
Problem Areas for the IP Security Protocols

Steven M. Bellovin

smb@research.att.com

AT&T Research

Abstract

The Internet Engineering Task Force (IETF) is in
the process of adopting standards for IP-layer en-
cryption and authentication (IPSEC). We describe
a number of attacks against various versions of these
protocols, including confidentiality failures and au-
thentication failures. The implications of these at-
tacks are troubling for the utility of this entire ef-
fort.

1 Introduction

The Internet Engineering Task Force (IETF) is
in the process of adopting standards for IP-layer
encryption and authentication (IPSEC) [Atk95c,
Atk95a, Atk95b, MS95, MKS95a]. While these pro-
tocols should provide a marked increase in Internet
security, they themselves have had a checkered his-
tory. It is very much worth recounting the design
history, not just to avoid the “oral history” problem
in the IPSEC working group, but also because we as
a profession learn more from knowing what doesn’t
work. As a wise sage1 once said, “Learn from the
mistakes of others; you’ll never live long enough to
make them all yourself.”
The failures we discuss here include confiden-

tiality failures—attackers can read encrypted data–
and spoofing failures—attackers can transmit phony
data. In short, these attacks can render IPSEC use-
less.
Many (but not all) of the problems stem from the

intrinsic properties of the encryption modes used,
coupled with the lack of integrity checking in some
security transforms and the use of host-pair keying.
It has become painfully clear that these combina-
tions are deeply flawed. People assume that since
decrypting with the wrong key will yield garbage,

1Alfred E. Neuman of MAD Magazine

Proceedings of the Sixth Usenix UNIX Secu-

rity Symposium, July 22-25, 1996, San Jose,

CA. ftp://ftp.research.att.com/dist/smb/badesp.ps

additional integrity checking is not needed. Regret-
tably, this is not the case.
Some of the attacks discussed here were presented

informally at the 32nd IETF meeting in Danvers,
MA, in March of 1995. Others have been been dis-
cussed elsewhere, such as on the IPSEC mailing list
or in [WB96].

2 Properties of Encryption Modes

The ciphers of interest here fall into two broad cat-
egories. First, we have block ciphers such as DES
[NBS77] used in cipher block chaining mode (CBC).
Second, the use of stream ciphers has been sug-
gested, in early versions of the SKIP protocol [Azi94]
and with the standard ESP header [CW96]; these
are byte-at-a-time ciphers. For our purposes, both
modes have some significant limitations.
The discussion below focuses on aspects of interest

to us. More detailed information on these and other
cipher modes can be found in [Sch96].

2.1 Notation

We use Ci = K[Pi] to mean “ciphertext Ci re-
sults from the encryption of plaintext Pi using key
K. The corresponding decryption is written Pi =
K−1[Ci]. The symbol ⊕ denotes bitwise exclusive-
OR.
In showing transforms, the subscript K in ESPK

denotes “ESP encryption using key K”.

2.2 Cipher Block Chaining

CBC encryption [NBS80] operates by encrypting the
exclusive-OR of each plaintext block and the previ-
ous ciphertext block:

Ci = K[Pi ⊕ Ci−1].

To encrypt the first plaintext block, C0 is set to the
initializaton vector (IV). IVs may be agreed upon
in advance, transmitted encrypted, or transmitted
in the clear. Using non-constant IVs is often rec-
ommended, in order to disguise common prefixes.



For our purposes, that does not matter much, as the
first encrypted block will almost always be a TCP
[Pos81c], UDP [Pos80], or IP [Pos81b] header, and
thus will almost always vary.
Decryption is the inverse operation:

Pi = Ci−1 ⊕K−1[Ci].

To encrypt data that is not a multiple of the un-
derlying cipher’s block size, some sort of padding
and length information must be added. There are
a number of different techniques that may be used;
none add much to the security of the encryption.
CBC mode encryption has several properties of

interest to us. First, the prefix of a CBC encryp-
tion is the encryption of the prefix. That is, given
a stream of ciphertext 〈C1, . . . , Ci, . . . , Cn〉, the se-
quence 〈C1, . . . , Ci〉 is the encryption of 〈P1, . . . , Pi〉.
(This may be complicated somewhat by a trailing
padding and length indicator scheme.) An attacker
can thus truncate a block of encrypted text.
A second property is a generalization of the first.

A substring 〈Ci, . . . , Cj〉 is a valid CBC encryption
of 〈Pi, . . . , Pj〉, so long as the IV can be set to Ci−1.
This allows the attacker to extract any portion of
the encrypted message.
The third interesting property is limited error

propagation. If a ciphertext block is corrupted in
transit, either deliberately or accidentally, only it
and the following plaintext block are damaged. If a
ciphertext block is dropped, only the following plain-
text block will be damaged. The following example
illustrates this:

Pi = Ci−1 ⊕K−1[Ci]

Pi+1 = Ci ⊕K−1[Ci+1]

Pi+2 = Ci+1 ⊕K−1[Ci+2].

Suppose block Ci is damaged. Pi will be garbled
unpredictably, since it depends on the decryption of
Ci. Pi+1 will be damaged in a predictable fashion,
since its value is derived from an exclusive-OR with
Ci. But Pi+2 will remain intact, since it depends on
Ci+2 and Ci+1, and does not derive from either Ci

or Pi+1.
Taken collectively, these properties permit cut-

and-paste operations. Ciphertext blocks from dif-
ferent messages encrypted with the same key can be
combined; only the block immediately following the
splice point will be garbled upon decryption.

2.3 Stream Ciphers

There are many ways to build stream ciphers; the
ones we are interested in operate by generating a

stream of key bytes ki which are exclusive-ORed
with the plaintext, one byte at a time:

Ci = ki ⊕ Pi.

Clearly, any substring of ciphertext bytes can be
decrypted independently, so long as the right start-
ing point is used. There is no error propagation;
if a ciphertext byte is damaged, the corresponding
plaintext byte is changed in a predictable way, and
no other bytes are affected. Stream ciphers of this
type cannot cope with byte deletions or insertions.
If the key byte stream is generated by encrypting

a counter using a block cipher

ki = K[i]

encryption and decryption can start at any point. A
standard DES mode, Output Feedback Mode (OFB),
works by feeding back the block cipher output into
itsef:

ki = K[ki−1].

Keystreams generated by this mechanism can be
cranked forward or backward from a known value
of i and ki, but cannot be started at an arbitrary
point.
A third way to generate the key byte stream is

by a specialized stream cipher. Whether or not you
can restart at an arbitrary point or crank backwards
depends on the details of the cipher design.

3 The Attacks

For most of these attacks, we will assume that ESP
encryption [Atk95b] is used, but that AH authen-
tication [Atk95a] is not used. Host-pair keying is
used. That is, a single key exists between each pair
of communicating hosts. This is in distinction to
user-oriented keying, or connection-oriented keying,
where many keys can be used between two given ma-
chines. As needed, we will assume that the attacker
X has a legitimate login on one or both of the ma-
chines in question, but does not have privileged ac-
cess to either. Finally, we assume that the attacker
has the usual powers over transmitted data: the abil-
ity to read, modify, delete, or inject new packets.

3.1 Reading Encrypted Data

The primary purpose of encryption is privacy. An
attacker who can read other people’s messages has
completely defeated the security system. There are
a variety of ways in which this can be done.
Assume that a legitimate message is sent from user

LA on machine A to LB on machine B. The attacker



Monitored data

LA → LB IP ESPK TCP secret

XA → XB IP ESPK UDP any

Reinjected data

XA → XB IP ESPK UDP TCP secret

Figure 1: Cutting and pasting legitimate messages
to decrypt someone else’s traffic. The dashed lines
denote encrypted data; the shaded boxes represent
data belonging to the legitimate user.

picks this up, and sends a UDP message from XA

to XB . The encrypted portion of the first message
is then inserted into the body of the second mes-
sage, along with any necessary padding to make the
lengths match; this forged message is reinjected into
the network for receipt by XB (Figure 1).

Because of the CBC self-healing properties, the
first block of LA’s TCP header may be lost (or may
not, if we copy the IV as well). Nothing else will
be lost; the body will be readable. If we are using
IPv4, the attacker may be able to request that no
UDP checksum validation be done; on IPv6, where
that isn’t possible, on average only about 216 tries
are necessary to fool the checksum.

If LA and LB are using UDP to communicate, the
attack may be even easier. X can wait until process
LB is finished, allocate the same UDP port num-
ber on host B as LB used, and reinject the packets
onto the wire where they will be received again by
B.. The kernel will decrypt them, and pass them
along. The same attack is probably possible with
TCP, though it’s a bit harder, as TCP’s connection-
oriented port numbers and sequence numbers will
get in the way. Still, on modern high-speed net-
works it isn’t that hard to make the sequence num-
bers wrap, and the attacker may be able to learn
the necessary port numbers by polling via netstat
on either machine.

Monitored data

LA → LB IP ESPK TCP data

XA → XB IP ESPK UDP CBC pad rm -rf /

Reinjected data

LA → LB IP ESPK TCP rm -rf / ckfix

Figure 2: Cutting and pasting legitimate messages
to hijack someone else’s session. The dashed lines
denote encrypted data; the shaded boxes represent
data belonging to the legitimate user.

3.2 Session Hijacking

The same sorts of techniques can be used to in-
sert bogus data into someone else’s encrypted ses-
sion. Again, the attacker monitors both a legitimate
packet and one sent from XA to XB . This second
packet contains the data that is to be inserted into
someone else’s stream. If the legitimate packet can
be deleted, the new data can simply be substituted
into the payload; if not, a new packet can be con-
structed with the nasty stuff appended to the legiti-
mate data (Figure 2). After all, TCP has no length
field, and it is perfectly content to read a packet
where part of the data has already been received
but part is new.

Nominally, a padding block must be inserted at
the splice point, to prevent the CBC decryption pro-
cess from damaging valuable spoofed data. The con-
fusion caused by these extra bytes, which will de-
crypt to garbage, are not significant; the attacker
probably needs to send a few extra bytes anyway, to
restore to a known state such as the shell prompt.

A related attack involves inducing a machine to
send text of the attacker’s choice, and cutting it at
the proper CBC boundary. The resulting encrypted
blocks can be reinjected onto the net, with a new IP
header.

Using the chosen plaintext mechanisms discussed
below (Section 3.9), it is not even necessary for the
attacker to have a login on either machine. The
message from XA to XB then becomes ciphertext



emitted by host A, in response to X’s prompting.

3.3 Fragmentation Attacks

Suppose that an IPSEC implementation does its
security processing after fragmentation. Although
prohibited by the RFCs, it is comparatively diffi-
cult for a “bump-in-the-cord” encryptor to avoid this
practice, as the unit may be handed fragments by
the host’s IP implementation. In that case, the at-
tacker can induce the machine to send a large packet
(see Section 3.9), with nasty headers and data just
after the fragmentation boundary. The attacker in-
tercepts the packet, changes the IP header to zero
the fragment offset field, and reinjects the packet. It
will be treated as a complete packet when received.
Note that both ESP and AH may be present; the
packet will appear to be perfectly valid.

The root cause here is that the fragmentation
fields in the IP header are subject to change during
transmission, and hence are not included in the AH
calculations. This may change for IPv6, where inter-
mediate routers are not allowed to fragment packets.
But in that case, the AH header would have to cover
the fragmentation header as well. A more general so-
lution is to use tunnel mode for all fragmented pack-
ets [WB96]; the inclusion of the extra IP header will
protect the fragmentation indicators on the inside.

3.4 Weaknesses of Stream Ciphers

Early versions of the SKIP protocol [Azi94] sug-
gested the use of RC4 [Sch96, pp. 397–398], a stream
cipher. Packets included a 64-bit byte sequence
number field; the decryptor’s stream cipher engine
would be cranked until it reached that point. This
field also serves as a replay detection mechanism.
Authentication was possible but not mandatory.

There are several problems with this scheme. The
most obvious is a denial of service attack: an enemy
could send a packet with a much larger sequence
number, forcing the recipient to spend a lot of cycles
turning the crank. In addition, legitimate packets
would be rejected, as they would fall between the
old sequence number value and the new one—it’s
difficult or impossible to unwind the cipher state.

The obvious counters to this are to limit the max-
imum change δ between the sequence number fields
in two packets, and to cache recent previous states
of the stream cipher engine. But the former runs
afoul of the need to span network or host downtime,
and the latter can probably be defeated by a burst
of forged packets.

Other attacks are more serious. Stream ciphers
such as RC4 suffer from a very serious disadvantage:
changes to the ciphertext show up as predictable
changes to the decrypted plaintext. Suppose that an
attacker can trick a machine into sending a known
message to a target. This packet can be intercepted,
modified, and reinjected onto the wire.

A final attack combines these two threats. Sup-
pose that δ is large enough that an attacker can
cause the sequence number field to wrap around.
This is difficult but by no means out of the ques-
tion; if δ is 232, an enemy who can send at 60% of
the bandwidth of an FDDI or 100BaseT net can ac-
complish this in less than 10 minutes. First cause
one machine to send a moderately large amount of
known plaintext to the target. This can be done in
a variety of ways, such as having it forward a mail
message. Next, wrap the sequence number counter.
Use the known plaintext to recover the key stream
used to protect your text, and use it to encrypt a
new message.

A more recent proposal for use of stream ciphers
[CW96] addresses some of these issues. For exam-
ple, a maximum forward change δ is defined, and
sequence number wrapping is explicitly prohibited.
But this proposal explicitly rejects the inclusion of
an integrity check, suggesting that in many cases its
use is not necessary, and that an AH header can be
added if desired.

3.5 Abusing IVs

Because IVs are sent in the clear, and because af-
ter decryption P1 is produced by an exclusive-OR
with the IV, an attacker can introduce predictable
changes into P1. For UDP packets, the entire header
is in the first block, thus making it possible to divert
packets to new connections. Because of the check-
sum, changing the TCP headers is somewhat harder,
though probably not impossible. IP has a check-
sum as well, the packet identification field—an arbi-
trary number—is in P1; it seems possible to change
it to compensate for changes to the the fragmenta-
tion control fields; that in turn might enable some
of the attacks described in [ZRT95].

Some other attacks on IVs are described in
[VK83]; while not all of the scenarios described there
are applicable to IPSEC, some are worrisome. But
their suggestion that each security association use a
separate, secret constant IV does not work well for
us; it is too easy to recover most of the bits of the
IV. Use a cut-and-paste attack to force decryption of
the first block, which will in general be part of either
a TCP or an IP header. For the latter, most of the



byte padding

padding pad len=5 protocol

Figure 3: Format of the last block of an ESP packet,
when only one data byte is present.

fields are effectively constant, save for the fragment-
id which we don’t care about in any event; for the
latter, the port number fields can be recovered by
seeing what ports are in use and the sequence num-
ber can be deduced by a modified sequence number
guessing attack [Mor85, Bel89]. Any remaining un-
certainty can be dealt with by brute force; at most,
216 trials will be needed.

3.6 Encypted Hash Functions

It has been suggested that integrity checking can be
accomplished by calculating a cryptographic hash of
the input packet before encrypting, and encrypting
both the packet and the hash. This scheme falls to
a cut-and-paste attack using chosen plaintext.

Prepare a new packet, including the hash function
output, and cause it to be transmitted. Snip it out
of the intercepted packet, using the ciphertext block
preceeding the chosen text as the new IV. If the hash
function is at the beginning of the packet and a se-
cret IV is used, the mechanisms described above can
be employed in conjunction with this scheme.

Other attacks based on integrity-checking failures
may be found in [JMM85, SG92a, SG92b, SG93].

3.7 Proxy Encryption

Hosts that will forward received packets that are not
addressed to them may be victimized by a proxy
encryption attack [WB96]. In this attack, the en-
emy builds a packet with the IP source address of
the forwarder, and a target of some destination ma-
chine. If the IPSEC implemenation isn’t careful, it
will encrypt and authenticate the packet using its
own secret keys, thereby convincing the target of
the provenance of the message.

Routers are most vulnerable to this attack, since
they are in the business of forwarding packets. How-
ever, ordinary hosts may be targeted as well. Mech-
anisms for launching the attack include IP source
routing, IP tunneling, and direct injection onto the
local network.

3.8 Reading Short Blocks

David Wagner has devised an attack that uses
known plaintext and simple active measures to read
encrypted data. While the attack is not universally
applicable, it does work for the user-to-host data—
including any typed passwords—in telnet sessions
if either tunnel mode ESP or the TCP timestamp
options [BBJ92] are used.

Because DES is a block cipher, data shorter than
the block length—64 bits—must be padded to the
block length before encryption. The format used
for the standard DES-CBC transform is shown in
Figure 3. Suppose a single keystroke is being sent.
If the preceeding data exactly fills a multiple of this
size, this keystroke will occupy the first byte of the
last block. The next-to-last byte will contain 5, and
the last byte will contain either 6 for TCP or 4 for
IP-in-IP. The contents of the intermediate bytes are
ignored by the receiving host.

A standard TCP header is 20 bytes long, which
is not a multiple of the DES block length. If tunnel
mode is used, though, the 20-byte IP header is in-
cluded, raising the total length to 40 bytes, or eight
DES blocks. Similarly, the recommended format for
the timestamp options [BBJ92, Appendix A], occu-
pies 12 bytes, bringing the total TCP header length
to 32 bytes, which is also an integral number of DES
blocks. In either of these cases, single keystrokes will
be sent alone in a pad block.

The trick, then, is to send ciphertext blocks whose
seventh and eighth bytes of plaintext are the appro-
priate constants, and whose first byte ranges over the
possible character set. If the guessed byte value is
incorrect, the TCP checksum will be wrong, and the
segment will be silently dropped. A correct value,
on the other hand, will elicit an ACK packet, the
existence of which (though not, of course, the con-
tents) will be detectable by the attacker. This is
true even if the packet represents an old duplicate;
the replays will be ignored but will still generate an
ACK, according to the TCP specification [Pos81c].

We now need ciphertext blocks with known values
for these three bytes; this totals 224 blocks. These
could either be generated by the chosen plaintext
techniques discussed in Section 3.9, or it could be
gleaned by observation. That isn’t that hard; if IP
tunnel mode is used, the first encrypted block is part
of the IP header, and the fields of interest are almost
always constant: the IP version, the header length,
the type of service, and the fragment offset.

We cannot just use the observed ciphertext for a
known plaintext message; the CBC formatting in-
terferes. However, we can recover the appropriate



information. Suppose that C ′

i corresponds to plain-
text block P ′

i encrypted under key K. Then by the
rules of CBC decryption,

K−1[C ′

i] = P ′

i ⊕ Ci−1.

Call this value Ni. If the C ′

i−1 values differ, so will
the Ni, even if the P ′

i values are all the same. This
allows us to collect all 224 necessary values. We do
not in fact need all possible values of the last two
bytes; at this point, however, we do not know which
we will need.
Now intercept a encrypted packet 〈C1, . . . , Cn〉

from the target stream. Generate a group of new
messages 〈C1, . . . , Cn−1, Tt〉 where Tt = C ′

j such that
Cn−1⊕Nj has t as the first byte and the proper last
two bytes. When the receiver decrypts Tk, it seesNj ;
stripping off the chaining yields Cn−1 ⊕ Nj , which
has the proper value. Reinject each of these mes-
sages and watch for a 40-byte response. If you see
one, you know that t was the encrypted byte.
There are several interesting corollaries to this at-

tack. First, unlike most of our cut-and-paste attacks,
the use of AH may not help. If the header sequence is
IP-ESP-AH-TCP, the authentication header simply
ensures that the TCP portion is correct. But if our
guess at t is right, it will be correct; we will simply
know that twice, once from AH and once from TCP.
To be sure, AH failures can trigger alarms, but it
isn’t clear that this is useful; tearing down a session
that received too many AH failures is an invitation
to denial-of-service attacks.
Second, the attack is aided because the DES-

CBC specification [MKS95a] requires that received
padding bytes be ignored. If they had some known
fixed value, checked by the receiver, it would be
much harder to generate the Tk messages, since far
too much known plaintext would be needed. On the
other hand, using fixed values will generate plenty
of known plaintext for cryptanalytic attacks, every
time the user hits ENTER.
A third observation we can make is that using

more padding (Figure 4), as is permitted, does not
help; in fact, it hurts. We still know that most
upstream messages contain a single data byte; if
they are the longer, the excess is probably random
padding, which means that the block following the
header contains only the data byte we are interested
in. We don’t even have to worry about the padding
length and protocol fields, which reduces the known
plaintext requirement to 28 blocks. In fact, we can
use this trick to reduce the total known plaintext
requirement to 28 blocks!
As before, we build Tt; this time, though, we only

care about the first byte t. We now build two more

data padding

padding

padding

padding

padding

padding pad len=21 protocol

Figure 4: Format of the end of an ESP packet with
21 bytes of padding.

trailing ciphertext blocks, T ′ and T ′′. The last block,
T ′′, is a random selection from our table of known
plaintexts. But we know what it will decrypt to.
The final value comes from the exclusive-OR with
T ′; we select it so that the final two bytes come out
right. We have no idea what the plaintext corre-
sponding to T ′ will be, but we don’t care; it’s ran-
dom padding that the receiver will ignore.
Can we generalize this attack to recover longer se-

quences than one byte? We may be able to extend
it to two byte blocks; beyond that seems unlikely.
Collecting the 216 known plaintexts is not too hard;
however, we would have to transmit 216 packets con-
taining Tt1t2 .
Going to three bytes creates even more problems;

apart from needing to send 224 trial packets, the
TCP checksum is only 16 bits; accordingly, there is
ambiguity in the decryption. Without good knowl-
edge of the distribution of the ti bytes, an accurate
answer is impossible. Alternatively, one could raise
224 alarms by relying on AH to do the detection.

3.9 Chosen Plaintext

Many of these attacks are aided by how easy it is
to make a machine encrypt chosen plaintext. For
example, one can often connect to the mail port,
and send a long message destined for some user on a
neighboring machine. The first machine will happily
forward it to the second, permitting the ciphertext
to be monitored. To increase the fun, SMTP-level
source routing can be done, forcing the first machine
to send it to the second, and the second to a non-
existent user on a third machine; this last will cause
the message to bounce and not be transmitted, but
the damage will be done.
Other useful techniques involve exploiting weak-



nesses in the IPSEC implemenation. If, for example,
a machine will respond to a plaintext ICMP [Pos81a]
or UDP ECHO packet with an encrypted reply, an
attacker can forge the initial message and monitor
the response. An alternative technique that is of-
ten useful is to send an encrypted ECHO message
and look for a plaintext response; depending on the
local configuration, that may happen as well. We
know of several different implementations that will
fall victim to one or both of these scenarios.
Beyond their utility for the high-level attacks we

have described here, chosen plaintext has crypto-
graphic significance as well. Many cryptanalytic
attacks, such as differential cryptanalysis [BS93b,
BS91, BS93a], depend on the attacker being able
to choose the plaintext to be encrypted. While
the quantities needed to attack DES are still out
of reach, it appears to be quite feasible to trick local
machines into encrypting tens of gigabytes of data.
For some ciphers, such as members of the FEAL
family [Sch96, pp. 308–311], this may be quite suf-
ficient to mount an attack.

4 Key Changes versus SKIP

A central principle behind SKIP [AMP95] is that a
long-lived master key exists implicitly between any
two hosts. But this automatic keying makes it dif-
ficult for a host to delete a key unilaterally. Recent
drafts have addressed this by creating a counter n.
If the value of n in a received packet differs from
the host’s n by more than 1, the packet is rejected.
A host can thus delete keys by bumping its counter
by 2. Unfortunately, the sender’s n is bound to a
coarsely synchronized clock, implying that it would
not know how to use the new key for up to one hour.
Addressing this issue would require long-lived state
about the current offset of n on a per-host basis, or
easy certificate revocation.

5 Defenses

Against many of these attacks, the proper defense
is use of integrity-checking. If a message is properly
checked, it cannot be cut apart. More precisely, all
received messages should be checked for integrity, us-
ing acceptably strong cryptographic techniques. We
note that the current protocols do not have a sepa-
rate mechanism for integrity, as opposed to authen-
tication; however, the authentication transforms do
protect the integrity of the message.
A second generic defense technique is to avoid

reuse of keying material for more than one “connec-
tion”. An attacker cannot cut and paste between

connections if they use different keys; the inserted
material will not decrypt properly.
If this is not feasible, keys should be changed rea-

sonably frequently. For stream ciphers especially, it
is necessary to do this based on time, data received,
and too large a difference in the indicated sequence
number. Recent versions of SKIP [AMP95] have the
proper facilities for doing this; it is imperative that
older ones not be used.
Replay defenses are also a good idea. If per-

connection keying is not used, they are mandatory
in certain contexts; packet authentication will not
help reject a replay of a perfectly valid packet.

6 Conclusions

The attacks described here are troubling. We have
outlined a fair number of very different mechanisms;
we strongly suspect there are others as well. Proper
cryptographic practice will certainly help; however,
there are some very subtle design issues as well, and
these are probably harder to find and fix.
In general, hosts should aim for per-connection or

per-user keying. The former is probably preferable;
the Bad Guys can send evil things to a terminal by
way of email, and then replay them to the X server,
which would have the same userid. Nor is it always
clear who the proper “user” is. Consider the rsh
protocol, where a separate connection is set up for
stderr. To what userid should this second connec-
tion be keyed? Note that while the client program
could in principle be running as either the user or
root at this point, the server has not been informed
of the user’s identity yet.
To avoid some of the chosen plaintext attacks, we

suggest a simple security policy: never reply to a
plaintext message with an encrypted one, and vice
versa. If necessary, an ICMP error message can be
sent, or key negotiation commenced. Furthermore,
SPI pairs should be established by the key negotia-
tion process; messages received via one SPI should
always be replied to using its peer. This puts cer-
tain constraints on the key management process, es-
pecially during rekeying.
It is quite clear that encryption without integrity

checking is all but useless. We strongly recommend
that all systems mandate joint use of the two op-
tions. It is in some sense irrelevant if AH and ESP
are two separate protocols, or if integrity checking is
made an integral part of each ESP transform; how-
ever, the bookkeeping issues may be considerably
simplified if the latter path is chosen. Consider, for
example, the problem of an authentication key expir-
ing independently of the associated encryption key,



or inconsistent pairwise relationships for AH and
ESP. Furthermore, not all combinations are secure;
given the way authentication failures can be used
to compromise secrecy, the authentication transform
must be at least as strong as the secrecy mechanism.
It would seem to make little sense to combine MD5
[Riv92], with its O(264) strength against birthday
attacks, with triple-DES [MKS95b].
These attacks and recommendations, taken in

toto, leave us feeling very nervous about network
layer encryption. It may be that its promise of trans-
parent, ubiquitous security cannot be kept, at least
in general. Use of it when outsiders have access to
the endpoint machines, via either logins or network
services, seems particularly inadvisable. We suggest
that its use be restricted to the following situations:

1. Router-to-router encryption to provide virtual
private networks, in conjunction with a firewall.
Insiders have other means of attack; the fire-
wall should keep outsiders from mounting cho-
sen plaintext attacks on inside machines. There
are still some risks—mail destined for a ma-
chine inside one private cloud could be routed
by the enemy to the mail gateway inside an-
other cloud; the traffic, when relayed, will be
encrypted. There are implications here for the
proper integration of encryption and firewalls;
we will not pursue the matter further here.

2. As a special case of the above, a “call home”
tunnel from a mobile machine to its firewall. A
great deal of care must be taken, though, to en-
sure that the mobile machine does not respond
at all to packets sent to its outside address.

3. Possibly between two single-user hosts, though
the potential for attack here is quite high.

For more general use, we recommend moving
towards the cryptographic processing towards the
transport layer. The semantics are quite clear for
TCP: for each new socket, create a new pair of SPIs.
For UDP, the binding must be between a socket and
every host it has ever communicated with. In either
case, when the socket is destroyed all of its asso-
ciated SPIs must be destroyed as well. Looked at
another way, the incoming SPI is a pointer to the
socket. (A useful side-effect of this policy is that
ICMP messages will work again: the returned por-
tion of the packet will contain the SPI, which points
to the socket.)
A scheme like this could put a heavy load on the

key management protocol. Even a simple set of
rekey messages would add several round trips; for
short exchanges, such as HTTP transfers, this is

probably unacceptable. We suggest that the key ex-
change protocol allocate n SPIs, n probably a power
of 2, where the key for SPIi is some one-way func-
tion of i and the negotiated master key. A host could
start using a new SPI in the allocated range without
further negotiation; to avoid race conditions, the ini-
tiator should start allocating from one end while the
responder allocates from the other. A new group of
SPIs would be allocated when too few were left in
the old group.
The situation is rather more problematic for

things like DNS servers, which would have to main-
tain very many active keys. SKIP would simplify
the situation, as each message could have its own
traffic key Kp; however, it suffers from the flaw that
a receiver has no way to force the sender to use a
different key. Probably, the right answer is to omit
IPSEC entirely for DNS messages, and instead rely
on authenticated DNS records [EK96].

7 Acknowledgments

Some of these specific attacks were first pointed out
by others, including Ashar Aziz of Sun Microsystems
and David A. Wagner of the University of California
at Berkeley. Wagner, Ran Atkinson, Perry Metzger,
and Hilarie Orman made many useful suggestions
about draft versions of this paper.

References

[AMP95] Ashar Aziz, Tom Markson, and Hemma
Prafullchandra. Simple key-management
for Internet protocols (SKIP). Internet
draft; work in progress, December 21, 1995.
(draft-ietf-ipsec-skip-06.txt).

[Atk95a] R. Atkinson. IP authentication header.
Request for Comments (Proposed Stan-
dard) RFC 1826, Internet Engineering
Task Force, August 1995.

[Atk95b] R. Atkinson. IP encapsulating security
payload (ESP). Request for Comments
(Proposed Standard) RFC 1827, Internet
Engineering Task Force, August 1995.

[Atk95c] R. Atkinson. Security architecture for the
internet protocol. Request for Comments
(Proposed Standard) RFC 1825, Internet
Engineering Task Force, August 1995.

[Azi94] Ashar Aziz. Simple key-management for
Internet protocols (SKIP). Obsolete Inter-
net draft, October 25, 1994. (draft-ietf-
ipsec-aziz-skip-00.txt).



[BBJ92] D. Borman, R. Braden, and V. Jacob-
son. TCP extensions for high perfor-
mance. Request for Comments (Proposed
Standard) RFC 1323, Internet Engineer-
ing Task Force, May 1992. (Obsoletes
RFC1185).

[Bel89] Steven M. Bellovin. Security problems
in the TCP/IP protocol suite. Com-

puter Communications Review, 19(2):32–
48, April 1989.

[BS91] Eli Biham and Adi Shamir. Differential
cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

[BS93a] Eli Biham and Adi Shamir. Differen-

tial Cryptanalysis of the Data Encryption

Standard. Springer-Verlag, Berlin, 1993.

[BS93b] Eli Biham and Adi Shamir. Differential
cryptanalysis of the full 16-round DES.
In Advances in Cryptology: Proceedings of

CRYPTO ’92, pages 487–496. Springer-
Verlag, 1993.

[CW96] Germano Caronni and Marcel Waldvogel.
The ESP stream transform. Internet draft;
work in progress, April 1996. (draft-
caronni-esp-stream-00.txt).

[EK96] Donald E. Eastlake, 3rd and Charles W.
Kaufman. Domain name system protocol
security extensions. Internet draft; work
in progress, January 30, 1996. (draft-ietf-
dnssec-secext-09.txt).

[JMM85] Robert R. Jueneman, Stephan M. Matyas,
and Carl H. Meyer. Message authentica-
tion. IEEE Communications, 23(9):29–40,
September 1985.

[MKS95a] P. Metzger, P. Karn, and W. Simpson.
The ESP DES-CBC transform. Request
for Comments (Proposed Standard) RFC
1829, Internet Engineering Task Force, Au-
gust 1995.

[MKS95b] P. Metzger, P. Karn, and W. Simpson.
The ESP triple DES-CBC transform. Re-
quest for Comments (Experimental) RFC
1851, Internet Engineering Task Force, Oc-
tober 1995.

[Mor85] Robert T. Morris. A weakness in the
4.2BSD Unix TCP/IP software. Comput-
ing Science Technical Report 117, AT&T
Bell Laboratories, Murray Hill, NJ, Febru-
ary 1985.

[MS95] P. Metzger and W. Simpson. IP au-
thentication using keyed MD5. Request
for Comments (Proposed Standard) RFC
1828, Internet Engineering Task Force, Au-
gust 1995.

[NBS77] NBS. Data encryption standard, January
1977. Federal Information Processing Stan-
dards Publication 46.

[NBS80] NBS. DES modes of operation, Decem-
ber 1980. Federal Information Processing
Standards Publication 81.

[Pos80] J. Postel. User datagram protocol. Re-
quest for Comments (Standard) STD 6,
RFC 768, Internet Engineering Task Force,
August 1980.

[Pos81a] J. Postel. Internet control message pro-
tocol. Request for Comments (Standard)
STD 5, RFC 792, Internet Engineering
Task Force, September 1981. (Obsoletes
RFC0777).

[Pos81b] J. Postel. Internet protocol. Request for
Comments (Standard) RFC 791, Internet
Engineering Task Force, September 1981.
(Obsoletes RFC0760).

[Pos81c] J. Postel. Transmission control protocol.
Request for Comments (Standard) STD 7,
RFC 793, Internet Engineering Task Force,
September 1981.

[Riv92] R. Rivest. The MD5 message-digest al-
gorithm. Request for Comments (Infor-
mational) RFC 1321, Internet Engineering
Task Force, April 1992.

[Sch96] Bruce Schneier. Applied Cryptography:

Protocols, Algorithms, and Source Code in

C. John Wiley & Sons, New York, second
edition, 1996.

[SG92a] Stuart G. Stubblebine and Virgil D. Gligor.
On message integrity in cryptographic pro-
tocols. In Proc. IEEE Computer Society

Symposium on Research in Security and

Privacy, pages 85–104, Oakland, CA, May
1992.

[SG92b] Stuart G. Stubblebine and Virgil D. Gligor.
On message integrity in cryptographic pro-
tocols. Computer Science Technical Re-
port 2843, University of Maryland, College
Park, MD, February 1992.



[SG93] Stuart G. Stubblebine and Virgil D. Gligor.
Protocol design for integrity protection. In
Proc. IEEE Computer Society Symposium

on Research in Security and Privacy, pages
41–53, Oakland, CA, May 1993.

[VK83] V. L. Voydock and S. T. Kent. Security
mechanisms in high-level network proto-
cols. ACM Computing Surveys, 15(2):135–
171, June 1983.

[WB96] David A. Wagner and Steven M. Bellovin.
A “bump in the stack” encryptor for MS-
DOS systems. In Proceedings of the Sym-

posium on Network and Distributed System

Security, pages 155–160, San Diego, Febru-
ary 1996.

[ZRT95] P. Ziemba, D. Reed, and P. Traina. Se-
curity considerations for IP fragment fil-
tering. Request for Comments (Informa-
tional) RFC 1858, Internet Engineering
Task Force, October 1995.


