
Reputation Systems for Anonymous Networks

Elli Androulaki, Seung Geol Choi, Steven M. Bellovin, and Tal Malkin

Department of Computer Science, Columbia University
{elli,sgchoi,smb,tal}@cs.columbia.edu

Abstract. We present a reputation scheme for a pseudonymous peer-to-peer
(P2P) system in an anonymous network. Misbehavior is one of the biggest prob-
lems in pseudonymous P2P systems, where there is little incentive for proper
behavior. In our scheme, using ecash for reputation points,the reputation of each
user is closely related to his real identity rather than to his current pseudonym.
Thus, our scheme allows an honest user to switch to a new pseudonym keeping
his good reputation, while hindering a malicious user from erasing his trail of evil
deeds with a new pseudonym.

1 Introduction

Pseudonymous System.Anonymity is a desirable attribute to users (or peers)
who participate in peer-to-peer (P2P) system. A peer, representing himself via a
pseudonym, is free from the burden of revealing his real identity when carrying
out transactions with others. He can make his transactions unlinkable (i.e., hard
to tell whether they come from the same peer) by using a different pseudonym
in each transaction. Complete anonymity, however, is not desirable for the good
of the whole community in the system: an honest peer has no choice but to
suffer from repeated misbehaviors (e.g. sending an infected file to others) of a
malicious peer, which lead to no consequences in this perfectly pseudonymous
world.

Reputation System.We present a reputation system as a reasonable solution to
the above problem. In our system, two peers, after carrying out a transaction,
evaluate each other by giving (or not) areputation point. Reputation points as-
signed to each peer sum up to create that peer’s reputation value. In addition,
reputation values are public, which helps peers to decide whether it is safe or
not to interact with a particular peer (more exactly a pseudonym).

Identity Bound Reputation System.We stress that, in our system, the reputation
value is bound to each peer. In existing reputation systems [16, 18], the reputa-
tion value is bound to each pseudonym. Consequently, a new pseudonym of a

In Proceedings of Symposium on Privacy-Enhancing Technologies (PET), 2008.

malicious peer will have a neutral reputation, irrespective of his past evil deeds.
Thus, honest peers may still suffer from future misbehavior. On the other side,
honest users won’t use a new pseudonym, in order to keep the reputation they
have accumulated. Thus, they cannot fully enjoy anonymity and unlinkability.
Motivated by this discussion, our goal in this paper is to design an identity bound
reputation system, combining the advantages of anonymity and reputation.

Our Contribution.First, we formally define security for identity bound reputa-
tion systems (Section 3). As far as we are aware, this is the first such security
definition. Our definition captures the following informal requirements:

– Each peer has a reputation which he cannot lie about or shed. In particu-
lar, though each peer generates as many one time pseudonyms as he needs
for his transactions, all of them must share the same reputation. Also, our
system is robust against a peer’s deliberate attempts to increase his own rep-
utation.

– Reputation are updated and demonstrated in a way that does not compromise
anonymity. In particular, the system maintains unlinkability between the
identity of a peer and his pseudonyms and unlinkability among pseudonyms
of the same peer.

Our second contribution is the construction of a reputationscheme that
satisfies the security definition. It is a nontrivial task to realize a secure iden-
tity bound reputation scheme, as the requirements of anonymity and reputation
maintenance are (seemingly) conflicting. Here, we only briefly give basic ideas
for the construction (see Section 2 for high level description of our scheme and
Section 5 for the detail). To satisfy the first item, we need a central entity,Bank.
Bank, aware of the identity of each peer, keeps reputation accounts by the peer,
and is considered trusted to perform its functional operations — reputation up-
dates etc. — correctly. Since we do not consider Bank trustedin terms of the
anonymity requirements, we need to utilize a two-stage reputation deposit pro-
cedure. For the second item, we use the concept ofe-cash. E-cash is well-suited
to our system since it can be spent anonymously, even to Bank.We also use
other primitives, such as anonymous credential system and blind signatures.

Organization.In Section 2 we provide a high level description of our scheme. In
Section 3 we present our model, including security requirements. The building
blocks used by our system are described in Section 4, followed by a detailed
description of our system in Section 5. Related work and future directions are
discussed in Sections 6 and 7 respectively.

2 System Considerations and High Level Approach

In this section we discuss system considerations and present a high level de-
scription of our scheme.

System Considerations and Assumptions.We assume that all communication
takes place over an anonymous communication network, e.g.,a Mixnet [8] or
an Onion Router [24, 11]. We further assume that this networkis, in fact, secure.
While we are not minimizing the difficulty of achieving that —see, for example,
[15] or [21] — we regard that problem as out of scope for this paper.

We also assume certain out-of-band properties that are necessary for corre-
spondence to the real world. The most important such assumption is that there
is some limit to the number of reputation points any party canhand out per unit
time. While we don’t specify how this limit is set, we tentatively assume that it
costs real money to obtain such points to hand out. This might, for example, be
the daily membership fee for participation in the P2P network. Note that the as-
sumption corresponds quite well to the best-known existingreputation system,
Ebay. One can only dispense reputation points there after making a purchase;
that in turn requires payment of a fee to the auction site. Bhattacharjee and Goel
have derived a model for what this fee should be [4]; they callthe necessary
property “inflation resistance”.

A last assumption is unbounded collusion. That is, any number of parties on
this network may collude to break anonymity of some other party. We specifi-
cally include the bank in this assumption. We assume collusion because in most
real environments, it is possible for one party to open multiple accounts on the
system. It may cost more money, but it does achieve the goal. Since a bank em-
ployee can do the same, we assume that the bank is colluding, too, albeit perhaps
in response to a court order. Even if we assume a foolproof system for restrict-
ing accounts to one per person, two or more people could communicate via a
private back channel, thus effectively creating multiple accounts under control
of a single entity.

On the other hand, the bank is trusted to behave honestly in its functional
transactions, which involve maintenance of reputation levels and repcoins for
each peer (see below). Thus, if the bank is misbehaving (possibly in coalition
with other adversarial users), it can compromise the correctness of the system,
but not the anonymity. It is possible to distribute the bank functionality among
several parties in order to increase fault tolerance and reduce any trust assump-
tions, but we will not describe this here.

Protocol Overview.Bank keeps the record of each peer’s reputation in therepu-
tation database. As shown on the left of Figure 1, a peerU (via his pseudonym

PSfrag

BB

UU MM PUPU PMPM

1: W

2: (S, π)

3: (S, π)

4: blinded σ

5: σ 1: i

2: cred

3

– Reputation granting process (left): (1)U withdraws a walletW (i.e., repcoins) from the Bank
B. (2) U , via PU , awards (i.e., spends) a repcoin(S, π) to M . (3) M , via PM , deposits the
repcoin(S, π). (4) If the deposit is successful,PM obtains fromB a blind permissionσ.
Note thatσ is blind to B and only visible toM . (5) M depositsσ, andB increasesM ’s
reputation point.

– Reputation demonstration process (right): (1)M requests a credential for the groupGi. (2)
If M has enough reputation count forGi, B issues a credentialcred to M . (3) By using
cred, PM proves its membership ofGi to PU .

Fig. 1. Reputation granting and demonstration

PU) can increase the reputation of a pseudonymPM by giving arepcoin,1 which
is basically an e-coin. Bank manages the number of repcoins that each peer has
using another database:repcoin quota database.

Note thatM does not deposit the repcoin using his identity. This is for the
sake of maintaining unlinkability between a pseudonym and apeer. IfM di-
rectly deposited the repcoin, collusion of Bank andU would reveal thatM and
PM are linked. In fact, this shows the difficulty of realizing a secure reputation
scheme: it is not obtained by using an ecash scheme naively. To preserve un-
linkability, we use a level of indirection. WhenPM successfully deposits the
repcoin, it gets a blind permission from Bank. The blind permission is basically
a blind signature, which therefore does not contain any information aboutPM .
So,M can safely deposit the permission.

We chose to employ an anonymous credential system (see Section 4) to
construct the reputation demonstration procedure (on the right side of Figure
1). The anonymous credential enablesM , via his pseudonymPM , to prove his
membership in groupGi anonymously. Thus, unlinkability betweenM andPM

is maintained.
We also note thatPM , instead of revealing its exact reputation value, shows

the membership of a groupGi. Demonstration of exact reputation value could
allow an attacker who continuously queries for the reputation of many pseudonyms
— without even needing to transact with them — to infer whether two pseudonyms

1 If M wants to increase of reputation ofPU , they can carry out the same protocol with their
roles reversed.

correspond to the same user. To make matters worse, with Bank’s collabora-
tion, pseudonyms can be linked to a limited number of identities that have the
exact same reputation value with the pseudonym. On the otherhand, group-
ing together identities which belong to the same reputationlevel, makes small
changes in reputation accounts invisible to other pseudonyms. Bank can still see
the changes that take place in peers’ reputations, but cannot link them to specific
pseudonyms any more. The reputation levels (i.e., groupsGi) are defined as a
system parameter. Reputation levels are not necessarily required to be disjoint.
One example would be thatGi contains peers who has more than2i different
reputation values.

Punishing Misbehaving Parties.When modeling the security of the system, we
aim to achieve our goals (such as anonymity, no lying about reputation level, no
over-awarding reputations beyond the allowed limit, etc.)by rendering a break
of the security computationally infeasible (modulo some standard cryptographic
assumptions). However, some security breaches are impossible to completely
prevent. For example, as long as there is no central party involved on-line in
each transaction, a user can always award the same reppoint twice to different
parties. As another example, if anonymity and unlinkability is to be preserved,
a peer with a high reputation level can always give away all his data and secret
keys to another peer, allowing the latter to claim and prove the high reputation as
his own. In these cases, we build into our model an incentive structure (similar
to previous work, e.g., [19]), whereby such security breaches would hurt the
offender. In particular, for the first case above, we requirethat a double awarding
of a reppoint would reveal the identity of the offender (which can then lead to
consequences outside of our model). For the second case, we require that in
order for Alice to empower Bob, who has a lower reputation level, to prove a
reputation level as high as Alice’s, Alice would have to effectively give Bob
her master private key. This information may be quite sensitive, especially if
the private key used within the reputation system is the sameone used for a
public-key infrastructure outside the system.

3 A Model for Anonymous Reputation Systems

In this section, we present our model for anonymous reputation systems. We
first enumerate the types of entities and the operations considered in the system,
followed by the security definition. The motivation and rationale for our model
and choices were discussed in Section 2. We note that some of these definitions
were inspired by previous work on other primitives, such as [6, 5].

3.1 Participating Entities

The entities in an anonymous reputation system are as follows.

• Peers.Peers are the regular users of a P2P network. A peer interactswith
other peers via pseudonyms of his choice and can be either a User (buyer)
or a Merchant in different transactions. Peers can award reputation points to
other peers (through their pseudonyms), and can show their reputation level
to other peers.
• Bank. Bank manages information with respect to each peer’s reputation (where

the information is tied to actual identities — public keys — of peers, not to
pseudonyms). Specifically, it maintains three databases: the repcoin quota
database (denotedDquota), the reputation database (denotedDrep), and the
history database (denotedDhist).
Dquota holds the amount of repcoins that each peer is allowed to award

to other peers. When a peer withdraws a wallet of repcoins, the amount of
his repcoin quota is decreased correspondingly. Bank also replenishes all the
peer’s account periodically, as per system parameters (forexample, every
day each peer can award at most 20 repcoins to others; see the discussion in
Section 2).Drep contains the amount of reputation points that each peer has
earned by receiving repcoins from other peers. In order to prevent peers from
double-awarding (awarding two peers with same-serial-numbered repcoins),
Dhist holds all the repcoins that are deposited.

3.2 Operations

The operations supported in our system are listed below. When an operation
is an interactive procedure (or a protocol consisting of multiple procedures) be-
tween two entitiesA andB, we denote it by〈OA, OB〉 ← Pro(IC)[A(IA), B(IB)],
wherePro is the name of the procedure (or protocol).OA (resp.OB) is the
private output ofA (resp.B), IC is the common input of both entities, and
IA (resp.IB) is the private input ofA (resp.B). We also note that depending
on the setup, some operations may require additional globalparameters (e.g.,
some common parameters for efficient zero-knowledge proofs, a modulusp,
etc). Our system will need these additional parameters onlywhen using under-
lying schemes that use such parameters, e.g., e-cash systems or anonymous cre-
dential systems. To simplify notation, we omit these potential global parameters
from the inputs to all the operations.

• (pkB, skB)← Bkeygen(1k) is the key generation algorithm for Bank.
• (pkU , skU) ← Ukeygen(1k) is the key generation algorithm for peers. We callpkU the

(master) public key ofU , andskU the master secret key ofU .
• (P, siP) ← Pnymgen(1k) is the pseudonym generation algorithm for peers. ThesiP is the

secret information used to generate the pseudonymP .

• 〈W,D′

quota〉/〈⊥,⊥〉 ← RepCoinWithdraw (pkB, pkU , n) [U(skU), B(skB, Dquota)]. A
peerU tries to withdrawn repcoins (in the form of a walletW) from BankB. Bank, us-
ing Dquota, checks ifU is eligible for withdrawal. If so, the withdrawal is carriedout and
Dquota is changed accordingly.

• 〈(W ′, S, π), (S, π)〉/〈⊥,⊥〉 ← Award (PU , PM , pkB) [U(siPU
, W, pkU , skU), M(siPM

)].
A peerU (via PU), using his walletW , gives a repcoin(S, π) to M (via PM). HereS is a
serial number andπ is the proof of a valid repcoin.

• 〈⊤, (D′

rep, D
′

hist)〉/〈⊥,⊥〉 ← RepCoinDeposit (pkB, S, π) [M(PU , siPU
, pkU , skU), B(

skB, Drep, Dhist)]. A peerM deposits the repcoin into his reputation account. If the repcoin
(S, π) is valid and not double-awarded, then the coin is stored in the history databaseDhist,
and the amount of reputation ofpkM in Drep is increased by one.

• (pkU , ΠG)/⊥ ← Identify(S, π1, π2). If a repcoin is double-awarded with(S, π1) and(S, π2),
Bank can find the peer who double-awarded the coin using this operation. Here,ΠG is a proof
thatpkU double-awarded the repcoin with the serial numberS.

• ⊤/⊥ ← VerifyGuilt(S, ΠG, pkU) outputs⊤ if the peerU (represented bypkU) indeed
double-awarded the coin with the serial numberS.

• 〈Cl

U ,⊤〉/〈⊥,⊥〉 ← RepCredRequest (pkB, pkU , l) [U(skU), B(skB, Drep)]. A peerU
requests a credential that will enableU to prove to another peer that he has reputation level
l. Bank B refers toDrep, and if U has sufficient reputation it issues a credentialCl

U . (As
discussed in Section 2, how exactly the reputation levels are defined is a system parameter).

• 〈⊤,⊤〉/〈⊥,⊥〉 ← ShowReputation (PU1
, PU2

, pkB , l) [U1(skU1
, siPU1

, Cl

U1
), U2(siPU2

)].
A peerU1 (via PU1

) proves toU2 (via PU2
) that he has reputation levell.

3.3 Security

In this section we define security for anonymous reputation systems.

Adversarial Model. We will consider two adversarial models, assuming the
stronger one for the anonymity-related security properties (unlinkability and
exculpability), and the weaker one for the reputation-handling properties (no
over-awarding and reputation unforgeability).

For the weaker adversarial model, we assume Bank ishonest-but-curious,
that is, it follows the protocol specification correctly. All other peers may be-
come malicious, and behave in arbitrary ways in the protocol. Adversarial par-
ties may collude with each other, and as long as they are peers, they may de-
cide to share any of their state or secret information with each other, and co-
ordinate their actions; Bank may share the content of its maintained databases
(Dquota,Drep, andDhist), but not Bank’s secret keys (thus it is meaningful for
Bank to behonest-but-curious, even when in coalition with other players).2

For the stronger adversarial model, we remove the honest-but-curious re-
striction on Bank: we assume all parties (including Bank) may be corrupted,
collaborating with each other, and behaving arbitrarily.

Correctness.
2 Note that if we allowed Bank to share its secret keys and to behave arbitrarily, it could issue

more repcoins than allowed, generate reputation credentials that do not correspond to the
correct reputation level, etc.

• If an honest peerU1, who has enough repcoins in his repcoin quota, runs
RepCoinWithdraw with an honest BankB, then neither will output an error
message; if the peerU1, using the wallet (output ofRepCoinWithdraw), runs
Award with an honest peerU2 (via his pseudonym), thenU2 accepts a repcoin
(S, π); if the peerU2 runsRepCoinDeposit with the honest Bank to deposit
the repcoin(S, π) thenU2’s reputation in Bank will be increased by one.
• If an honest peerU1 runsRepCredRequest with an honest Bank and a rep-

utation level for which he is eligible, thenU1 gets a valid credential. For
a valid credentialC l

U , its owner can always prove his reputation through
ShowReputation(l, C l

U , . . .) procedure.

Unlinkability.
For an adversaryA who has corrupted certain parties including Bank, we say
that a peerU appears consistent with a pseudonymP to A, if U andP ’s owner
are uncorrupted, and if the levels for whichP successfully invokedShowReputation
are a subset of the levels for whichU successfully invokedRepCredRequest. We
now define the following two unlinkability properties:
Peer-Pseudonym Unlinkability.Consider an adversary who, having corrupted
some parties including Bank, is participating in the systemfor some arbitrary
sequence of operations executed by honest and by corrupted parties. Given a
pseudonymP that does not belong to a corrupted party, the adversary can learn
which peer ownsP no better than guessing at random among all non-corrupted
peers that appear consistent withP .
Pseudonym-Pseudonym Unlinkability.Consider an adversary who, having cor-
rupted some peers (but not Bank), is participating in the system for some arbi-
trary sequence of operations executed by honest and corrupted parties. Given
two pseudonymsP1, P2 that do not belong to corrupted parties, the adversary
has no advantage in telling whetherP1, P2 belong to the same peer or not. Next,
consider an adversary who corrupted some peers and Bank as well. Then the
above requirement should hold as long as there areat least twonon-corrupted
peers who appear consistent with bothP1 andP2 (because if there is only one
such uncorrupted peer, clearly both pseudonyms belong to the same one).

No Over-Awarding.
• No collection of peers should be able to award more repcoins than they with-

drew. Suppose thatn peersU1, . . . , Un collude together, and that the sum of
the amount of repcoins allowed to them isN . Then, the number of different
serial numbers of repcoins that can be awarded to other peersis at mostN .
• Suppose that one or more colluding peers run theAward protocol with two

pseudonymsPM1
andPM2

such thatPM1
gets(S, π1) andPM2

gets(S, π2).
Then, we require thatIdentify(S, π1, π2) outputs a public keypkU and a proof
of guilt ΠG such thatVerifyGuilt(pkU , S,ΠG) accepts.

• Each repcoin that is accepted but not double-awarded in theAward protocol
increases exactly one reputation point in the databaseDrep irrespective of the
beneficiary of the repcoin. However, we don’t regard it as a breach of security
when a peerM1 received a repcoin but passed it toM2, who deposited it into
his reputation account; in any event, this is just another form of collusion.
Another justification is that the peerM1 sacrifices one reputation point.

Exculpability.
This property is to protect the honest peer from any kind of framing attack
against him. No coalition of peers, even with Bank, can forgea proofΠG that
VerifyGuilt(pkU , S,ΠG) accepts wherepkU is an honest peerU ’s public key
who did not double-award a repcoin with the serial numberS.

Reputation Unforgeability.
• No coalition of peers, wherel is the highest reputation level of any one of

them, can show a reputation level higher thanl for any of their pseudonyms.
This implies as a special case that a single peer cannot forgehis reputation.
• Consider a peerU with reputation levell, who owns a pseudonymP . Sup-

pose that some coalition of peers has empoweredU with the ability to prove
thatP has reputation levell′ > l. Let Bad be the set of peers with reputation
level at leastl′ among the coalition (note that by the previous requirement,
there must be at least one peer inBad). Then, it must be thatU can learn the
master secret key of a peerU ′ ∈ Bad.

4 Building Blocks of our Scheme

Anonymous Credential Systems.In anonymous credential systems — see, for
example, [19, 6, 3] — there are three types of players:users, organizations, and
verifiers. Users receive credentials, organizations grant and verify the creden-
tials of users, and verifiers verify credentials of the users. Below are the sup-
ported procedures.

• (pkO, skO)← AC.OKeyGen(1k). Key generation algorithm for an organization.(pkO, skO)
denotes the key pair of the organizationO.

• (pkU , skU) ← AC.UKeyGen(1k). Key generation algorithm for a user.(pkU , skU) denotes
the key par of the userU . SometimesskU is called the master secret key ofU .3

3 Anonymous credential systems do not typically require a specific form for the master pub-
lic and secret keys, but assume it is inherited from some PKI,where users are motivated to
keep their secret key secret. In other variations of anonymous credential systems (with all-or-
nothing non-transferability) there is no master public key. Our scheme can be adapted to such
systems as well.

• 〈(N, NSecrN), (N, NLog
N

)〉 ← AC.FormNym(pkO) [U(skU), O(skO)]. Nym 4 genera-
tion protocol betweenU andO, whereN is output nym,NSecrN is secret information with
respect toN , andNLogN is the corresponding log on the organization side.

• 〈credN , CLogcredN
〉 ← AC.GrantCred(N, pkO) [U(pkU , skU , NSecrN), O(skO , NLog

N
)].

Credential granting protocol, wherecredN is a credential for the nymN , andCLogcredN
is

the corresponding log on the organization side.
• 〈⊤,⊤〉/〈⊥,⊥〉 ← AC.VerifyCred(pkO) [U(N, credN), V]. Credential verification proto-

col.
• 〈⊤,⊤〉/〈⊥,⊥〉 ← AC.VerifyCredOnNym (N, pkO, pkO1

) [U(N1, credN1
), O(NLog

N
)].

In this protocol,U proves toO thatN is his valid nym issued byO and thatcredN1
on the

nymN1 issued byO1.

Secure anonymous credential systems satisfy the followingconditions (see
[19, 6, 3] for more details): (1)Unique User for Each Nym.Even though the
identity of a user who owns a nym must remain unknown, the owner should
be unique. (2)Unlinkability of Nyms.Nyms of a user are not linkable at any
time with a probability better than random guessing. (3)Unforgeability of Cre-
dentials.A credential may not be issued to a user without the organization’s
cooperation. (4)Consistency of Credentials.It is not possible for different users
to team up and show some of their credentials to an organization and obtain a
credential for one of them that the user alone would not have gotten. (5)Non-
Transferability.Whenever Alice discloses some information that allows Bob to
user her credentials or nyms, she is effectively disclosingher master secret key
to him.

E-Cash. An e-cash system consists of three types of players: thebank, users
andmerchants. Below are the supported procedures (see [5]).

• (pkB, skB)← EC.BKeyGen(1k) is the key generation algorithm for the bank.
• (pkU , skU)← EC.UKeyGen(1k) is the key generation algorithm for users.
• 〈W,⊤〉 ← EC.Withdraw(pkB, pkU , n) [U(skU), B(skB)]. The userU withdraws a wallet

W of n coins from the bank.
• 〈W ′, (S, π)〉 ← EC.Spend(pkM , pkB, n) [U(W), M(skM)]. The userU spends a coin by

giving it to the merchantM . U gets the updated walletW , andM obtains a coin(S, π) where
S is a serial number andπ is a proof.

• 〈⊤/⊥, L′〉 ← EC.Deposit(pkM , pkB) [M(skM , S, π), B(skB, L)]. M deposits(S, π) into
its account in the bankB. L′ is the updated list of the spent coins (i.e.,(S,π) is added to the
list).

• (pkU , ΠG) ← EC.Identify(S, π1, π2). Given two coins with the same serial number, i.e.,
(S, π1) and(S, π2), B finds the identity of the double-spenderpkU and the corresponding
proofΠG.

• ⊤/⊥ ← EC.VerifyGuilt(S, pkU , ΠG). It verifies the proofΠG that the userpkU is guilty of
double-spending coinS.

Secure e-cash scheme satisfies the following condition: (1)Correctness.If
an honest user runsEC.Withdraw with an honest bank, then neither will output

4 Usually, nym and pseudonym are used interchangeably. But toavoid confusion with the term
pseudonym in our reputation scheme, we stick to the term nym in anonymous credential sys-
tems.

an error message. If an honest user runsEC.Spend with an honest merchant,
then the merchant accepts the coin. (2)Balance.No collection of users and
merchants can ever spend more coins than they withdrew. (3)Identification of
double-spenders.Suppose the bankB is honest, andM1 and M2 are honest
merchants who ran theEC.Spend protocol with the adversary whose public key
is pkU . Suppose the outputs ofM1 andM2 are(S, π1) and(S, π2) respectively.
This property guarantees that, with high probability,EC.Identify(S, π1, π2) out-
puts a keypkU and proofΠG such thatEC.VerifyGuilt(S, pkU ,ΠG) accepts. (4)
Anonymity of users.The bank, even when cooperating with any collection of
malicious users and merchants, cannot learn anything abouta user’s spendings
other than what is available from side information from the environment. (5)
Exculpability.WhenS is a coin serial number not double-spent by userU with
public keypkU , the probability thatEC.VerifyGuilt(S,ΠG, pkU , n) accepts is
negligible.

Blind Signatures.Blind signatures have two types of players: thebankand the
users. A user requests the bank to generate a signature on a messagem. Then
the bank generates a signature without knowing the messagem. Below are the
supported procedures (see [14]).

• (pkB, skB)← BS.KeyGen(1k). Key-generation algorithm for the bankB.
• 〈⊤/⊥, σ/⊥〉 ← BS.Sign(pkB)[B(skB), U(m)]. Signing protocol.
• ⊤/⊥ ← BS.Verify(m, σ, pkB). Verification algorithm.

Secure blind signature scheme satisfies the following conditions: (1) Un-
forgeability. Only the bank who owns the secret keyskB can generate valid
signatures. (2)Blindness.The bankB does not learn any information about the
messagem on which it generates a signatureσ.

5 Anonymous Identity-Bound Reputation System

In this section we describe a general scheme based on any implementation of
the building blocks. See Appendix A for a specific instantiation of the scheme.

E-cash schemes will be used for the implementation of repcoins, blind sig-
natures will be used in repcoin-withdraw and reputation-update procedures, and
anonymous credential systems will be used for the reputation-demonstration
procedures. As we shall see, while the first two are used in a relatively straight-
forward manner, the last one is used in a more complex way, since the reputation
demonstration setting presents a new type of hurdle to overcome if unlinkability
is to be achieved even against colluding bank and peers.

Underlying Protocols and Requirements.Our scheme will work with any im-
plementation of these underlying primitives, as long as themaster public and

secret keys for peers in our system are of the same form as those in the underly-
ing e-cash scheme and anonymous credential system. That is,the key generation
algorithmsUkeygen, EC.UKeyGen, andAC.Ukeygen are all the same.5

Our scheme will also require a zero knowledge proof of knowledge of both
the master secret key corresponding to a master public key, and the secret in-
formation of a nym’s owner (which is given as an output of theAC.FormNym
operation). Thus, when instantiating our scheme with specific primitives, it is
useful to choose underlying primitives that admit efficientproofs of this form
(as we do in the Appendix A).

Setup. We start with the setup procedure on Bank’s side.

- BankB executesEC.BKeyGen procedure of e-cash scheme to create a dig-
ital signature key-pair (pkB , skB). This is the key-pair that will be used for
creating the repcoins. Bank publishespkB .

- B executesBS.BkeyGen procedure of blind signatures scheme to create a
blind signature key pair to be used in the Reputation Depositprocedure (pkb

B ,
skb

B). Bank publishespkb
B .

- B defines fixed reputation levelsli, represented by a groupGi. These “repu-
tation” groups — although managed by Bank — play a role similar to the one
organizations play in anonymous credential systems. For each one of these
groups, Bank runsAC.OKeyGen protocol to generate public-secret key pairs
(pkGi

,skGi
). Bank also publishespkGi

s.
- B does the appropriate setup (if any) for the pseudonym generation. For ex-

ample, this may involve selecting an appropriate algebraicgroupGp.

On the peers’ side, each peerUi invokesEC.UKeyGen to create a master public-
secret keypair(pkUi

, skUi
).

Operations. As mentioned, we assume that messages are exchanged through
perfectly secure channels. The system operations are realized as follows.

1. Generation of Pseudonyms.Each peer generates his own pseudonyms. There
is no particular structure imposed on the pseudonyms, and they need not be cer-
tified or registered with Bank (or any other entity). The onlyrequirement is that
the pseudonym generation leaves the owner with some secret information (e.g.,
the random string used for the generation procedure), such that possession of
this information proves ownership of the pseudonym. We willalso need such
a proof to be executed. Thus, in principle, we can simply use arandom string
r as the secret information andP = f(r) as the pseudonym, wheref is some

5 As discussed in Section 2, an important part our system setupis the assumption that peers are
motivated to keep their master private key secret. For this reason, it is beneficial to have the
master public and private keys be part of an external PKI which is used for other purposes
(e.g., signing documents) outside our system.

one-way function, with an associated zero-knowledge proofof knowledge of the
inverse ofP . However, a more efficient solution is to let the pseudonym gen-
eration procedure to be a digital signature key generation,keeping the signing
key as the secret information and the verification key as the pseudonym. Here,
being able to produce valid signatures will prove ownershipof the pseudonym,
without a need for a zero-knowledge proof.

2. RepCoin Withdrawal.RepCoin Withdrawal takes place between BankB

and a peerU . Both U andB engage inEC.Withdraw procedure of a e-cash
scheme. For simplicity purposes, we assume that a walletW of n repcoins has
been withdrawn. Since the only properties related to repcoins are anonymity of
an honest withdrawer and repudiation of any double spender,the wallet can be
like the one suggested in [5], orn separate digital coins withdrawn through any
known e-cash scheme.

3. Reputation Award.This procedure is executed between two pseudonyms,
one (i.e.,PU) belonging to a peerU and one (i.e.,PM) belonging to a peerM .
Both engage inEC.Spend protocol of a e-cash scheme. However, this protocol
takes place strictly between the two pseudonymsPU andPM instead of involv-
ing the actual identitiesU andM . Thus,PU gives a repcoin toPM , where no
information about identities of the parties involved is revealed.

4. Reputation Update.This protocol is invoked when a peerM wants to in-
crease his reputation based on the repcoins that his pseudonyms have received
since the last time he updated his reputation record. As previously discussed,
maintaining unlinkability between a pseudonym and its owner is a crucial fea-
ture of our system. Towards this end, a single interaction for update (with a
merchant presenting himself to Bank either as a peer or as a pseudonym) will
not work, as we explain below.

Assume peerM wants to deposit a repcoin he received asPM from pseudonym
PU of UserU . Note that no one exceptM knows who is the owner ofPM . Given
the fact thatU knows the exact form of the repcoin he gave toM , if M tried to
deposit the repcoin by presenting himself asM to Bank, a collusion of Bank and
U would reveal thatM is the owner ofPM . Trying to solve this by lettingM
“rerandomize” the repcoin in some way before depositing it presents problems
for enforcing the no over-awarding requirement. On the other hand, if Reputa-
tion Update procedure was done by the pseudonymPM of M , there would be a
problem in persuading the Bank to updateM ’s record without revealing thatM
is the owner ofPM .

Therefore, our Reputation Update protocol has two stages. First, PM con-
tacts Bank and gets a blind permission from it that shows a repcoin has been
deposited and is valid. Second,M deposits that blind permission. In particular,
the following procedure takes place:

4.1 Obtaining Blind Permission. PeerM executesEC.Deposit procedure
of e-cash scheme using his pseudonymPM , but here the actual deposit does
not happen. Rather, if BankB accepts the repcoin,M gets fromB a blind
signature on a random message. That is,PM sends toB a repcoin that it has
received. IfB accepts the coin as valid,PM chooses a random messageC

and gets a blind signature ofC: σb
B . We call(C, σb

B) ablind permission.
4.2 Deposit of the Blind Permission. M sendsB the permission(C, σb

B).
Then,B checks if the tuple is fresh and increases the reputation ofM .

5. Reputation Demonstration.This protocol is invoked when one peer wants to
demonstrate his reputation to another peer, both interacting strictly through their
pseudonyms. We will utilize predefined groupsGi corresponding to reputation
levelsli, which are managed by Bank. For a peerU who wants, viaPU , to prove
his reputation levelli to a pseudonymPV of a peer-verifierV , the protocol
proceeds as follows:

- If he has not done it before,U contacts the bank to register in the groupGi

that corresponds to the desired reputation levelli. U interacts withGi (Bank)
by invoking AC.FormNym protocol of a anonymous credential system, in
order to generate a nymN li

U for U under that group.6 (U can generate as
many nyms as he wants.)

- U contactsGi, providing its master publicpkU key and a zero knowledge
proof of knowledgeπ that he possesses the corresponding master secret key
skU . U also presentsN li

U and a zero-knowledge proofπN that it has been
created correctly and he is the owner.

- Gi checks thatU is valid and that his reputation is indeed in that group (or
higher), and executesAC.GrantCred to generate a credentialC li

N for N li
U .

- U interacts with the verifierPV under his pseudonymPU . PU proves by ex-
ecutingAC.VerifyCred that he possesses a credential from groupGi. Specif-
ically, PU proves that its owner has registered under a nym toGi and has
acquired — through that nym — a credential of membership.

5.1 Security

The following theorem states the correctness and security of our general scheme.
For lack of space, we refer the reader to our technical report[1] for proofs.

6 Recall that there is a big difference between pseudonyms andnyms. As discussed before,
Pseudonyms are public-secret key-pairs, used as means to preserve peers’ anonymity when
involved in transactions. A nym of a peer will be associated with a particular reputation group.
Bank, as the manager of the reputation groups, will be able tolink the nyms with the peer iden-
tities (master public key). In contrast, unlinkability of peers and pseudonyms is maintained, as
per our security definitions.

Theorem 1. If the underlying primitives (anonymous credential system, e-cash
system, and blind signatures) are secure, then our scheme satisfiescorrectness,
peer-pseudonym unlinkability, pseudonym-pseudonym unlinkability, no over-
awarding, exculpability, andreputation unforgeability.

5.2 Practical Issues

In the absence of a concrete implementation, it is hard to make concrete state-
ments about practical issues. Furthermore, our main resultis a framework which
can accomodate different algorithms That said, there are atleast two areas that
deserve further attention, performance and system security.

In general, our protocol is neither real-time nor high-performance. We are
not proposing per-packet operations; most of what we do is per-user or per-
purchase. As such, real-time performance is not critical; in particular, there are
no bottleneck nodes.

A full performance analysis is given in [1]. Here, we note that all of our
primitive operations areO(1) in system size. That is, there are no design ele-
ments in our scheme whose performance degrades as the size ofthe system in-
creases. Similarly, no operation takes more than a few messages; all areO(k +
w) in message size, wherek andw are security parameters. More details for our
specific instantiation are given in Appendix A.

In addition to the anonymous peer-to-peer communication necessary for the
underlying application, there is now a new communications path: from each
party to the bank. Parties who are engaging in our protocol will need to con-
tact the bank. This provides another channel that might be detected by, say, the
attacks described in [15]. Indeed, there may exists a sort of“meta-intersection
attack” [9]: the peer-to-peer traffic alone may not be suspicious, but it when
coupled with conversations with the bank might be sufficientfor identification.

A second area for security concern is CPU consumption. Our scheme (see
Appendix A) requires public key operations; these are CPU-intensive. An at-
tacker who has identified a candidate participant in real-time might be able to
connect to it — we are, after all, talking about peer-to-peersystems — and mea-
sure how long its own communications take. The obvious defense is to make
sure that any given operation takes constant time; in turn, this likely means pre-
configuring each peer node with a maximum number of concurrent connections
supported.

6 Related Work

A number of papers have addressed the issue of reputation andprivacy.

There are many papers on reputation systems for peer-to-peer networks.
Most focus on building distributed reputation systems, rather than worrying
about privacy; [12] is typical.

The difficulty of building systems like this is outlined by Dingledine, Math-
ewson, and Syverson [10]. They present a number of similar systems and show
why bolting on reputation is hard.

A typical approach is typified by [26], who incorporate privacy into their
scheme. However, their system does not provide unlinkability. It also requires a
trusted “observer” module for full functionality.

The work by Kinateder et al. [16, 18] is close to ours. The system in [16]
differs from ours in two notable ways. First, its reputations are linkable. In-
deed, they see this as a virtue, in that recommendations can be weighted de-
pending on the reputation of the recommender. Second, they assume a trusted
hardware module (i.e., a TPM chip) on every endpoint. In [18], they describe a
more general system based on UniTEC [17]. Reputation statements are signed
by a pseudonym’s private key. Unlinkability is achieved by switching public
keys. Apparently, the UniTEC layer can share reputations between different
pseudonyms, but the authors do not explain how this is done. Presumably, this is
handled by bookkeeping at that layer. More seriously, although they assert that
a trusted module is desirable but not necessary, they do not explain how that
could work, and in particular how they can prevent cheating.

Pavlov et al. [22] present a system, based on secret-sharing, which has many
of the same properties as ours. However, it depends on locating “witnesses”,
other parties with knowledge of the target’s reputation. Ina sufficiently-large
community with a low density of interaction, this may be difficult. Furthermore,
it does not provide unlinkability; witness testify about a known party’s past be-
havior.

Another work related to ours is Voss [25] and Steinbrecher [23]. In both
of the systems, users interact with each other through pseudonyms, and repu-
tation is strongly connected to identities. In fact, in [25]reputation points are
implemented as coins, which may have positive or negative value. However, in
both cases, Trusted Third Parties7 are required to ensure unlinkability between
identities and pseudonyms.

Approaches other than reputation systems have also been presented to deal
with misbehaving users in anonymous or pseudonymous systems. Belenkiy et
al. [2] make use of endorsed e-cash to achieve fair and anonymous two-party
protocol wherein parties buy or barter blocks of data. Whereas e-cash stands for
reputation in our scheme, e-cash stands for actual money in their scheme; a peer
uses e-cash to buy data from other peers. Johnson et al. [13] focus on protecting

7 In [23] TTP appear in the form of designated identity providers.

a service in Tor from a malicious user without blocking all the exit Tor nodes.
In particular, they present a protocol where misbehaving anonymous users are
blacklisted by servers.

7 Future Directions

A few interesting open problems remain.
First, our current scheme uses unit coins for reputation. That is, all repu-

tation credits are worth the same amount. It would be nice to permit variable
values; we suspect that this is easy.

More seriously, we do not have negative feedback. There is a vast difference
between knowing that a seller has performed well onm transactions and know-
ing that that seller has performed well onm out of n. The difficulty is forcing
the seller to commit to depositing a coin indicating bad behavior; most sellers
know when they have done something wrong. In the technical report [1], we
developed a partial solution. The scheme does not satisfy the complete unlink-
ability requirement stipulated in our definition, as Bank knows the number of
transactions a peer had interacted in as a seller (modulo this information being
leaked, all anonymity requirements are preserved).

Finally, we would like to get rid of the bank, which in our scheme is trusted
to maintain reputation balances correctly (though not trusted from the privacy
perspective). A fully decentralized scheme would eliminate single points of fail-
ure, and would be more in keeping with a widespread, anonymous, peer-to-peer
network. Note that this would require two significant changes: using a digi-
tal cash scheme that does not require a central bank, and devising some other
mechanism for inflation resistance.

Acknowledgment

We are grateful to Moti Yung for useful discussions regarding this work. We
would like to thank Patrick Tsang, Apu Kapadia, and anonymous referees for
helpful comments on the paper.

References

1. Elli Androulaki, Seung Geol Choi, Steven M. Bellovin, andTal Malkin. Reputation sys-
tems for anonymous networks. Technical Report CUCS-029-07, Computer Science Dept.,
Columbia University, 2007. http://www.cs.columbia.edu/research/publications.

2. Mira Belenkiy, Melissa Chase, C. Christopher Erway, JohnJannotti, Alptekin Küpçü, Anna
Lysyanskaya, and Eric Rachlin. Making p2p accountable without losing privacy. InWPES,
pages 31–40, 2007.

3. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures
and noninteractive anonymous credentials. InTCC, pages 356–374, 2008.

4. Rajat Bhattacharjee and Ashish Goel. Avoiding ballot stuffing in ebay-like reputation sys-
tems. InP2PECON, pages 133–137, 2005.

5. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya.Compact e-cash. InEURO-
CRYPT, pages 302–321, 2005.

6. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. InEUROCRYPT, pages 93–118, 2001.

7. Jan Camenisch and Markus Stadler. Effcient group signature schemes for large groups. In
CRYPTO, pages 410–424, 1997.

8. David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.Com-
mun. ACM, 24(2):84–88, 1981.

9. George Danezis and Andrei Serjantov. Statistical disclosure or intersection attacks on
anonymity systems. InInformation Hiding, pages 293–308, 2004.

10. Roger Dingledine, Nick Mathewson, and Paul Syverson. Reputation in p2p anonymity sys-
tems. InWorkshop on Economics of Peer-to-Peer Systems, 2003.

11. Roger Dingledine, Nick Mathewson, and Paul F. Syverson.Tor: The second-generation
onion router. InUSENIX Security Symposium, pages 303–320, 2004.

12. Minaxi Gupta, Paul Judge, and Mostafa Ammar. A reputation system for peer-to-peer net-
works. InNOSSDAV, 2003.

13. Peter C. Johnson, Apu Kapadia, Patrick P. Tsang, and SeanW. Smith. Nymble: Anonymous
ip-address blocking. InPrivacy Enhancing Technologies, pages 113–133, 2007.

14. Ari Juels, Michael Luby, and Rafail Ostrovsky. Securityof blind digital signatures (extended
abstract). InCRYPTO, pages 150–164, 1997.

15. Dogan Kesdogan, Dakshi Agrawal, Vinh Pham, and Dieter Rautenbach. Fundamental limits
on the anonymity provided by the mix technique. InS&P, pages 86–99, 2006.

16. Michael Kinateder and Siani Pearson. A privacy-enhanced peer-to-peer reputation system.
In EC-Web, pages 206–215, 2003.

17. Michael Kinateder and Kurt Rothermel. Architecture andalgorithms for a distributed repu-
tation system. IniTrust, pages 1–16, 2003.

18. Michael Kinateder, Ralf Terdic, and Kurt Rothermel. Strong pseudonymous communication
for peer-to-peer reputation systems. InSAC, pages 1570–1576, 2005.

19. Anna Lysyanskaya, Ronald Rivest, Amit Sahai, and StefanWolf. Pseudonym systems. In
SAC, pages 184–199, 1999.

20. Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. InCRYPTO, pages 31–53, 1992.

21. Lasse Øverlier and Paul F. Syverson. Locating hidden servers. InS&P, pages 100–114,
2006.

22. Elan Pavlov, Jeffrey S. Rosenschein, and Zvi Topol. Supporting privacy in decentralized
additive reputation systems. IniTrust, pages 108–119, 2004.

23. Sandra Steinbrecher. Design options for privacy-respecting reputation systems within cen-
tralised internet communities. InSEC, pages 123–134, 2006.

24. Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous connections and
onion routing. InIEEE Symposium on Security and Privacy, pages 44–54, 1997.

25. Marco Voss. Privacy preserving online reputation systems. In International Information
Security Workshops, pages 245–260, 2004.

26. Marco Voss, Andreas Heinemann, and Max Muhlhauser. A privacy preserving reputation
system for mobile information dissemination networks. InSECURECOMM, pages 171–
181, 2005.

A An Example of Scheme Instantiation

In this section we give a specific instantiation of our scheme, where we make
use of the anonymous credential system by Camenisch and Lysyanskaya [6]
(denoted byCL), the e-cash scheme by Camenisch et al. [5] (denoted byCHL),
and the blind signature scheme by Okamoto [20] (denoted byOk). We do so
in order to present a concrete and efficient construction (weinclude the effi-
ciency analysis, relying on that of the underlying primitives, with each of the
operations).

Setup(1k).
BankB does the setup as follows:

- B executesCHL.BKeygen(1k) to generate an e-cash key pair (pkec
B , skec

B),
and publishespkec

B = (gec, ĝec, g̃ec).
- B executesOk.KeyGen(1k) to generate a blind signature key pair (pkbs

B , skbs
B)

and publishespkbs
B .

- For each reputation groupGi (1 ≤ i ≤ k), B executesCL.OKeyGen(1k) to
generate the anonymous credential system key pair(pk

aci

B , sk
aci

B) for Gi, and
publishespkaci

B = (naci
, aaci

, baci
, daci

, gaci
, haci

).
- B creates a cyclic groupGp = 〈gp〉 of orderp = Θ(2k) where the DDH

assumption holds. This algebraic group is used for pseudonym generation on
the peer’s side.

On the peers’ side, each peerU executesCHL.UKeyGen(1k) to obtain (pkU ,
skU) = (gxU

ec , xU), and publishespkU . Note thatxU will be used as the master
secret key ofU in the anonymous credential system (and this discrete-log based
key is a reasonable choice for a more general PKI key as well).

Operations.

1. Generation of Pseudonyms.Each peer generates his pseudonyms locally us-
ing Gp. Specifically, he chooses a random numberri ∈ Zp and computegri

p .
The valuegri

p is considered a pseudonymP i
U of peerU .

2. RepCoin Withdrawal.A peer U executesCHL.Withdraw with Bank, and
obtains a walletW of 2w repcoins. This procedure takesO(1) exponentiations
andO(1) rounds.

3. Reputation Award.A pseudonymPU gives a repcoin toPM by executing
CHL.Spend with PM . This procedure also takesO(1) exponentiations andO(1)
rounds.

4. Reputation Update.

4.1 Obtaining Blind Permission. A pseudonymPM and BankB partici-
pate inCHL.Deposit protocol, which takesO(1) exponentiations andO(1)

rounds. IfCHL.Deposit accepts,PM acquires the blind permissionσbs
B =

Ok.Sign(skbs
B , rperm) whererperm is a random message. Obtaining the blind

permission takesO(1) exponentiations andO(1) rounds.
4.2 Deposit of the Blind Permission. M (the owner ofPM) sendsσbs

B to B.
B checks if the permission(rperm, σbs

B) is fresh; if so, it increasesM ’s repu-
tation value. This procedure takesO(1) exponentiations andO(1) rounds.

5. Reputation Demonstration.Suppose that a pseudonymPU asksPM to demon-
strate its reputation level, and thatM (the owner ofPM) wants to show toPU

that it belongs toGi, i.e., his reputation is at least at levelli.

- Obtaining a nym under Gi. M contacts BankB and executesCL.FormNym
with respect toGi

8. LetN li
M be the nym thatM obtained from this procedure.

Note thatN li
M is of the form:gxU

aci
· hr

aci
. This takesO(1) exponentiations and

O(1) rounds.
- Obtaining a credential for Gi. M contactsB, and he sendsB the message

(pkM , N li
M). Then,M executes withB a zero-knowledge proof of knowledge

PK{(α, β) : pkM = gα
ec, N

li
M = gα

aci
· hβ

hi
}.9

This takesO(1) exponentiations andO(1) rounds.
Now, B verifies the proof. If the proof is verified so thatM is eligible for a

credential of the groupGi, B executes theCL.GrantCred (protocol4) with re-
spect toGi. LetCli be the output credential. This takesO(1) exponentiations
andO(1) rounds.

- Showing reputation using the credential. PM contactsPU and executes
CL.VerifyCred (protocol3) with respect toGi to prove that owner ofPM

has a credential for the groupGi. This takesO(1) exponentiations andO(1)
rounds.

8 We use bothprotocol1 and protocol6 of [6] instead of justprotocol1 to ensure the non-
transferability of credentials.

9 This proof can be parsed as “I know the exponentα andβ that was used in generatingpkM

andN li

M
”. See [7, 6] for more detail. The proof can be regarded as an authentication procedure.

