all keys k forms a group under
the operation composition of encryption of W .

Groups are closed, so

{{X}k}j = {X}j◦k

for all j and k and some operator ◦. Such encryption
algorithms are not common; indeed, for at least one
purpose—enhancing security via iterated encryption—
they are undesirable. But at least one such algorithm
exists.

Suppose that Alice wishes to query Bob’s Bloom filter
(or Bloom filter collection) for some word W . Using
her Bloom filter key kA, she calculates VWA

= {W}kA
.

She then sends VWA
to a semi-trusted third party Ted.

Ted does not know any keys ki; however, for each pair i
and j, he knows

ri,j = kj ◦ k−1

i

Note that k−1

i must exist if the cipher is indeed a group.



Ted then uses rA,B to transform VWA
into VWB

:

{W}KB
= {VWA

}rA,B

= {{W}kA
}rA,B

and returns that to Alice. Alice then sends this value to
Bob, and receives in return a bit vector with the answer.
Thus, Alice can query Bob’s database without disclosing
the query and without knowing Bob’s key.

3.2 Using Pohlig-Hellman Encryption for
Bloom Filters

In Pohlig-Hellman encryption [4], we encrypt under key
k by raising the message to the kth power modulo some
large prime p:

{X}k = Xk mod p.

The key k must be relatively prime to p; we achieve that
by choosing p to be a prime of the form 2p′ + 1 where
p′ is also prime, and mandating that all keys be odd and
not equal to p′. In addition, given that xp−1 = 1 mod p
(see, for example, [5]), we restrict keys to be less than
p − 1, and do all exponent arithmetic modulo (p − 1).

The decryption key d is chosen such that kd ≡ 1 mod
(p − 1); d can be calculated efficiently by Euclid’s Al-
gorithm.

Pohlig-Hellman encryption is an Abelian group; a proof
is sketched in Appendix A.

Suppose that we have {X}k and wish to produce {X}j .
Let r = j ·k−1 mod (p− 1), where k−1 is the is the de-
cryption key corresponding to k, i.e., the multiplicative
inverse of k mod (p − 1). Then

{{X}k}r = (Xk)r mod p

= Xkr mod p

= Xk·j·k−1

mod p

= Xk·k−1
·j mod p

= ({X}k)k−1
·j mod p

= ({{X}k}k−1)j mod p

= Xj mod p

= {X}j

Pohlig-Hellman encryption is expensive, since it re-
quires exponentiation modulo a large prime p. But such
encryption naturally produces a large output value. We

can use that to generate our entire family of hash val-
ues. If B is m bits long, we use successive chunks of
length dlog

2
me bits for our different hash values. For

security, p will be at least 1024 bits long. If we want
a false positive rate of less than 10−6 ≈ 2−20—much
higher than is commonly necessary—we need 20 hash
functions, which means that our bit array can be 250 bits
long—far more than enough.

3.3 Encrypted Values and Hash Sets

A set of hash values bi can be represented in two differ-
ent ways: as the result of the Pohlig-Hellman encryption
(which will will designate as PH form), in which case it
is a single, large number, or as a set of Bloom filter in-
dices. Both representations can be used; however, they
are not equivalent.

As shown above, it is easy to transform an encryption
value into a set of indices; the inverse transformation is
not possible, because information, and in particular the
ordering, is lost.

Note also that the values and the ordering of the differ-
ent bi for a given W will differ for different values of
k. We illustrate this by a toy Pohlig-Hellman cipher us-
ing modulus 65267, and extracting 4-bit chunks as our
indices.

If we encrypt 42 with k = 537, we get 19648, or
4CC016, yielding an index set of {0, 4, 12}. (Since these
values are indices, we’ve sorted the set and suppressed
duplicates.) Encrypting 42 with a key of 17 yields 6362,
or 18DA16, for a key set of {1, 8, 10, 13}.

Consider again the ciphertext 4CC016. If we re-encrypt
that with k = 31 — which is equivalent to encrypting
42 with k = 537 · 31 mod 65266 = 9129 — we get
385B16. But if we change even a single bit of the input
value — say, to 4CC116 — and encrypt with k = 31, we
get the very ciphertext different F95916.

This is not surprising for an encryption algorithm, of
course, but it underscores an important point: the indi-
vidual segments of a PH number cannot be manipulated
individually. PH values can only be manipulated arith-
metically and as a whole, such as by transformation into
the corresponding PH value for another key. When in
set form, the usual set operations of union and intersec-
tion can be performed, but one cannot switch back to the
arithmetic domain. As is discussed in the following sec-
tion, we will use the different forms in different places.



4 Enhancing Security

4.1 Salts

The scheme as presented has a number of deficiencies.
If nothing else, Bob knows kB and can decrypt VWB

to learn W . We can prevent that easily enough by first
calculating W ′ = G(W ), where G is a cryptographic
hash function. That has the added benefit of expanding
the query word, thus turning it into a better base for the
exponentiation.

Even with that, Bob can do a dictionary attack on W ′

to learn what Alice is looking for. This is especially
easy for successful queries, since by definition Bob has
already created entries for W ′ in his Bloom filter. We
solve this by “salting” the query. We can do this in two
ways, by modifying the Bloom filter-specific query or by
including dummy words.

The first is superficially the most appealing. As before,
Alice sends Ted an encrypted query, in PH form. Ted
performs the transformation to Bob’s key, and converts
the transformed value to set form. This set is modified
by deleting some entries, leaving n′ valid ones, and add
in some other set of random values. Ted knows which
the random values are, and can ignore the response val-
ues for them. While deleting some valid indices will
increase the false positive rate, if n is large enough that
issue can be minimized.

The problem is that there is still information leakage. A
successful query will match n′ of the n bits belonging
to the target word; if Bob has an inverted index of the
Bloom filter, he can see what the query word is, because
it will be the only one with a high hit count. Alice’s
defense is to ensure that some other word or words have
similarly high hit counts.

If we use random values for our extra indices, we need to
calculate how many extra indices must be used to ensure
a reasonable probability of other words matching. Intu-
itively, it is reasonably clear that a signficant number of
extras are necessary, since each word is associated with
only n bits, and n � m. In fact, the scheme probably
will not work in practice. A more detailed quantitative
analysis, presented in Appendix B, shows why it fails.

The second technique is simpler: salt the query by se-
lecting other, uninteresting words that are likely to be
in Bob’s database. The danger would be in correlations
unknown to Alice; the dummy words may select the

polonium 0, 1, 2, 10, 13, 47
oralloy 10, 15, 16, 26, 35, 43
beryllium 4, 6, 10, 18, 18, 20
neutron 0, 2, 11, 25, 41, 43
Goldschmidt 1, 16, 19, 28, 42, 44
Kistiakowsky 4, 4, 10, 14, 36, 44
Meitner 12, 13, 22, 25, 27, 36
Szilard 11, 16, 33, 38, 43, 43

Figure 1: A sample Bloom filter of 48 elements; each
search word has six bits set. The collisions within some
search terms are an artifact of the small size of this filter.

same documents as the target words. Furthermore, over
a series of several searches, the dummy words should
fit some recognizable pattern: given two query sets of
miniskirt, poodle, uranium, houndfish and plutonium,
privacy, cotton, snake it would be pretty clear what the
topic of interest was.

Both problems are illustrated by the sample Bloom fil-
ters shown in Figure 1. A query for, say, “polonium”
would generate a vector of 0, 1, 2, 10, 13, 47; if we used
a query size of four elements, all four entries would, of
course, select 1 bits in the filter.

Suppose, though, that we sent the random entries 8, 12,
17, 27, 30, 37, 42, and 47 as well. Looking at the inverse
map (Figure 2), we see that “Meitner” has a hit count of
two and “Goldschmidt” a count of one; “polonium”, at
four, would stand out as the real query.

On the other hand, a real use of this technique would
be looking for certain documents in a large set; some-
one unaware of the history of fission weapon design [2]
might not realize that most documents containing the
word “polonium” would also contain the word “beryl-
lium”. Bob might not know which term was really of in-
terest; it almost doesn’t matter, since either might reveal
the questioner’s real intent. Still, this is the best option,
especially because the connection between the two is not
symmetric: in this particular example, there are likely to
be many documents with the word “beryllium” but not
“polonium”.

The remaining question here is who should generate the
dummy query terms. Ted cannot; he does not have a
Pohlig-Hellman key that can be transformed to Bob’s
key. Bob cannot, since he could easily detect use of
his own dummy words. That leaves Alice, which im-
poses a knowledge requirement on her: she needs to
know enough about Bob’s database to generate plausi-
ble dummy words.



0 polonium, neutron
1 polonium, Goldschmidt
2 polonium, neutron
4 beryllium, Kistiakowsky
6 beryllium
10 polonium, oralloy, beryllium, Kistiakowsky
11 neutron, Szilard
12 Meitner
13 polonium, Meitner
14 Kistiakowsky
15 oralloy
16 oralloy, Goldschmidt, Szilard
18 beryllium
19 Goldschmidt

20 beryllium
22 Meitner
25 neutron, Meitner
26 oralloy
27 Meitner
28 Goldschmidt
33 Szilard
35 oralloy
36 Kistiakowsky, Meitner
38 Szilard
41 neutron
42 Goldschmidt
43 oralloy, neutron, Szilard
44 Goldschmidt, Kistiakowsky

Figure 2: An inverse filter, showing the words that map to each bit.

Note that if Alice issues many queries, the dummy el-
ements must be consistent each time. Put another way,
telling a consistent set of lies is hard.

4.2 Warrant Servers and Censorship Sets

Under certain circumstances, it may be desirable to re-
strict the scope of some queries. For example, a po-
lice officer pursuing an investigation may be restricted
to query terms listed in a warrant. Similarly, there may
be some queries that Bob will answer for, say, Carol but
not Alice. We can solve these problems with warrant
servers and censorship sets.

A warrant server is another party to the dialog. T trans-
forms all queries to the warrant server’s key. The war-
rant server also needs to have some authoritative knowl-
edge of the permissible terms, encrypted under its own
Pohlig-Hellman key; there are many obvious ways to ac-
complish this, including digitally signed warrant mes-
sages and local copies of authoritative databases. Re-
gardless, the warrant server deletes from the query all
impermissible terms and sends the result back to T for
transformation to B’s key.

Note that the warrant server never sees the plaintext of
any query terms. These are agreed upon offline, and are
encrypted by the warrant authorizer (e.g., a judge). The
warrant server performs its operations on the encrypted
form of the query.

B’s censorship set is now applied. Any terms that Bob
will not permit Alice to query are now deleted. The re-

sulting query is then salted and sent along to B.

Note that both warrant servers and censorship sets are
specific to both the source and the destination of the
query. Alice may be allowed to ask different questions
of Bob than of Carol; similarly, Bob may be willing to
disclose more to one than to the other.

4.3 Index Servers

Another approach to protecting queries is to use “in-
dex servers”. Bob sends his Bloom filters to an index
server; each document is tagged with an opaque name.
As before, Alice sends her queries to Ted; Ted trans-
forms them to Bob’s key. Instead of being routed to
Bob, though, they’re sent to the index server. The in-
dex server performs the Bloom filter matches and sends
back the document names. Alice (or Ted) can then ask
Bob for these documents.

The advantage of this scheme is that Bob never sees the
queries, and hence cannot perform any sort of guessing
attack. The index server doesn’t know Bob’s key, and
hence can’t build a dictionary. Dummy queries may still
be necessary if Alice wants to prevent Bob from even
knowing the topic of the investigation.



5 Provisioning Pohlig-Hellman Encryp-
tion Transformation Keys

We must now consider how to store the necessary r val-
ues in T . The exact mechanisms will vary for different
encryption algorithms; here, we take advantage of the
mathematical tractability of Pohlig-Hellman encryption.

We have a set of queriers/publishers, Q. While not ev-
eryone will publish data and not everyone will query for
data, both types need keys kq; accordingly, we treat them
the same way.

As noted, the relationship between the keys needs to be
known. While this could be done by having all q ∈ Q
send their keys to the trusted party T , this would create
a security risk if T were not fully trustworthy. A sim-
ple, but not altogether satisfactory, alternative is to have
a second trusted party, T ′, which calculates the ri,j and
sends the to T . If T ′ is not part of subsequent conversa-
tions between the q and T—this can be ensured by con-
ventional cryptography—there is no ongoing risk. This
scheme will work for all group ciphers. But the presence
of many keys in one place is worrisome. Instead, we use
a blinding mechanism.

To calculate the ratio rb,a between two keys ka, kb,
a, b ∈ Q, both A and B set up a secure channel to T .
They each generate random blinding factors Fa, Fb; ad-
ditionally, T generates Fta and Ftb, 1 ≤ Fx < p−1. The
following messages are sent over pairwise encrypted
channels, with all arithmetic being done modulo (p−1).
(For simplicity, we write a/b or a

b
to mean a · b−1 where

b−1 is the inverse of b in the Abelian group of integers
modulo (p − 1).)

A → T : kA · Fa (1)
B → T : kB · Fb (2)
T → A : Fta (3)
T → B : Ftb (4)
A → B : Fa · Fta (5)
B → A : Fb · Ftb (6)
A → T : (Fa · Fta)/(Fb · Ftb) (7)
B → T : (Fb · Ftb)/(Fa · Fta) (8)

From messages 1 and 2, T can calculate kA·Fa

kB ·Fb
. From

that and message 8, T can calculate

kA · Fa

kB · Fb

· Fb · Ftb

Fa · Fta

=
kA

kB

· Ftb

Fta

But T knows Fta and Ftb, and can therefore calculate
rA,B = KA/KB . A similar calculation can be done
using message 7; the results will match if A and B are
honest.

We thus see that T never knows any party’s encryption
keys. But can they be recovered from the ratio values?
Fortunately, that appears to be impossible, too.

Assume that we have three parties, Alice, Bob, and
Carol, possessing keys KA, KB , and KC . T therefore
knows

rA,B = KA/KB

rB,C = KB/KC

rC,A = KC/KA

We wish to solve for KA in terms of the ratios.

Simplifying these equations, we get

KA = KB · rA,B

KB = KC · rB,C

KC = KA · rC,A

Substituting the second and third equations into the first,
we get

KA = ((KA · rC,A) · rB,C) · rA,B

which yields the rather unsatisfatory insight that

1 = rC,A · rB,C · rA,B

We are thus left with a situation where T can transform
encrypted queries from one key to another, but cannot
generate queries or decrypt them.

If some party D were to collude with T , T could
read queries by transforming them to D’s key. To de-
fend against this, a querier A can blind messages to
T by superencrypting with some nonce key NA, and
then decrypting the transformed query. Because Pohlig-
Hellman encryption and decryption are commutative—
the cipher is, as noted earlier, an Abelian group over the
keys—the message can be successfully unblinded. Let
V ′ = (V )NA mod p, where V is the query encrypted
with A’s key that is sent to T to be transformed to a
query encrypted for B.

(V ′)RA,B = ((V )NA)RA,B mod p

= (V )NA·RA,B mod p

= ((V )RA,B )NA mod p

= ({V }KB
)NA mod p



This value can be decrypted using the decryption key
corresponding to NA; {V }KB

can be used to generate a
query to B as described earlier.

The remaining roles are the generation of the prime p
and the certificate authority used for the initial setup with
T . Neither of these is particularly critical. Any party can
verify that p is prime, that it’s of the form 2p′ + 1, and
that it’s long enough to protect against solutions to the
discrete log problem modulo p.

The certificate authority is almost as simple. While A,
B, and T want some assurance that they’re talking to the
right parties, the result of a failure does not leak any in-
formation about queries. The most likely result of an
impersonation is a failed query, which is undesirable.
Thus, some reliable CA should be used. But there is
one further danger. In a real-world implementation of
this scheme, a succesful query for a desired document
would likely result in a request for retrieval of that doc-
ument. But this is more or less inherent in the problem
statement. While the documents could, presumably, be
stored elsewhere in encrypted form, the problem of find-
ing the key would remain. We thus reject this solution.

At first glance, the number of transformation keys that
T must have appears to be a problem; it is, after all,
quadratic in the number of parties. That may not matter
too much — for realistic uses, the number of parties is
likely to no more than a few thousand, and calculating
and storing a few million keys is not a challenge with
modern hardware. Still, if it comes an issue, there is a
solution. T ’s role can be partition, with each Ti serving
some set of parties. For each party A served by a TA,
there would be a transformation key rA,TA

; a routing
key rTA,TB

would link the trusted parties. A query sent
from A to TA would be transformed three times: to TA’s
key, to TB’s key, and then to B’s key.

To be sure, this does require that each trusted party have
a Pohlig-Hellman key, which violates one of our design
principles. But this key only needs to be retained long
enough for it to engage in the provisioning dialog with
the other Ti; after that, it can be discarded, thus preserv-
ing security.

The set of trusted parties does not need to be fully con-
nected. Instead, they can be linked in any sort of net-
work; standard routing techniques can be used to direct
the query to the proper party.

6 System Design Considerations

6.1 Roles

We can now look at some systems-level issues. We begin
by considering who the different parties are, and what
their trust properties are.

First, of course, there are sets of queriers and informa-
tion owners. Some parties may do both, but these roles
are independent. While in some sense it does not matter
if a single key is used for both sorts of operation, in gen-
eral it’s better to use separate keys. Thus, to the system
they would appear to be two separate parties.

In fact, in a real it would be better to let each person who
generates queries have an individual key. This permits
finer-grained authorization and auditing. The catch is
the n2 nature of the provisioning process.

Information providers have a more complex problem.
Except for very small agencies, building the index is
problematic: it is undesirable for large numbers of sen-
sitive documents to exist in one place at one time. There
are two easy solutions. First, each group can be given
the same Pohlig-Hellman key to use in generating its
own bit array; the collection of bit arrays can then be
treated as a document collection by the outside world’s
contact. Second, each group could have its own Pohlig-
Hellman key, and send a set of PH-form values to the
central contact point; it would use a specialized set of
transformation keys to convert these values to a com-
mon Pohlig-Hellman key, and build the bit map from
them. (This is, in effect, a special case of the distributed
T role discussed earlier.)

The trust relationship between queriers and providers is
complex. Clearly, they do not trust each other unre-
servedly. This lack of trust may be due to legal stric-
tures, organizational “turf battles”, or simply the need
for compartmentalization of sensitive data. But within
certain bounds, they are willing to share certain classes
of information if suitable need is demonstrated. In other
words, the details here are political, not technical; nev-
ertheless, these details are likely to be the major driver
of any actual implementation of this scheme.

A second role is that of the warrant server. This role
can be split, as long as the intermediary has authorita-
tive knowledge of which server handles requests from
which queriers and for which providers. Note that T
does not need a full set of transformation keys for the



warrant servers; rather, it only needs keys to map re-
quests from each querier and to each provider associated
with that warrant server.

The most complex role is that of the trusted third party.
While Ted never sees any queries or any data, he is the
ultimate arbiter of who does get to see what. The set
of transformation keys stored by Ted is the functional
discriminator of what providers any given querier can
reach; if no transformation key exists, no queries can
be made. In the simplest design, Ted is also respon-
sible for routing queries to the proper warrant servers,
though there are clearly alternative topologies that would
remove that responsibility: queriers could sent their re-
quests to the warrant servers directly; they in turn would
transmit the filtered requests to Ted.

In some designs, Ted must also send responses and even
encrypted documents back to queriers. This imposes
some bandwidth constraints; in some cases, one must
trust Ted not to invent keys that it can use to decrypt
documents; see Section 6.2 for details.

Index servers, if used, have some of the same proper-
ties as Ted. They never see any confidential informa-
tion; however, they’re responsible for routing requests
accurately. They also need to be more trustworthy; a
subverted index server could select documents that don’t
match Alice’s queries, thus betraying Bob. On the other
hand, they presumably don’t know the actual names or
contents of the documents they might betray.

6.2 Protecting Document Retrieval

The actual document retrieval can be a crucial feature
of total system design: by seeing which documents are
actually retrieved, Bob can learn soemthing of the query
terms. Here we briefly sketch a retrieval protocol layered
on top of our encrypted Bloom filter mechanism.

As we noted earlier, there are many possible ways to
proceed at this point. The constraints will be both tech-
nical and policy-oriented. For example, the scheme we
are about to outline specifies that all actual document re-
trieval be done via T . This would require that T have
high-bandwidth links to all servers. If that were not the
case, a different solution would be needed.

From a policy perspective, Bob may not wish to transmit
documents to Ted, even in encrypted form. Instead, Al-
ice may be allowed to present a request for a set of docu-
ments to a competent human arbiter; he or she would de-

cide if they were relevant, and would then provide them
to Alice only under carefully controlled conditions.

Again, there are endless possibilities. Here we describe
one possible scheme, with a few variants thrown in for
good measure.

We first describe the notion of sealing. A sealed mes-
sage is one created by some party, and encrypted and
authenticated in such a way that only that party can read
or verify the message. Initialization vectors or random
padding are used to prevent dictionary attacks on sealed
messages. There are many obvious ways to do sealing;
similar schemes are often used with Web cookies [6].
Sealing is used here as an optimization to permit state-
less operation by servers; an obvious alternative is local
caching of such messages.

Initially, Alice prepares a query list. The query list is
a set of hashed, PH-encrypted search terms; each query
is flagged as real or dummy. The list is sent to Ted (all
messages in this protocol are pairwise encrypted), along
with a newly-generated public key embedded in a cer-
tificate. Alice can either remember the corresponding
private key or send along a sealed copy of it.

Ted sends the query list, including the flags, to the war-
rant server. The warrant server compares the query list
with the warrant; for any unauthorized terms, the flag is
set to “dummy”. The warrant server also signs the cer-
tificate; Alice’s name never appears in it, thus preserving
her anonymity. The altered list is returned to Ted.

Next, Ted applies Bob’s censorship constraints. Again,
invalid queries are not deleted from the list; rather, their
flags are reset. Ted prepares a sealed copy of this list,
including the flags.

If random index padding is to be used, each entry in the
query list is converted to set form, and a random subset
of each set of indices is generated. Each index is paired
with a pointer to the corresponding query list entry; this
part is sealed. The final list of indices and pointers is
randomly permuted; this list, along with the sealed ver-
sion of the query list and Alice’s public key, are sent to
Bob. If random index padding is not used, Bob can get
the list in PH form.

Bob now matches the set of indices against his document
collection. Any document matched by more than some
threshhold number of indices is flagged as eligible for
retrieval. Bob sends back to Ted a list of these docu-
ments; each document is associated with the set of in-
dices that selected it. Note that each such index is paired



with Ted’s sealed pointer. Bob’s reply message is ac-
companied by a sealed copy of the query; this will later
permit Bob to verify that a valid query was made for
some documents.

Ted now filters Bob’s results, according to its own list of
what Alice is entitled to see. Note that this filtering can
include an enforceable minimum number of hits on any
word, to rule out false positives from the Bloom filter.
We thus can enforce a quantitative notion of “probable
cause”.

Ted then asks Bob for those documents, as well as a
few others to disguise the actual topic of interest. Bob
encrypts these documents with Alice’s public key, thus
denying Ted any knowledge of what they actually con-
tain. As final step, only the authorized documents are
sent back to Alice.

Clearly, many other variants are possible for this phase.
Ted could blend together several separate queriers’ re-
quests, each querier could send along many different
public keys, etc.

The remaining issue is security against traffic analysis.
Standard techniques, such as Mixnets [7], can be used
as a defense.

We get a different set of tradeoffs if we use index servers.
Exporting the filters should not pose a security risk, be-
cause of the cryptographic mechanisms used to generate
them. On the other hand, there is the issue of greater
trust in some outside party. The decision on using index
servers must be based on the relative trust parties have
in such a third party versus their confidence that infor-
mation providers will not go to great lengths to ascertain
the subject of queries.

6.3 Performance Issues

The performance of a system based on this design is
limited by two factors: the speed of Pohlig-Hellman en-
cryption, and the ability of a site to rapidly search many
Bloom filters.

In general, encryption speed is not likely to be a ma-
jor issue. There are off-the-shelf chips that can perform
25,000 modular exponentiations per second; T could be
equipped with such hardware. Beyond that, T ’s role is
easily replicated. No querier is likely to generate nearly
that many queries per second; information providers do
not need to do any Pohlig-Hellman operations.

Beyond that, there will be some overhead to set up se-
cure pairwise connections. While this may not be a
trivial issue, these connections can be amortized over
many queries and responses. In addition, off-the-shelf
Web SSL accelerators and load balancers can be used as
needed.

A linear search of a large collection of Bloom filters—
say, one per document—is likely to be more expensive.
A better solution is to use hierarchical filters, where each
one at a higher level is composed of the logical union
of its child filters. There are obvious optimizations at
this point, including letting each group of documents be
hosted on a separate departmental search server.

There is a more subtle optimization that we can do if
the queries arrive in PH form. A single PH-form query
can be split into different size pieces, to accomodate dif-
ferent Bloom filter sizes. Thus, we can separate docu-
ments by size (more precisely, by the number of indexed
search terms), and use different sizes of Bloom filters for
each size range. This may achieve a considerable perfor-
mance improvement; recall that Bloom filters give opti-
mal performance for a 1’s density of .5 [1], and small
documents will not achieve that density. [1] also pro-
vides a performance analysis of Bloom filters, though
the access patterns here are more complex than are con-
sidered in that paper.

Alice is likely to incur considerable expense generating
many private/public key pairs for query retrieval. Each
document retrieved may require a separate pair; at the
least, each query would require one in some scenarios,
as was discussed above.

7 Related Work

Song, Wagner, and Perrig described a scheme for search-
ing for sequences of words in encrypted files [8]. But
search time is linear in the size of the documents.

Boneh et al.’s Searchable Public Key Encryption [9] is
a mechanism for tagging messages with a few keywords
that can be searched for. However, it doesn’t scale to
searches over the entire document.

Goh’s scheme [3] is the closest to ours, in that it employs
Bloom filters with encryption used for the hash func-
tions. However, it requires that all parties share all keys.
The paper gives several elegant mechanisms for execut-
ing more powerful searches; most of those schemes ap-



ply to our method as well. In particular, he described us-
ing binary searches on collections of documents to speed
up retrieval. He also described how to use Boolean com-
binations of terms in queries; while those will work for
our scheme, they pose compliance checking problems
for warrant servers. The suggestion of deleting some of
the indices (Section 4.1), as well as the problems with
that scheme, were also noted by Goh.

The encryption property we need was dubbed universal
re-encryption by Golle et al. in [10]. A similar scheme
was called atomic proxy encryption by Blaze, Bleumer,
and Strauss [11]. Both of these use public key cryp-
tosystems, rather than symmetric ones. While public key
schemes would work for encrypted Bloom filters, we do
not need the other properties of public key cryptogra-
phy. (On the other hand, Pohlig-Hellman encryption is
comparable in cost to many public key schemes.)

8 Conclusions

We have described a scheme for protected searches
among mutually suspicious parties, without the need for
a trusted intermediary. The current design uses Pohlig-
Hellman encryption, which is rather expensive, but this
is not a requirement. Most of the design and analysis
would apply to any other cipher where the keys form an
Abelian group. If we omit the blinding of queries, we
can drop the requirement for commutativity.

In fact, we don’t even need encryption for much of it; a
keyed hash function that formed a group would suffice.
But that would require that T know rA,B and rB,A for
all pairs; with Pohlig-Hellman encryption, the two are
multiplicative inverses. It is tempting to use RSA en-
cryption with a common modulus as the hash function;
that would permit use of efficient public exponents such
as 232 + 1. Unfortunately, that runs afoul of Simmons’
attack [12, 13].

There is one aspect that is tightly tied to the arithmetic
properties of Pohlig-Hellman encryption: the scheme
for (and analysis of) provisioning T . This aspect would
have to be rethought if a different cipher were to be used.
We note again, though, that the provisioning role and the
query transform role are separable.

There are a number of applications for this scheme be-
yond what we have presented here. One intriguing one is
for use in discovery proceedings in civil lawsuits. Dur-
ing discovery proceedings, each party is entitled to some

of the other side’s documents, but only if they’re demon-
strably relevant. Our technology provides an efficient
scheme for performing such searches.

Other applications are feasible if the retrieval enhance-
ments from Section 6.2 are used. One is a secure peer-
to-peer file-sharing network. By broadcasting a salted
query to numerous servers, Ted can find who has a cer-
tain file — song? — without knowing what is being re-
quested. Similarly, Bob, Carol, et al. do not know who
is requesting things, nor even what is actually being re-
quested.

PH-encrypted Bloom filters can also be used to imple-
ment part of Anderson’s Eternity Service [14]. Anderson
suggests that an index is necessary, but doesn’t suggest
how to provide one.

There is a large body of literature on secure or anony-
mous document sharing, such as Publius [15]; it is likely
that most of those schemes could be integratd with our
secure search mechanism. How to do that is not the fo-
cus of this work. We do note, though, that security is a
total systems property; some such layer is likely a nec-
essary component.

Acknowledgments

Jeff Lagarias performed the analysis of query index
padding, and made other observations that form the core
of Appendix B. Rebecca Bellovin corrected a number of
errors in the equations.

References

[1] B.H. Bloom, “Space/time trade-offs in hash coding
with allowable errors,” Communications of ACM,
vol. 13, no. 7, pp. 422–426, July 1970.

[2] Richard Rhodes, The Making of the Atomic Bomb,
Simon & Schuster, Inc., 1987.

[3] Eu-Jin Goh, “Secure indexes for efficient search-
ing on encrypted compressed data,” Cryptology
ePrint Archive, Report 2003/216, 2003, http:
//eprint.iacr.org/2003/216/.

[4] Stephen C. Pohlig and Martin Hellman, “An im-
proved algorithm for computing logarithms over
GF (p) and its cryptographic significance,” IEEE



Transactions on Information Theory, vol. IT-24,
pp. 106–110, 1978.

[5] Ivan Niven, Herbert S. Zuckerman, and Hugh L.
Montgomery, An Introduction to the Theory of
Numbers, John Wiley & Sons, 1991.

[6] D. Kristol and L. Montulli, “HTTP state manage-
ment mechanism,” RFC 2965, Internet Engineer-
ing Task Force, Oct. 2000.

[7] David L. Chaum, “Untraceable electronic mail, re-
turn addresses, and digital pseudonyms,” Commun.
ACM, vol. 24, no. 2, pp. 84–90, 1981.

[8] Dawn Song, David Wagner, and Adrian Perrig,
“Practical techniques for searches on encrypted
data,” in Proceedings of IEEE Symposium on Se-
curity and Privacy, May 2000, pp. 44–45.

[9] “Searchable public key encryption,” Cryptology
ePrint Archive, Report 2003/195, 2003, http:
//eprint.iacr.org/2003/195/.

[10] P. Golle, M. Jakobsson, A. Juels, and P. Syverson,
“Universal re-encryption for mixnets,” 2002.

[11] Matt Blaze, G. Bleumer, and Martin Strauss, “Di-
vertible protocols and atomic proxy cryptography,”
in Proceedings of Eurocrypt ’98, 1998, Lecture
Notes in Computer Science.

[12] Gustavus J. Simmons, “A “weak” privacy protocol
using the RSA crypto algorithm,” Cryptologia, vol.
7, no. 2, pp. 180–182, 1983.

[13] Steven M. Bellovin and Michael Merritt, “Aug-
mented encrypted key exchange,” in Proceedings
of the First ACM Conference on Computer and
Communications Security, Fairfax, VA, November
1993, pp. 244–250.

[14] R. Anderson, “The eternity service,” in Proceed-
ings of Pragocrypt ’96, 1996.

[15] Aviel D. Rubin Marc Waldman and Lorrie Faith
Cranor, “Publius: A robust, tamper-evident,
censorship-resistant, web publishing system,” in
Proc. 9th USENIX Security Symposium, August
2000, pp. 59–72.

A Proof that Pohlig-Hellman Encryption
is a Group

We sketch a proof that Pohlig-Hellman encryption is in-
deed a group, and in particular an Abelian group, for the

operation of composition. We assume that the modulus
p is a large prime of the form 2p′ + 1, where p′ is also
prime.

The requirements for a group are the existence of an
identity element, the existence of an inverse for all set
members, closure, and associativity.

Fairly obviously, the identity element is encryption with
the key 1. The existence of inverses for all keys is shown
in [4].

To show that the set is closed, we must show that en-
cryption with any two keys yields another valid key. A
Pohlig-Hellman key is an integer k relatively prime to
p − 1 and 1 ≤ k ≤ p − 2.

{{x}k}j = (xk)j mod p

= (xjk) mod p

We thus have closure if jk yields a suitable integer.

For j and k to be relatively prime to p − 1, they must
be odd. Since j and k are odd, their product is odd.
Per [4], we reduce the product modulo p − 1, an even
number. The result of that operation is always odd, and
by definition of modulus will yield a value less than p−
1.

We must also show that jk is relatively prime to p − 1.
Since p = 2p′ + 1, this reduces to showing that jk is
relatively prime to 2p′; since jk is odd, we merely need
to show that jk is relatively prime to p′. Assume it isn’t.
By definition of a prime number, this implies that j or k
is a multiple of p′. However, members of the set are all
relatively prime to 2p′, and hence to p′.

The remaining criterion is associativity.

{{x}kj}i = {(xkj mod p)}i

= (xkj)i mod p

= xkji mod p

= (xk)ji mod p

= ({x}k)ji mod p

= {({x}k)}ji

Finally, for encryption to be an Abelian group, we must
show that it is commutative.

{{x}k}j = {xk mod p}j

= (xk)j mod p

= xkj mod p



= (xj)k mod p

= {xj mod p}k

= {{x}j}k

B Disguising Search Terms via Partial
Queries

As noted, it is tempting to try to disguise queries by
converting them to set form, deleting some indices, and
inserting some random values. Unfortunately, the ap-
proach does not work very well.

This is reasonably clear intuititively: the size of the bit
array is quite large relative to the number of hash func-
tions that would be used. This implies that for any search
word, the density of “productive” bits is low. For a false
positive, the random indices would have to hit a signif-
icant number of of these widely-scattered bits; this is
improbable.

Jeff Lagarias of AT&T Labs Research has analyzed it in
more detail, and more quantitatively. Most of the fol-
lowing discussion, and in particular the formula, is due
to his insights and derivations.

First, remember that the ultimate goal of most queries is
to find some particular document that matches the spec-
ified criteria. If the target document is short, its Bloom
filter will be very sparse; accordingly, there will be very
few words that can be matched, and virtually none that
will be hit at all by random indices.

Even for the nominal 1’s density of .5, the odds are low.
Suppose we want to pad a query in set form with random
indices. To achieve a 50% probability of hitting a single
word, a lower bound on the number of pad entries we

Table 1: The number of dummy indices for a 50% prob-
ability of a single false positive, as a function of the
Bloom filter size (m) and the number of hits we need
to be persuasive. All calculations were done assuming
n = 20 and c = 1.

m
h 10, 000 100,000 1,000,000 10,000,000
6 1,158 7,889 53,752 366,213
8 2,630 19,724 147,913 1,109,191

10 4,583 36,407 289,191 2,297,130
12 6,920 57,120 471,477 3,891,598

would need is

c

n
· m1−

1

h · h log h

where c is a constant between 2/3 and 1 and h is the
number of bits we think we need to hit.

It is clear from the equation that the fundamental prob-
lem is the relationship between the size of the filter and
the number of hash functions used. If we fix h at 2,
thus minimizing the m1−

1

h term, the equation reduces
to c′/n · √m. While this is sublinear in m, even

√
m is

likely to be sufficiently larger than n that this scheme is
impractical.

Thus, we cannot even ameliorate the problem by choos-
ing an unrealistically small h. Apart from the fact that h
has to be at least as great as the number of hits we need
for legitimate queries, our total filter size would have to
be extremely small. In other words, this scheme can only
work if we are willing to tolerate a large number of false
positives over a very small population of terms.

We summarize this in Table 1. Bear in mind that for
false positives to be effective, there would need to be
several for each query, thus increasing these values even
further.


