
A Look Back at “Security Problems in the TCP/IP Protocol Suite”

Steven M. Bellovin
AT&T Labs—Research

bellovin@acm.org

Abstract

About fifteen years ago, I wrote a paper on security prob-
lems in the TCP/IP protocol suite, In particular, I focused on
protocol-level issues, rather than implementation flaws. It
is instructive to look back at that paper, to see where my fo-
cus and my predictions were accurate, where I was wrong,
and where dangers have yet to happen. This is a reprint of
the original paper, with added commentary.

1. Introduction

The paper “Security Problems in the
TCP/IP Protocol Suite” was originally pub-
lished in Computer Communication Re-
view, Vol. 19, No. 2, in April, 1989. It was a
protocol-level analysis; I intentionally did not
consider implementation or operational is-
sues. I felt—and still feel—that that was the
right approach. Bugs come and go, and ev-
eryone’s operational environment is different.
But it’s very hard to fix protocol-level prob-
lems, especially if you want to maintain com-
patibility with the installed base.

This paper is a retrospective on my orig-
inal work. New commentary is shown in-
dented, in a sans serif font. The original
text is otherwise unchanged, except for pos-
sible errors introduced when converting it
from troff to LATEX. I’ve left the references in-
tact, too, even if there are better versions
today. The reference numbers and pag-
ination are, of course, different; the sec-
tion numbers remain the same, except for
a new “Conclusions” section. As a gen-
eral rule, the commentary follows the section
it’s discussing.

It helps to understand where this paper
came from. When I started work at Bell Labs
Murray Hill in 1982, I assumed ownership of

1 1

2
of the first three pieces of Ethernet ca-

ble in all of AT&T, then a giant monopoly tele-
phone company. My lab had one cable, an-
other lab had a second, and a “backbone”
linked the two labs. That backbone grew, as
other labs connected to it. Eventually, we
scrounged funds to set up links to other Bell
Labs locations; we called the resuling net-
work the “Bell Labs Internet” or the “R&D In-
ternet”, the neologism “Intranet” not having
been invented.

Dedicated routers were rare then; we gen-
erally stuck a second Ethernet board into a
VAX or a Sun and used it to do the routing.
This mean that the routing software (we used
Berkeley’s routed) was accessible to system
administrators. And when things broke, we
often discovered that it was a routing prob-
lem: someone had misconfigured their ma-
chine. Once, we found that someone had
plugged a new workstation into the Murray
Hill backbone, rather than into his depart-
ment’s network; worse yet, the (proprietary)
address assignment software on his machine
didn’t see any (proprietary) address assign-
ment servers on that network, so it allocated
.1—the gatewayy router—to itself. These two
situations worried me; it was clear that any-
thing that could happen by accident could be
done deliberately, possibly with serious con-
sequences.

Several other things focused my atten-
tion on security even more. One was Robert
Morris’ discovery of sequence number
guessing attacks; these are discussed ex-
tensively below. Another was the “Shadow
Hawk” incident—a teenager broke into var-
ious AT&T computers [2]. He was detected
when he tried to use uucp to grab pass-
word files from various Research machines;
a number of us had installed detectors for ex-
actly that sort of activity, and noticed the un-



usual behavior. At that, we were lucky—most
of the connectivity within AT&T was via the
proprietary Datakit network, which he didn’t
know how to exploit.

By the time of the Internet worm of 1988,
this paper was already in substantially its cur-
rent form. The result was an analysis (to the
best of my ability; I was relatively new to se-
curity at the time) of protocol-level problems
in TCP/IP.

The original paper was criticized in [54].
Some of the criticisms were valid; some, in
my opinion, were not. At the time, I chose
not to publish a detailed rebuttal; I will not
do so here. I have, where appropriate, noted
where my analysis was especially incorrect. I
did and do feel that my conclusions were sub-
stantially correct.

The TCP/IP protocol suite [41, 21] which is very widely
used today, was developed under the sponsorship of the De-
partment of Defense. Despite that, there are a number of se-
rious security flaws inherent in the protocols. Some of these
flaws exist because hosts rely on IP source address for au-
thentication; the Berkeley “r-utilities” [22] are a notable ex-
ample. Others exist because network control mechanisms,
and in particular routing protocols, have minimal or non-
existent authentication.

When describing such attacks, our basic assumption is
that the attacker has more or less complete control over
some machine connected to the Internet. This may be due
to flaws in that machine’s own protection mechanisms, or it
may be because that machine is a microcomputer, and inher-
ently unprotected. Indeed, the attacker may even be a rogue
system administrator.

1.1. Exclusions

We are not concerned with flaws in particular implemen-
tations of the protocols, such as those used by the Internet
“worm” [95, 90, 38] Rather, we discuss generic problems
with the protocols themselves. As will be seen, careful im-
plementation techniques can alleviate or prevent some of
these problems. Some of the protocols we discuss are de-
rived from Berkeley’s version of the UNIX system; others
are generic Internet protocols.

We are also not concerned with classic network attacks,
such as physical eavesdropping, or altered or injected mes-
sages. We discuss such problems only in so far as they are
facilitated or possible because of protocol problems.

For the most part, there is no discussion here of
vendor-specific protocols. We do discuss some prob-
lems with Berkeley’s protocols, since these have be-

come de facto standards for many vendors, and not just for
UNIX systems.

One of the criticisms in [54]) was that I
had lumped Berkeley-specific protocols to-
gether with standardized protocols described
in RFCs. It’s quite clear from the preceed-
ing paragraph that I understood the differ-
ence. However, the use of address-based
authentication—a major flaw that I criti-
cize throughout the paper—was peculiar to
Berkeley’s software; I did not make that dis-
tinction clear. It is indeed a bad way to do au-
thentication, but it was not blessed by any
official standard.

2. TCP Sequence Number Prediction

One of the more fascinating security holes was first de-
scribed by Morris [70]. Briefly, he used TCP sequence num-
ber prediction to construct a TCP packet sequence without
ever receiving any responses from the server. This allowed
him to spoof a trusted host on a local network.

The normal TCP connection establishment sequence in-
volves a 3-way handshake. The client selects and transmits
an initial sequence number ISNC , the server acknowledges
it and sends its own sequence number ISNS , and the client
acknowledges that. Following those three messages, data
transmission may take place. The exchange may be shown
schematically as follows:

C → S : SYN(ISNC)

S → C : SYN(ISNS), ACK(ISNC)

C → S : ACK(ISNS)

C → S : data
and/or

S → C : data

That is, for a conversation to take place, C must first hear
ISNS , a more or less random number.

Suppose, though, that there was a way for an intruder X

to predict ISNS . In that case, it could send the following se-
quence to impersonate trusted host T :

X → S : SYN(ISNX), SRC = T

S → T : SYN(ISNS), ACK(ISNX)

X → S : ACK(ISNS), SRC = T

X → S : ACK(ISNS), SRC = T, nasty − data

Even though the message S → T does not go to X , X

was able to know its contents, and hence could send data.
If X were to perform this attack on a connection that al-
lows command execution (i.e., the Berkeley rsh server), ma-
licious commands could be executed.



How, then, to predict the random ISN? In Berkeley sys-
tems, the initial sequence number variable is incremented
by a constant amount once per second, and by half that
amount each time a connection is initiated. Thus, if one ini-
tiates a legitimate connection and observes the ISNS used,
one can calculate, with a high degree of confidence, ISN′

S

used on the next connection attempt.
Morris points out that the reply message

S → T : SYN(ISNS), ACK(ISNX)

does not in fact vanish down a black hole; rather, the real
host T will receive it and attempt to reset the connection.
This is not a serious obstacle. Morris found that by im-
personating a server port on T , and by flooding that port
with apparent connection requests, he could generate queue
overflows that would make it likely that the S → T mes-
sage would be lost. Alternatively, one could wait until T

was down for routine maintenance or a reboot.

I mischaracterized Morris’ paper on this
point. While flooding can work—without ex-
plicitly stating it, I anticipated the denial
of service attacks that started occurring in
1996—Morris in fact exploited an imple-
mentation error in the Berkeley kernel to
accomplish his goal with many fewer pack-
ets. That flaw (described in [10] as well as
in Morris’ paper) received very little atten-
tion at the time, and was not fixed until many
years later.

For that matter, sequence number attacks
received little attention outside of my pa-
per, until Kevin Mitnick reimplemented Mor-
ris’ idea and used it to attack Tsutomu Shi-
momura [93]. Shimomura then proceeded to
track down Mitnick.

A variant on this TCP sequence number attack, not de-
scribed by Morris, exploits the netstat [86] service. In this
attack, the intruder impersonates a host that is down. If net-
stat is available on the target host, it may supply the nec-
essary sequence number information on another port; this
eliminates all need to guess.1

The Berkeley implementation of netstat was
dangerous, but not for the reasons that I gave
here. It did list the open ports on the machine,
as well as all current connections; both items
are very valuable to would-be attackers. In-
deed, discovering the former is a major piece
of functionality of many attack tools. Fortu-
nately, even in 1989 netstat was not available

1 The netstat protocol is obsolete, but is still present on some Internet
hosts. Security concerns were not behind its elimination.

by default on any 4.2BSD or 4.3BSD systems.
There were still TOPS-20 systems on the net
at that time; those systems had a vulnera-
ble netstat, a fact I refrained from mentioning
for fear of pointing attackers at targets. Ac-
tual output is shown in Figure 1.

There are several salient points here. The
first, of course, which I stressed at the time,
is that address-based authentication is very
vulnerable to attack. I will return to this point
later. A second point is a threat I mention
later, but not in this context: if you know the
sequence numbers of an active session, you
can hijack it. This attack was implemented a
few years later by Joncheray [53].

A more important point (and this is one
made in [54]) is that the r-utilities are implic-
itly relying on TCP sequence numbers—and
hence on TCP session correctness—for se-
curity properties. However, TCP was never
designed to be a secure protocol, nor were
there ever any guarantees about the proper-
ties of the sequence number. The underly-
ing issue is this: what properties of a layer
are “exported” to a higher layer? Assuming
too much at any higher later is a mistake; it
can lead to correctness failurs as well as to
security failures. For that matter, it is neces-
sary to inquire even more closely, even of se-
quence numbers in a security protocol: what
properties are they guaranteed to have? Are
they simply packet sequence numbers, or
can they be used as, say, the initialization
vector for counter mode encryption [35]?

Was there a security problem? Yes, there
certainly was, as demonstrated graphically
a few years later in the Mitnick vs. Shimo-
mura incident. But the architectural flaw was
the assumption that TCP sequence num-
bers had security properties which they did
not. (Ironically, I have Heard that analyses of
the security properties of sequence numbers
were, in fact, done in the classified world—
and they concluded that such attacks were
not feasible. . . )

The sequence number attack story isn’t
over. In 2004, Watson observed that TCP
reset packets were honored if the RST bit
was set on a packet whose initial sequence
number was anywhere within the receive win-
dow (see US-CERT Technical Cyber Security
Alert TA04-111A). On modern systems, the
receive window is ofen 32K bytes or more,



JCN STATE LPORT FPORT FGN-HOST R-SEQUENCE S-SEQUENCE SENDW
0,-1 -3-.EST.OOPA--- 15 2934 ATT.ARPA 333888001 760807425 4096
6,6 FIN.FIN.--P---- 15 0 0,0,0,0 0 0 0
6,5 FIN.FIN.--P---- 79 0 0,0,0,0 0 0 0
0,21 -3-.EST.O-PAV-- 23 4119 26,1,0,16 2928942175 701235845 319
0,2 -3-.EST.O-PAV-- 23 1792 192,33,33,115 739613342 660542923 4096

Figure 1. Output from a TOPS-20 netstat command. Note the “send” and ”‘receive” sequence num-
bers. The first line in the status display is the session I used to retrieve the data.

which means that it takes less than 217 tri-
als to generate such a packet via a blind at-
tack. That sounds like a lot of packets, and it’s
only a denial of service attack, but for long-
lived sessions (and in particular for BGP [84]
sessions between routers), it’s quite a feasi-
ble attack. Furthermore, tearing down a sin-
gle BGP session has wide-spread effects on
the global Internet routing tables.

Defenses

Obviously, the key to this attack is the relatively coarse
rate of change of the initial sequence number variable on
Berkeley systems. The TCP specification requires that this
variable be incremented approximately 250,000 times per
second; Berkeley is using a much slower rate. However, the
critical factor is the granularity, not the average rate. The
change from an increment of 128 per second in 4.2BSD to
125,000 per second in 4.3BSD is meaningless, even though
the latter is within a factor of two of the specified rate.

Let us consider whether a counter that operated at a true
250,000 hz rate would help. For simplicity’s sake, we will
ignore the problem of other connections occurring, and only
consider the fixed rate of change of this counter.

To learn a current sequence number, one must send a
SYN packet, and receive a response, as follows:

X → S : SYN(ISNX)

S → X : SYN(ISNS), ACK(ISNX) (1)

The first spoof packet, which triggers generation of the next
sequence number, can immediately follow the server’s re-
sponse to the probe packet:

X → S : SYN(ISNX), SRC = T (2)

The sequence number ISNS used in the response

S → T : SYN(ISNS), ACK(ISNX)

is uniquely determined by the time between the origination
of message (1) and the receipt at the server of message (2).
But this number is precisely the round-trip time between X

and S. Thus, if the spoofer can accurately measure (and pre-
dict) that time, even a 4 µ-second clock will not defeat this
attack.

How accurately can the trip time be measured? If we as-
sume that stability is good, we can probably bound it within
10 milliseconds or so. Clearly, the Internet does not exhibit
such stability over the long-term [64], but it is often good
enough over the short term.2 There is thus an uncertainty
of 2500 in the possible value for ISNS . If each trial takes
5 seconds, to allow time to re-measure the round-trip time,
an intruder would have a reasonable likelihood of succeed-
ing in 7500 seconds, and a near-certainty within a day. More
predictable (i.e., higher quality) networks, or more accurate
measurements, would improve the odds even further in the
intruder’s favor. Clearly, simply following the letter of the
TCP specification is not good enough.

We have thus far tacitly assumed that no processing takes
places on the target host. In fact, some processing does take
place when a new request comes in; the amount of variabil-
ity in this processing is critical. On a 6 MIPS machine, one
tick—4 µ-seconds—is about 25 instructions. There is thus
considerable sensitivity to the exact instruction path fol-
lowed. High-priority interrupts, or a slightly different TCB
allocation sequence, will have a comparatively large effect
on the actual value of the next sequence number. This ran-
domizing effect is of considerable advantage to the target. It
should be noted, though, that faster machines are more vul-
nerable to this attack, since the variability of the instruction
path will take less real time, and hence affect the increment
less. And of course, CPU speeds are increasing rapidly.

This suggests another solution to sequence number at-
tacks: randomizing the increment. Care must be taken to use
sufficient bits; if, say, only the low-order 8 bits were picked
randomly, and the granularity of the increment was coarse,
the intruder’s work factor is only multiplied by 256. A com-
bination of a fine-granularity increment and a small random
number generator, or just a 32-bit generator, is better. Note,
though, that many pseudo-random number generators are

2 At the moment, the Internet may not have such stability even over the
short-term, especially on long-haul connections. It is not comforting
to know that the security of a network relies on its low quality of ser-
vice.



easily invertible [13]. In fact, given that most such genera-
tors work via feedback of their output, the enemy could sim-
ply compute the next “random” number to be picked. Some
hybrid techniques have promise—using a 32-bit generator,
for example, but only emitting 16 bits of it—but brute-force
attacks could succeed at determining the seed. One would
need at least 16 bits of random data in each increment, and
perhaps more, to defeat probes from the network, but that
might leave too few bits to guard against a search for the
seed. More research or simulations are needed to determine
the proper parameters.

Rather than go to such lengths, it is simpler to use a cryp-
tographic algorithm (or device) for ISNS generation. The
Data Encryption Standard [73] in electronic codebook mode
[74] is an attractive choice as the ISNS source, with a sim-
ple counter as input. Alternatively, DES could be used in
output feedback mode without an additional counter. Either
way, great care must be taken to select the key used. The
time-of-day at boot time is not adequate; sufficiently good
information about reboot times is often available to an in-
truder, thereby permitting a brute-force attack. If, however,
the reboot time is encrypted with a per-host secret key, the
generator cannot be cracked with any reasonable effort.

Performance of the initial sequence number generator is
not a problem. New sequence numbers are needed only once
per connection, and even a software implementation of DES
will suffice. Encryption times of 2.3 milliseconds on a 1
MIPS processor have been reported [12].

An additional defense involves good logging and alert-
ing mechanisms. Measurements of the round-trip time—
essential for attacking RFC-compliant hosts—would
most likely be carried out using ICMP Ping messages;
a “transponder” function could log excessive ping re-
quests. Other, perhaps more applicable, timing measure-
ment techniques would involve attempted TCP connec-
tions; these connections are conspicuously short-lived, and
may not even complete SYN processing. Similarly, spoof-
ing an active host will eventually generate unusual types of
RST packets; these should not occur often, and should be
logged.

After many years of thinking about it, I fi-
nally came up with a a solution to classical
sequence number attacks. The scheme, de-
scribed in RFC 1948 [10], used a crypto-
graphic hash function to create a separate
sequence number space for each “connec-
tion”, a connection being defined per RFC
791 [81] as the unique 4-tuple <localhost, lo-
calport, remotehost, remoteport>. This
scheme has not been adopted as widely
as I would like; my claim here that extra
CPU load during TCP connection establish-
ment was irrelevant was rendered obsolete

by the advent of very large Web servers. In-
deed, maximum TCP connection rate is a
vital metric when assessing modern sys-
tems.

Instead, many implementations use ran-
dom ISNs or (especially) random increments.
This has obvious negative effects on the cor-
rectness of TCP in the presence of dupli-
cate packets, a property that is guaranteed to
higher layers. (Also see the appendix of [52].)
Worse yet, Newsham pointed out that by the
central limit theorem, the sum of a sequence
of random increments will have a normal dis-
tribution, which implies that the actual range
of the ISNs is quite small. (see CERT Advi-
sory CA-2001-09).

There are hybrid schemes that don’t fall to
these attacks, but the underlying message is
the same as it was in 1989: don’t rely on TCP
sequence numbers for security.

Also worth noting is the suggestion that in-
trusion detection system can play a role: they
can alert you to an attack that for some rea-
son you can’t ward off.

3. The Joy of Routing

As noted at the beginng, routing problems
were one of the initial motivations for this
work. For a fair number of years, though, I
said that “the only attack I discussed in this
paper that hasn’t been seen in the wild is
routing attacks”. That’s no longer the case;
the bad guys have caught up.

Abuse of the routing mechanisms and protocols is prob-
ably the simplest protocol-based attack available. There are
a variety of ways to do this, depending on the exact routing
protocols used. Some of these attacks succeed only if the re-
mote host does source address-based authentication; others
can be used for more powerful attacks.

A number of the attacks described below can also be
used to accomplish denial of service by confusing the rout-
ing tables on a host or gateway. The details are straight-
forward corollaries of the penetration mechanisms, and will
not be described further.

3.1. Source Routing

If available, the easiest mechanism to abuse is IP source
routing. Assume that the target host uses the reverse of the
source route provided in a TCP open request for return traf-
fic. Such behavior is utterly reasonable; if the originator of
the connection wishes to specify a particular path for some



reason—say, because the automatic route is dead—replies
may not reach the originator if a different path is followed.

The attacker can then pick any IP source address de-
sired, including that of a trusted machine on the target’s lo-
cal network. Any facilities available to such machines be-
come available to the attacker.

Again, I’m focusing here on address-based
authentication. But I move on to more sub-
tle routing attacks.

Defenses

It is rather hard to defend against this sort of attack. The
best idea would be for the gateways into the local net to re-
ject external packets that claim to be from the local net. This
is less practical than it might seem since some Ethernet3

network adapters receive their own transmissions, and this
feature is relied upon by some higher-level protocols. Fur-
thermore, this solution fails completely if an organization
has two trusted networks connected via a multi-organization
backbone. Other users on the backbone may not be trustable
to the same extent that local users are presumed to be, or
perhaps their vulnerability to outside attack is higher. Ar-
guably, such topologies should be avoided in any event.

Note that I’m alluding here to what are now
called “firewalls”. I’m not sure why I didn’t use
that word in this paper; I was using it in email
several years earlier.

A simpler method might be to reject pre-authorized con-
nections if source routing information was present. This
presumes that there are few legitimate reasons for using
this IP option, especially for relatively normal operations.
A variation on this defense would be to analyze the source
route and accept it if only trusted gateways were listed; that
way, the final gateway could be counted on to deliver the
packet only to the true destination host. The complexity of
this idea is probably not worthwhile.

Newer versions of the r -utilities do, in fact, re-
ject source-routed connections. But there’s
a more subtle risk: though they reject the
connection attempt, an ACK packet is re-
turned; this conveys the information needed
to launch a sequence number attack.

The most common configuration to-
day is to reject source-routed packets at
border routers, whether or not they fill
other firewall-related roles. Source rout-
ing is permitted on the backbone; ISPs

3 Ethernet is a registered trademark of Xerox Corporation.

use it to view paths from different van-
tage points. Internally, such packets may
or may not be blocked; the question is ir-
relevant for many organizations, since the
rise of Microsoft Windows and the rela-
tive demise of UNIX-style remote login has
rendered the attack somewhat less interest-
ing.

Some protocols (i.e., Berkeley’s rlogin and rsh) permit
ordinary users to extend trust to remote host/user combi-
nations. In that case, individual users, rather than an entire
system, may be targeted by source routing attacks.4 Suspi-
cious gateways [69] will not help here, as the host being
spoofed may not be within the security domain protected
by the gateways.

Note the warning here against putting
too much trust in firewalls: they don’t de-
fend against insider attacks.

3.2. Routing Information Protocol Attacks

The Routing Information Protocol [49], (RIP) is used
to propagate routing information on local networks, espe-
cially broadcast media. Typically, the information received
is unchecked. This allows an intruder to send bogus rout-
ing information to a target host, and to each of the gate-
ways along the way, to impersonate a particular host. The
most likely attack of this sort would be to claim a route to a
particular unused host, rather than to a network; this would
cause all packets destined for that host to be sent to the in-
truder’s machine. (Diverting packets for an entire network
might be too noticeable; impersonating an idle work-station
is comparatively risk-free.) Once this is done, protocols that
rely on address-based authentication are effectively com-
promised.

This attack can yield more subtle, and more serious, ben-
efits to the attacker as well. Assume that the attacker claims
a route to an active host or workstation instead. All pack-
ets for that host will be routed to the intruder’s machine for
inspection and possible alteration. They are then resent, us-
ing IP source address routing, to the intended destination.
An outsider may thus capture passwords and other sensi-
tive data. This mode of attack is unique in that it affects
outbound calls as well; thus, a user calling out from the tar-
geted host can be tricked into divulging a password. Most of
the earlier attacks discussed are used to forge a source ad-
dress; this one is focused on the destination address.

4 Permitting ordinary users to extend trust is probably wrong in any
event, regardless of abuse of the protocols. But such concerns are be-
yond the scope of this paper.



This and [77] are the earliest mentions of
routing attacks in the literature. The at-
tacks described here—abusing the rout-
ing protocols for eavesdropping and/or
packet modification—remain a very seri-
ous threat. Indeed, a National Research
Council study [89] identified routing at-
tacks as one of the two major threats
to the Internet. While there are propos-
als to solve this problem (see, for example,
[71, 56, 55]), nothing has been imple-
mented; all of the proposed solutions have
their drawbacks. Defense against routing at-
tacks must still be considered a research
problem.

Routing attacks have happened frequently
by accident. In the most famous case, known
as the “AS 7007” incident, an ISP started ad-
vertising that it had the best routes to most of
the Internet. Even after they powered down
their router, it took more than four hours for
the global routing tables to stabilize.

As suggested here, more subtle rout-
ing problems are harder to diagnose. AT&T’s
dial-up Internet service was knocked off the
air for many hours when another ISP started
advertising a route to a small, internal net-
work. There are many other such incidents
as well.

Are malicious routing attacks happening?
Yes, they are, and the culprits are a very
low life form: the spammers. In some cases,
they’re hijacking a route, injecting spam, and
then withdrawing the route. The attack is hard
to trace, because by the time someone no-
tices it the source addresses of the email are
(again) either non-existent or innocent.

Defenses

A RIP attack is somewhat easier to defend against than
the source-routing attacks, though some defenses are simi-
lar. A paranoid gateway—one that filters packets based on
source or destination address—will block any form of host-
spoofing (including TCP sequence number attacks), since
the offending packets can never make it through. But there
are other ways to deal with RIP problems.

Filtering out packets with bogus source ad-
dresses would help against many forms of at-
tack. Too few ISPs do it, even though it is a
recommended practice [42].

One defense is for RIP to be more skeptical about the
routes it accepts. In most environments, there is no good

reason to accept new routes to your own local networks.
A router that makes this check can easily detect intru-
sion attempts. Unfortunately, some implementations rely on
hearing their own broadcasts to retain their knowledge of
directly-attached networks. The idea, presumably, is that
they can use other networks to route around local outages.
While fault-tolerance is in general a good idea, the actual
utility of this technique is low in many environments com-
pared with the risks.

It would be useful to be able to authenticate RIP packets;
in the absence of inexpensive public-key signature schemes,
this is difficult for a broadcast protocol. Even if it were done,
its utility is limited; a receiver can only authenticate the im-
mediate sender, which in turn may have been deceived by
gateways further upstream.

This paragraph summarizes the essential dif-
ficulty in defending against routing attacks:
the problem can originate with non-local ma-
chines. That is, even if your routing link to
your neighbors is authenticated, they may be
deceived rather than dishonest.

More and more sites are starting to pro-
tect their routing protocols against direct at-
tacks. The most commonly used mechanism
is described in [50], caveats on key selec-
tion are given in [59]. Another mechanism
is the so-called TTL Security Hack [45]: if a
packet is supposed to originate on-link, send
it with a TTL of 255, and verify that on receipt.
Any off-link packets will have passed through
at least one router which would have decre-
mented the TTL.

Even if the local routers don’t implement defense mech-
anisms, RIP attacks carry another risk: the bogus routing
entries are visible over a wide area. Any router (as opposed
to host) that receives such data will rebroadcast it; a sus-
picious administrator almost anywhere on the local collec-
tion of networks could notice the anomaly. Good log gen-
eration would help, but it is hard to distinguish a genuine
intrusion from the routing instability that can accompany a
gateway crash.

[104] analyzes how stable routes are to ma-
jor name servers. The answer is encourag-
ing: such routes change very infrequently..

3.3. Exterior Gateway Protocol

The Exterior Gateway Protocol (EGP) [65] is intended
for communications between the core gateways and so-
called exterior gateways. An exterior gateway, after go-
ing through a neighbor acquisition protocol, is periodically
polled by the core; it responds with information about the



networks it serves. These networks must all be part of its
autonomous system. Similarly, the gateway periodically re-
quests routing information from the core gateway. Data is
not normally sent except in response to a poll; furthermore,
since each poll carries a sequence number that must be
echoed by the response, it is rather difficult for an intruder
to inject a false route update. Exterior gateways are allowed
to send exactly one spontaneous update between any two
polls; this, too, must carry the sequence number of the last
poll received. It is thus comparatively difficult to interfere
in an on-going EGP conversation.

One possible attack would be to impersonate a second
exterior gateway for the same autonomous system. This
may not succeed, as the core gateways could be equipped
with a list of legitimate gateways to each autonomous sys-
tem. Such checks are not currently done, however. Even if
they were, they could be authenticated only by source IP ad-
dress.

A more powerful attack would be to claim reachability
for some network where the real gateway is down. That
is, if gateway G normally handles traffic for network N ,
and G is down, gateway G′ could advertise a route to that
network. This would allow password capture by assorted
mechanisms. The main defense against this attack is topo-
logical (and quite restrictive): exterior gateways must be on
the same network as the core; thus, the intruder would need
to subvert not just any host, but an existing gateway or host
that is directly on the main net.

A sequence number attack, similar to those used against
TCP, might be attempted; the difficulty here is in predict-
ing what numbers the core gateway is using. In TCP, one
can establish arbitrary connections to probe for informa-
tion; in EGP, only a few hosts may speak to the core. (More
accurately, the core could only speak to a few particular
hosts, though as noted such checks are not currently im-
plemented.) It may thus be hard to get the raw data needed
for such an attack.

EGP was reasonably secure because of the
very restricted topologies it could deal with: a
single core that talked with a variety of stub
networks. It couldn’t possibly work for today’s
Internet, which is why it’s been replaced by
BGP [84]. But loosening the restrictions has
had negative effects as well: BGP is easier to
attack, since it’s conveying more complex in-
formation.

I asserted in the original paper that it was
possible to filter addresses announced in
routing packets. That wasn’t done in 1989;
today, however, major ISPs do filter adver-
tisements from stub networks they talk to.
But not all ISPs do that, and it’s not possi-

ble to do much filtering when talking to peers
or transit ISPs.

3.4. The Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) [79] is
the basic network management tool of the TCP/IP protocol
suite. It would seem to carry a rich potential for abuse. Sur-
prisingly, ICMP attacks are rather difficult; still, there are
often holes that may be exploited.

The first, and most obvious target, is the ICMP Redirect
message; it is used by gateways to advise hosts of better
routes. As such it can often be abused in the same way that
RIP can be. The complication is that a Redirect message
must be tied to a particular, existing connection; it cannot
be used to make an unsolicited change to the host’s routing
tables. Furthermore, Redirects are only applicable within a
limited topology; they may be sent only from the first gate-
way along the path to the originating host. A later gateway
may not advise that host, nor may it use ICMP Redirect to
control other gateways.

Suppose, though, that an intruder has penetrated a sec-
ondary gateway available to a target host, but not the pri-
mary one. (It may suffice to penetrate an ordinary host on
the target’s local network, and have it claim to be a gate-
way.) Assume further that the intruder wishes to set up a
false route to trusted host T through that compromised sec-
ondary gateway. The following sequence may then be fol-
lowed. Send a false TCP open packet to the target host,
claiming to be from T . The target will respond with its own
open packet, routing it through the secure primary gateway.
While this is in transit, a false Redirect may be sent, claim-
ing to be from the primary gateway, and referring to the bo-
gus connection. This packet will appear to be a legitimate
control message; hence the routing change it contains will
be accepted. If the target host makes this change to its global
routing tables, rather than just to the per-connection cached
route, the intruder may proceed with spoofing host T .

Some hosts do not perform enough validity checks on
ICMP Redirect messages; in such cases, the impact of this
attack becomes similar to RIP-based attacks.

ICMP may also be used for targeted denial of service
attacks. Several of its messages, such as Destination Un-
reachable and Time to Live Exceeded, may be used to reset
existing connections. If the intruder knows the local and re-
mote port numbers of a TCP connection, an ICMP packet
aimed at that connection may be forged.5 Such information
is sometimes available through the netstat service.

A more global denial of service attack can be launched
by sending a fraudulent Subnet Mask Reply message. Some

5 In fact, such programs are available today; they are used as adminis-
trative tools to reset hung TCP connections.



hosts will accept any such message, whether they have sent
a query or not; a false one could effectively block all com-
munications with the target host.

Defenses

Most ICMP attacks are easy to defend against with just
a modicum of paranoia. If a host is careful about checking
that a message really does refer to a particular connection,
most such attacks will not succeed. In the case of TCP, this
includes verifying that the ICMP packet contains a plausi-
ble sequence number in the returned-packet portion. These
checks are less applicable to UDP, though.

A defense against Redirect attacks merits additional at-
tention, since such attacks can be more serious. Probably,
the best option is to restrict route changes to the specified
connection; the global routing table should not be modified
in response to ICMP Redirect messages.6

Finally, it is worth considering whether ICMP Redirects
are even useful in today’s environment. They are only us-
able on local networks with more than one gateway to the
outside world. But it is comparatively easy to maintain com-
plete and correct local routing information. Redirect mes-
sages would be most useful from the core gateways to lo-
cal exterior gateways, as that would allow such local gate-
ways to have less than complete knowledge of the Internet;
this use is disallowed, however.

Subnet Mask attacks can be blocked if the Reply packet
is honored only at the appropriate time. In general, a host
wants to see such a message only at boot time, and only
if it had issued a query; a stale reply, or an unsolicited re-
ply, should be rejected out of hand. There is little defense
against a forged reply to a genuine Subnet Mask query, as a
host that has sent such a query typically has few resources
with which to validate the response. If the genuine response
is not blocked by the intruder, though, the target will receive
multiple replies; a check to ensure that all replies agree
would guard against administrative errors as well.

ICMP attacks against routing have never
been very real. Anyone with the ability launch
such an attack can use ARP-spoofing much
more easily; that, in fact, has been done.

Early RFCs suggested that routers could
also listen to ICMP Redirect messages; a
later document [44] permits routers to ignore
such packets if directed to them. Routers,
almost by definition, run routing protocols,

6 This has other benefits as well, especially in environments where
ICMP-initiated route changes are not timed out. The author has seen
situations where RIP instability following a gateway crash has led to
erroneous ICMP Redirect messages. These had the effect of perma-
nently corrupting the routing tables on other hosts.

which gives them a much better idea of topol-
ogy; hosts, by contrast, should not listen to
routing traffic. (This contradicts advice I gave
in 1989.) That said, there is a current trend
towards hosts that know more about the net-
work topology.

The paper mentions a number of denial
of service attacks that could be launched by
sending spurious ICMP error packets. Those
became reasonably common in the early and
mid-1990s. But as systems started comply-
ing with the advice in RFC 1122 [1], that trend
died down; [1] mandates that most ICMP er-
rors be treated as advisory messages, rather
than fatal errors.

4. The “Authentication” Server

As an alternative to address-based authentication, some
implementations use the Authentication Server [96] A
server that wishes to know the identity of its client may
contact the client host’s Authentication Server.7 and ask it
for information about the user owning a particular connec-
tion. This method is inherently more secure than simple
address-based authentication, as it uses a second TCP con-
nection not under control of the attacker. It thus can
defeat sequence number attacks and source routing at-
tacks. There are certain risks, however.

The first, and most obvious, is that not all hosts are com-
petent to run authentication servers. If the client host is not
secure, it does not matter who the user is claimed to be; the
answer cannot be trusted. Second, the authentication mes-
sage itself can be compromised by routing table attacks. If
RIP has been used to alter the target’s idea of how to reach
some host, the authentication query will rely on the same al-
tered routing data. Finally, if the target host is down, a vari-
ant on the TCP sequence number attack may be used; after
the server sends out a TCP open request to the presumed au-
thentication server, the attacker can complete the open se-
quence and send a false reply. If the target runs a netstat
server, this is even easier; as noted, netstat will often sup-
ply the necessary sequence numbers with no need to guess.

A less-obvious risk is that a fake authentication server
can always reply “no”. This constitutes a denial of service
attack.

Defenses

A server that wishes to rely on another host’s idea of a
user should use a more secure means of validation, such as

7 The Internet Activities Board does not currently recommend the Au-
thentication Server for implementation [14]. However, the decision
was not made because of security problems [80].



the Needham-Schroeder algorithm [75, 28, 76]. TCP by it-
self is inadequate.

The original paper strongly suggested
that the authentication server was a bad
idea. Unfortunately, it has been modern-
ized [98] and is still used today. Fortu-
nately, its primary use is for auditing (es-
pecially of email), rather than authentica-
tion; even so, the weaknesses outlined
here (as well as in the Security Consid-
erations section of [98] remain. Indeed,
I personally run a readily-available im-
plementation that replies to all queries
with the message “ident-is-a-completely-
pointless-protocol-that-offers-no-security-or-
traceability-at-all-so-take-this-and-log-it!”

5. Here be Dragons

Some protocols, while not inherently flawed, are never-
theless susceptible to abuse. A wise implementor would do
well to take these problems into account when providing the
service.

5.1. The “Finger” Service

Many systems implement a finger service [48]. This
server will display useful information about users, such as
their full names, phone numbers, office numbers, etc. Un-
fortunately, such data provides useful grist for the mill of
a password cracker [46]. By running such a service, a sys-
tem administrator is giving away this data.

It is debatable whether or not this is an archi-
tectural problem or an implementation prob-
lem. The RFC never says precisely what
information shoudl be returned, though the
samples do show full names and a few phone
numbers. The precise question is generally
moot today for external attacks—firewalls will
generally block the finger protocol—but mod-
ern Web servers often release the same sort
of information. Search engines yield even
more data. Is password-guessing still use-
ful to attackers? Beyond question, yes; I’ve
seen new implementations within the last few
months.

5.2. Electronic Mail

Electronic mail is probably the most valuable service on
the Internet. Nevertheless, it is quite vulnerable to misuse.

As normally implemented [24, 82], the mail server pro-
vides no authentication mechanisms. This leaves the door
wide open to faked messages. RFC 822 does support an En-
crypted header line, but this is not widely used. (However,
see RFC 1040 [60] for a discussion of a proposed new en-
cryption standard for electronic mail.)

Authenticating and encrypting email have be-
come far more important today than in 1989.
There is still no widely-deployed method of
authenticating email; one is likely to be de-
ployed in the near future, though arguably
for the wrong reason. Spammers and “phish-
ers” use fake email addresses; there are a
number of proposals on the table to some-
how authenticate the source of the email.
But they won’t work. The problem is that au-
thentication proves an identity ; it says noth-
ing of whether or not that party is autho-
rized to send you email. Most people are will-
ing to accept email from anyone; spammers
can and do claim to be sending email from
sites like asdfghij.com, and they’re right: that
is their email address. What does authentica-
tion prove?

It may slow down the phishers slightly,
but only slightly. True, if email were authenti-
cated they could no longer claim to be Your-
RealBank.com, but they could claim to
be E-YourRealBank.com, YourRealBank-
Onilne.com, www-YourRealBank.com, etc.
(The very first phishing attempt I know of
claimed to be from paypa1.com—and it was.
Of course, lots of people read that as pay-
pal.com.)

Fake email has been used for other sin-
ister purposes, such as stock market fraud:
the perpetrator sent a message to an in-
vestor’s newswire saying that wonderful
things were happening to some com-
pany. Naturally, its stock went up—and he
sold at the peak. Digitally-signed press re-
leases would prevent that sort of thing—if the
recipients checked the signatures, the cer-
tificates, etc., against some known-good
values.

Encrypting email is also useful in some sit-
uations, and there are a number of choices
available [39, 5]. The practical problem is that
the endpoints aren’t secure.

5.2.1. The Post Office Protocol The The Post Office Pro-
tocol (POP) [15] allows a remote user to retrieve mail stored
on a central server machine. Authentication is by means of



a single command containing both the user name and the
password. However, combining the two on a single com-
mand mandates the use of conventional passwords. And
such passwords are becoming less popular; they are too vul-
nerable to wire-tappers, intentional or accidental disclosure,
etc.

As an alternative, many sites are adopting “one-time
passwords”.8 With one-time passwords, the host and some
device available to the user share a cryptographic key. The
host issues a random challenge; both sides encrypt this num-
ber, and the user transmits it back to the host. Since the chal-
lenge is random, the reply is unique to that session, thereby
defeating eavesdroppers. And since the user does not know
the key—it is irretrievably stored in the device—the pass-
word cannot be given away without depriving the user of
the ability to log in.

The newest version of POP [87] has split the user name
and password into two commands, which is useful. How-
ever, it also defines an optional mechanism for preauthenti-
cated connections, typically using Berkeley’s mechanisms.
Commendably, the security risks of this variant are men-
tioned explicitly in the document.

POP3 [72] has gained in importance; it’s the
princple mechanism people use to retrieve
email from servers. Simple passwords are
still the most common authentication mech-
anism; while a variant that uses SSL encryp-
tion [85] is available, most people don’t use it.
Another mail retrieval protocol, IMAP4 [23],
has similar security properties: encryption is
available but largely unused.

5.2.2. PCMAIL The PCMAIL protocol [58] uses au-
thentication mechanisms similar to those in POP2. In
one major respect, PCMAIL is more dangerous: it sup-
ports a password-change command. This request requires
that both the old and new passwords be transmitted unen-
crypted.

This protocol is no longer used.

5.3. The Domain Name System

The Domain Name System (DNS) [67, 68] provides for
a distributed database mapping host names to IP addresses.
An intruder who interferes with the proper operation of the
DNS can mount a variety of attacks, including denial of ser-
vice and password collection. There are a number of vulner-
abilities.

In some resolver implementations, it is possible to mount
a sequence number attack against a particular user. When

8 One-time passwords were apparently first used for military IFF (Iden-
tification Friend or Foe) systems [29].

the target user attempts to connect to a remote machine, an
attacker can generate a domain server response to the tar-
get’s query. This requires knowing both the UDP port used
by the client’s resolver and the DNS sequence number used
for the query. The latter is often quite easy to obtain, though,
since some resolvers always start their sequence numbers
with 0. And the former may be obtainable via netstat or
some analogous host command.

A combined attack on the domain system and the rout-
ing mechanisms can be catastrophic. The intruder can inter-
cept virtually all requests to translate names to IP addresses,
and supply the address of a subverted machine instead; this
would allow the intruder to spy on all traffic, and build a
nice collection of passwords if desired.

For this reason, domain servers are high-value targets; a
sufficiently determined attacker might find it useful to take
over a server by other means, including subverting the ma-
chine one is on, or even physically interfering with its link
to the Internet. There is no network defense against the for-
mer, which suggests that domain servers should only run on
highly secure machines; the latter issue may be addressed
by using authentication techniques on domain server re-
sponses.

The DNS, even when functioning correctly, can be used
for some types of spying. The normal mode of operation
of the DNS is to make specific queries, and receive spe-
cific responses. However, a zone transfer (AXFR) request
exists that can be used to download an entire section of the
database; by applying this recursively, a complete map of
the name space can be produced. Such a database represents
a potential security risk; if, for example, an intruder knows
that a particular brand of host or operating system has a par-
ticular vulnerability, that database can be consulted to find
all such targets. Other uses for such a database include espi-
onage; the number and type of machines in a particular or-
ganization, for example, can give away valuable data about
the size of the organization, and hence the resources com-
mitted to a particular project.

Fortunately, the domain system includes an error code
for “refused”; an administrative prohibition against such
zone transfers is explicitly recognized as a legitimate rea-
son for refusal. This code should be employed for zone
transfer requests from any host not known to be a legiti-
mate secondary server. Unfortunately, there is no authen-
tication mechanism provided in the AXFR request; source
address authentication is the best that can be done.

Recently, a compatible authentication extension to the
DNS has been devised at M.I.T. The Hesiod name server
[36] uses Kerberos [99] tickets to authenticate queries and
responses. The additional information section of the query
carries an encrypted ticket, which includes a session key;
this key, known only to Hesiod and the client, is used to
compute a cryptographic checksum of the both the query



and the response. These checksums are also sent in the ad-
ditional information field.

The DNS remains a crucial weak spot in the
Internet [89]. Other attacks have been found
in the intervening years.

I was told of the first shortly after this paper
was published. Though I had railed against
address-based authentication, in fact the r -
utilities do name-based authentication: they
look up the hostname corresponding to the
originator’s IP address, and use it to make
an authentication decision. But given the way
hostname lookups work with the DNS, the
owner of the IP address block involved con-
trols what names are returned. Thus, if I own
192.0.2.0/24, I can create a PTR record for,
say, 192.0.2.1; this record would identify the
host as YourTrustedHost.com. There are no
violations of the DNS or r -utility protocols in-
volved here, nor any tricky address spoofing.
Instead, the attacker simply needs to lie.

The lesson is clear: when building security
systems, understand exactly what elements
are being trusted. In this case, not only was
trust residing in the DNS (itself a problem),
trust was residing in a piece of the DNS con-
trolled by the enemy. The fix (against this par-
ticular attack) was simple: use the returned
hostname and look up its IP address, and
verify that it matches the address used in the
connection. Assuming that you control the
relevant portion of the DNS tree, this foils the
attack. Of course, and as noted above, users
are able to extend trust, possibly to a part
of the DNS tree not controlled by someone
trustworthy.

Even without ill-advised trust, you’re rely-
ing on the rest of the DNS. Cache contam-
ination attacks [9] can create false entries.
For that matter, the technical and administra-
tive procedures used to update zones such
as .com can be subverted; that’s happened,
too.

There are defenses against some of the
DNS attacks. Filtering [20] can prevent cer-
tain kinds of cache contamination attacks.
Many popular implementations have been
hardened against sequence number attacks
[102]. A comprehensive discussion of DNS-
related threats can be found in [8].

I was wrong to laud Hesiod as a solu-
tion to DNS security problems. Hesiod pro-
tects the transmission and response; it

does not protect the data, and the respond-
ing name server might itself have been
deceived. The right solution is DNSsec
[37], which provides for digitally-signed re-
source records. DNSsec deployment has
been very slow, partially because it was
so hard to get many of the design de-
tails right; see, for example, [47, 4, 105],

5.4. The File Transfer Protocol

The File Transfer Protocol (FTP) [83] itself is not
flawed. However, a few aspects of the implementa-
tion merit some care.

5.4.1. FTP Authentication FTP relies on a login and
password combination for authentication. As noted, sim-
ple passwords are increasingly seen as inadequate; more
and more sites are adopting one-time passwords. Noth-
ing in the FTP specification precludes such an authentica-
tion method. It is vital, however, that the “331” response to
a USER subcommand be displayed to the user; this mes-
sage would presumably contain the challenge. An FTP im-
plementation that concealed this response could not be used
in this mode; if such implementations are (or become) com-
mon, it may be necessary to use a new reply code to
indicate that the user must see the content of the chal-
lenge.

5.4.2. Anonymous FTP A second problem area is
“anonymous FTP”. While not required by the FTP spec-
ification, anonymous FTP is a treasured part of the oral
tradition of the Internet. Nevertheless, it should be imple-
mented with care.

One part of the problem is the implementation technique
chosen. Some implementations of FTP require creation of
a partial replica of the directory tree; care must be taken to
ensure that these files are not subject to compromise. Nor
should they contain any sensitive information, such as en-
crypted passwords.

The second problem is that anonymous FTP is truly
anonymous; there is no record of who has requested what
information. Mail-based servers will provide that data; they
also provide useful techniques for load-limiting,9 back-
ground transfers, etc.

FTP is hard to secure. It’s reasonably
straight-forward to encrypt the control chan-
nel; protecting the data channels is harder,
because they’re dynamic. Worse yet, a mali-
cious FTP client can use the data channels

9 Recently, a host was temporarily rendered unusable by massive num-
bers of FTP requests for a popular technical report. If this were delib-
erate, it would be considered a successful denial of service attack.



to cause an innocent FTP server to attack a
third host, in what’s known as a bounce at-
tack. A security analysis of FTP (including
details of the bounce attack) can be found
in [7]; [51] describes cryptogprahic protec-
tion for FTP.

5.5. Simple Network Management Protocol

The Simple Network Management Protocol (SNMP)
[17] has recently been defined to aid in network manage-
ment. Clearly, access to such a resource must be heavily
protected. The RFC states this, but also allows for a null au-
thentication service; this is a bad idea. Even a “read-only”
mode is dangerous; it may expose the target host to net-
stat-type attacks if the particular Management Infor-
mation Base (MIB) [62] used includes sequence num-
bers. (The current standardized version does not; however,
the MIB is explicitly declared to be extensible.)

SNMP authentication, as originally de-
fined, boils down to a simple plaintext pass-
word known as the community string. All the
usual problems with plaintext passwords ap-
ply, including eavesdropping and guess-
ability. SNMPv3 [18] defines a User-based
Security Model [92] with cryptographic au-
thentication. In addition, new MIBs are
carefully scrutinized for security-sensitive el-
ements: one proposal that would have put
TCP sequence numbers into the MIB was
caught.

5.6. Remote Booting

Two sets of protocols are used today to boot diskless
workstations and gateways, Reverse ARP (RARP) [43] with
the Trivial File Transfer Protocol (TFTP) [94] and BOOTP
[25] with TFTP. A system being booted is a tempting tar-
get; if one can subvert the boot process, a new kernel with
altered protection mechanisms can be substituted. RARP-
based booting is riskier because it relies on Ethernet-like
networks, with all the vulnerabilities adhering thereto. One
can achieve a modest improvement in security by ensur-
ing that the booting machine uses a random number for its
UDP source port; otherwise, an attacker can impersonate
the server and send false DATA packets.

BOOTP adds an additional layer of security by includ-
ing a 4-byte random transaction id. This prevents an at-
tacker from generating false replies to a workstation known
to be rebooting. It is vital that these numbers indeed be ran-
dom; this can be difficult in a system that is freshly pow-
ered up, and hence with little or no unpredictable state. Care
should be taken when booting through gateways; the more

networks traversed, the greater the opportunity for imper-
sonation.

The greatest measure of protection is that normally, the
attacker has only a single chance; a system being booted
does not stay in that state. If, however, communications be-
tween the client and the standard server may be interrupted,
larger-scale attacks may be mounted.

A newer boot-time protocol, DHCP [34] is
even more important. It provides hosts with
IP addresses, DNS servers, default router,
and more. Furthermore, DHCP queries can
happen with some frequency, if the lease
time of the address is short; this gives an
attacker many more opportunities to do mis-
chief.

There is a DHCP authentication option [3],
but it is little-used. One reason is that anyone
who can mount a DHCP attack can launch
a local network attack just as easily; merely
protecting DHCP does little to protect the
client.

6. Trivial Attacks

A few attacks are almost too trivial to mention; neverthe-
less, completeness demands that they at least be noted.

6.1. Vulnerability of the Local Network

Some local-area networks, notably the Ethernet net-
works, are extremely vulnerable to eavesdropping and
host-spoofing. If such networks are used, physical ac-
cess must be strictly controlled. It is also unwise to trust
any hosts on such networks if any machine on the net-
work is accessible to untrusted personnel, unless authenti-
cation servers are used.

If the local network uses the Address Resolution Proto-
col (ARP) [78] more subtle forms of host-spoofing are pos-
sible. In particular, it becomes trivial to intercept, modify,
and forward packets, rather than just taking over the host’s
role or simply spying on all traffic.

It is possible to launch denial of service attacks by trig-
gering broadcast storms. There are a variety of ways to do
this; it is quite easy if most or all of the hosts on the network
are acting as gateways. The attacker can broadcast a packet
destined for a non-existent IP address. Each host, upon re-
ceiving it, will attempt to forward it to the proper destina-
tion. This alone will represent a significant amount of traf-
fic, as each host will generate a broadcast ARP query for
the destination. The attacker can follow up by broadcast-
ing an ARP reply claiming that the broadcast Ethernet ad-
dress is the proper way to reach that destination. Each sus-
pectible host will then not only resend the bogus packet, it



will also receive many more copies of it from the other sus-
pectible hosts on the network.

ARP attacks are easy to launch and hard to
spot. End-to-end encryption can prevent the
worst problems, but they remain a potent ve-
hicle for denial of service attacks. This is be-
ing addressed for IPv6 with the SEND en-
hancements to IPv6 Neighbor Discovery, its
version of ARP.

There are two modern venues where
ARP attacks are particularly nasty. One is
on wireless networks, especially in pub-
lic hotspots. Another is using ARP to defeat
the presumed security properties of Ether-
net switches. Some administrators assume
that using a switch prevents classical eaves-
dropping; it does, but ARP can be used to
redirect the traffic despite that.

Broadcast storms have been launched
maliciously, but in a more dangerous fash-
ion. The attacker sends an ICMP Echo Re-
quest packet to the broadcast address of
some local network; all hosts on that net-
work send a reply to the originator of the
ICMP message. Of course, the source IP ad-
dress in that packet isn’t that of the at-
tacker; instead, it’s the address of the victim,
who gets bombarded with enough Echo Re-
ply messages to clog the link. Smurf attacks
(see CERT Advisory CA-1998-01) have be-
come relatively rare since the default router
configurations were changed to disable di-
rected broadcasts [91].

6.2. The Trivial File Transfer Protocol

TFTP [94] permits file transfers without any attempt at
authentication. Thus, any publicly-readable file in the en-
tire universe is accessible. It is the responsibility of the im-
plementor and/or the system administrator to make that uni-
verse as small as possible.

6.3. Reserved Ports

Berkeley-derived TCPs and UDPs have the notion of a
“privileged port”. That is, port numbers lower than 1024
may only be allocated to privileged processes. This restric-
tion is used as part of the authentication mechanism. How-
ever, neither the TCP nor the UDP specifications contain
any such concept, nor is such a concept even meaningful on
a single-user computer. Administrators should never rely on
the Berkeley authentication schemes when talking to such
machines.

Privileged ports are a bad idea, but they
could have been even worse. When FTP
bounce attacks are launched, the source
port is 21, in the privileged range. In other
words, bounce attacks could have been
used to attack rlogin and rsh servers. For-
tunately, out of a nagging sense of un-
ease, those servers only accepted con-
nections coming from ports in the range
512–1023.

7. Comprehensive Defenses

Thus far, we have described defenses against a variety of
individual attacks. Several techniques are broad-spectrum
defenses; they may be employed to guard against not only
these attacks, but many others as well.

7.1. Authentication

Many of the intrusions described above succeed only be-
cause the target host uses the IP source address for authen-
tication, and assumes it to be genuine. Unfortunately, there
are sufficiently many ways to spoof this address that such
techniques are all but worthless. Put another way, source
address authentication is the equivalent of a file cabinet se-
cured with an S100 lock; it may reduce the temptation level
for more-or-less honest passers-by, but will do little or noth-
ing to deter anyone even slightly serious about gaining en-
try.

Some form of cryptographic authentication is needed.
There are several possible approaches. Perhaps the best-
known is the Needham-Schroeder algorithm [75, 28, 76].
It relies on each host sharing a key with an authentica-
tion server; a host wishing to establish a connection obtains
a session key from the authentication server and passes a
sealed version along to the destination. At the conclusion
of the dialog, each side is convinced of the identity of the
other. Versions of the algorithm exist for both private-key
and public-key [30] cryptosystems.

How do these schemes fit together with TCP/IP? One an-
swer is obvious: with them, preauthenticated connections
can be implemented safely; without them, they are quite
risky. A second answer is that the DNS provides an ideal
base for authentication systems, as it already incorporates
the necessary name structure, redundancy, etc. To be sure,
key distribution responses must be authenticated and/or en-
crypted; as noted, the former seems to be necessary in any
event.

In some environments, care must be taken to use the ses-
sion key to encrypt the entire conversation; if this is not
done, an attacker can take over a connection via the mecha-
nisms described earlier.



Doing cryptography properly is a lot harder
than I made it seem. Indeed, the Needham-
Schroeder scheme—the oldest crypto-
graphic protocol in the open literature—was
found in 1996 to be vulnerable to a new flaw
[61]. That variant, expressed in modern no-
tation, is only three lines long. . .

7.2. Encryption

Suitable encryption can defend against most of the at-
tacks outlined above. But encryption devices are expensive,
often slow, hard to administer, and uncommon in the civil-
ian sector. There are different ways to apply encryption;
each has its strengths and weaknesses. A comprehensive
treatment of encryption is beyond the scope of this paper;
interested readers should consult Voydock and Kent [103]
or Davies and Price [26]

Link-level encryption—encrypting each packet as it
leaves the host computer—is an excellent method of guard-
ing against disclosure of information. It also works well
against physical intrusions; an attacker who tapped in to
an Ethernet cable, for example, would not be able to in-
ject spurious packets. Similarly, an intruder who cut the
line to a name server would not be able to imperson-
ate it. The number of entities that share a given key de-
termines the security of the network; typically, a key
distribution center will allocate keys to each pair of com-
municating hosts.

Link-level encryption has some weaknesses, however.
Broadcast packets are difficult to secure; in the absence of
fast public-key cryptosystems, the ability to decode an en-
crypted broadcast implies the ability to send such a broad-
cast, impersonating any host on the network. Furthermore,
link-level encryption, by definition, is not end-to-end; se-
curity of a conversation across gateways implies trust in
the gateways and assurance that the full concatenated inter-
net is similarly protected. (This latter constraint may be en-
forced administratively, as is done in the military sector.) If
such constraints are not met, tactics such as source-routing
attacks or RIP-spoofing may be employed. Paranoid gate-
ways can be deployed at the entrance to security domains;
these might, for example, block incoming RIP packets or
source-routed packets.

As pointed out in [54], I had Ethernet link en-
cryptors in mind. Link encryptors on point-
to-point links are quite different; they protect
traffic down to the bit level, sometimes hid-
ing even the HDLC framing.

Many portions of the DARPA Internet employ forms of
link encryption. All Defense Data Network (DDN) IMP-
to-IMP trunks use DES encryption, even for non-classified

traffic; classified lines use more secure cryptosystems [27].
These, however, are point-to-point lines, which are compar-
atively easy to protect.

A multi-point link encryption device for TCP/IP is the
Blacker Front End (BFE) [40]. The BFE looks to the host
like an X.25 DDN interface, and sits between the host and
the actual DDN line. When it receives a call request packet
specifying a new destination, it contacts an Access Control
Center (ACC) for permission, and a Key Distribution Cen-
ter (KDC) for cryptographic keys. If the local host is de-
nied permission to talk to the remote host, an appropriate
diagnostic code is returned. A special “Emergency Mode”
is available for communications to a restricted set of desti-
nations at times when the link to the KDC or ACC is not
working.

The permission-checking can, to some extent, protect
against the DNS attacks described earlier. Even if a host
has been mislead about the proper IP address for a particu-
lar destination, the BFE will ensure that a totally unautho-
rized host does not receive sensitive data. That is, assume
that a host wishes to send Top Secret data to some host foo.
A DNS attack might mislead the host into connecting to
penetrated host 4.0.0.4, rather than 1.0.0.1. If 4.0.0.4 is not
cleared for Top Secret material, or is not allowed commu-
nications with the local host, the connection attempt will
fail. To be sure, a denial of service attack has taken place;
this, in the military world, is far less serious than informa-
tion loss.

The BFE also translates the original (“Red”) IP address
to an encrypted (“Black”) address, using a translation ta-
ble supplied by the ACC. This is done to foil traffic anal-
ysis techniques, the bane of all multi-point link encryption
schemes.

I got a lot wrong here (see [54] for some
details), partly because of my lack of ex-
perience with crypto at the time and partly
because of the sketchy information publicly
available on Blacker. With the benefit of hind-
sight (and a lot more experience with cryp-
tography), I’d call the BFE a network-layer
encryptor for non-broadcast multiple access
networks, rather than a multi-point link-level
encryptor. But Blacker was obsolescent even
as I wrote the original paper; SP3—the an-
cestor of IPsec [57] —was being defined as
part of the Secure Data Network System. Re-
gardless, the BFE (and SP3 and IPsec) all
create virtual private networks, with their own
address spaces; while there is some protec-
tion against traffic analysis, these technolo-
gies do not prevent an adversary from notic-
ing which protected networks are talking to
which other protected networks.



End-to-end encryption, above the TCP level, may be
used to secure any conversation, regardless of the number of
hops or the quality of the links. This is probably appropriate
for centralized network management applications, or other
point-to-point transfers. Key distribution and management
is a greater problem, since there are more pairs of corre-
spondents involved. Furthermore, since encryption and de-
cryption are done before initiation or after termination of
the TCP processing, host-level software must arrange for
the translation; this implies extra overhead for each such
conversation.10

End-to-end encryption is vulnerable to denial of service
attacks, since fraudulently-injected packets can pass the
TCP checksum tests and make it to the application. A com-
bination of end-to-end encryption and link-level encryption
can be employed to guard against this. An intriguing alter-
native would be to encrypt the data portion of the TCP seg-
ment, but not the header; the TCP checksum would be cal-
culated on the cleartext, and hence would detect spurious
packets. Unfortunately, such a change would be incompat-
ible with other implementations of TCP, and could not be
done transparently at application level.

I wrote “link-level encryption” here; it should
have been “network-level”. But there’s a more
subtle problem: the TCP checksum is not
cryptographically strong; it’s pretty easy to
launch a variety of attacks against such a
weak integrity protection mechanism. See,
for example, [11].

Regardless of the method used, a major benefit of en-
crypted communications is the implied authentication they
provide. If one assumes that the key distribution center is
secure, and the key distribution protocols are adequate, the
very ability to communicate carries with it a strong assur-
ance that one can trust the source host’s IP address for iden-
tification.

This implied authentication can be especially important
in high-threat situations. A routing attack can be used to
“take over” an existing connection; the intruder can effec-
tively cut the connection at the subverted machine, send
dangerous commands to the far end, and all the while trans-
late sequence numbers on packets passed through so as to
disguise the intrusion.

Today’s network-level encryptors would foil
this; they protect the TCP (and sometimes
IP) headers as well as the payload. I suspect
that the BFE would as well.

10 We are assuming that TCP is handled by the host, and not by a front-
end processor.

It should be noted, of course, that any of these encryp-
tion schemes provide privacy. Often that is the primary goal
of such systems.

7.3. Trusted Systems

Given that TCP/IP is a Defense Department protocol
suite, it is worth asking to what extent the Orange Book
[31] and Red Book [33] criteria would protect a host from
the attacks described above. That is, suppose that a target
host (and the gateways!) were rated B1 or higher. Could
these attacks succeed? The answer is a complex one, and
depends on the assumptions we are willing to make. In gen-
eral, hosts and routers rated at B2 or higher are immune to
the attacks described here, while C2-level systems are sus-
ceptible. B1-level systems are vulnerable to some of these
attacks, but not all.

In order to understand how TCP/IP is used in secure en-
vironments, a brief tutorial on the military security model is
necessary. All objects in the computer system, such as files
or network channels, and all data exported from them, must
have a label indicating the sensitivity of the information
in them. This label includes hierarchical components (i.e.,
Confidential, Secret, and Top Secret) and non-hierarchical
components. Subjects —i.e., processes within the computer
system—are similarly labeled. A subject may read an ob-
ject if its label has a higher or equal hierarchical level and if
all of the object’s non-hierarchical components are included
in the subject’s label. In other words, the process must have
sufficient clearance for the information in a file. Similarly,
a subject may write to an object if the object has a higher
or equal level and the object’s non-hierarchical components
include all of those in the subject’s level. That is, the sen-
sitivity level of the file must be at least as high as that of
the process. If it were not, a program with a high clearance
could write classified data to a file that is readable by a pro-
cess with a low security clearance.

A corollary to this is that for read/write access to any file,
its security label must exactly match that of the process. The
same applies to any form of bidirectional interprocess com-
munication (i.e., a TCP virtual circuit): both ends must have
identical labels.

We can now see how to apply this model to the TCP/IP
protocol suite. When a process creates a TCP connection,
that connection is given the process’s label. This label is en-
coded in the IP security option. The remote TCP must en-
sure that the label on received packets matches that of the
receiving process. Servers awaiting connections may be el-
igible to run at multiple levels; when the connection is in-
stantiated, however, the process must be forced to the level
of the connection request packet.

IP also makes use of the security option [97]. A packet
may not be sent over a link with a lower clearance level.



If a link is rated for Secret traffic, it may carry Unclassi-
fied or Confidential traffic, but it may not carry Top Secret
data. Thus, the security option constrains routing decisions.
The security level of a link depends on its inherent charac-
teristics, the strength of any encryption algorithms used, the
security levels of the hosts on that network, and even the
location of the facility. For example, an Ethernet cable lo-
cated in a submarine is much more secure than if the same
cable were running through a dormitory room in a univer-
sity.

Several points follow from these constraints. First, TCP-
level attacks can only achieve penetration at the level of the
attacker. That is, an attacker at the Unclassified level could
only achieve Unclassified privileges on the target system,
regardless of which network attack was used.11 Incoming
packets with an invalid security marking would be rejected
by the gateways.

Attacks based on any form of source-address authentica-
tion should be rejected as well. The Orange Book requires
that systems provide secure means of identification and au-
thentication; as we have shown, simple reliance on the IP
address is not adequate. As of the B1 level, authentication
information must be protected by cryptographic checksums
when transmitted from machine to machine.12

The authentication server is still problematic; it can be
spoofed by a sequence number attack, especially if netstat
is available. This sort of attack could easily be combined
with source routing for full interactive access. Again, cryp-
tographic checksums would add significant strength.

B1-level systems are not automatically immune from
routing attacks; RIP-spoofing could corrupt their routing ta-
bles just as easily. As seen, that would allow an intruder to
capture passwords, perhaps even some used on other trusted
systems. To be sure, the initial penetration is still restricted
by the security labelling, but that may not block future lo-
gins captured by these means.

Routing attacks can also be used for denial of service.
Specifically, if the route to a secure destination is changed
to require use of an insecure link, the two hosts will not be
able to communicate. This change would probably be de-
tected rather quickly, though, since the gateway that noticed
the misrouted packet would flag it as a security problem.

At the B2 level, secure transmission of routing control
information is required. Similar requirements apply to other
network control information, such as ICMP packets.

Several attacks we have described rely on data de-
rived from “information servers”, such as netstat and fin-

11 We are assuming, of course, that the penetrated system does not have
bugs of its own that would allow further access.

12 More precisely, user identification information must be protected to an
equal extent with data sensitivity labels. Under certain circumstances,
described in the Red Book, cryptographic checks may be omitted. In
general, though, they are required.

ger. While these, if carefully done, may not represent a
direct penetration threat in the civilian sense, they are of-
ten seen to represent a covert channel that may be used to
leak information. Thus, many B-division systems do not im-
plement such servers.

In a practical sense, some of the technical features we
have described may not apply in the military world. Ad-
ministrative rules [32] tend to prohibit risky sorts of inter-
connections; uncleared personnel are not likely to have even
indirect access to systems containing Top Secret data. Such
rules are, most likely, an accurate commentary on anyone’s
ability to validate any computer system of non-trivial size.

This is an odd section for this paper, in that it
attempts a very brief look at a completely dif-
ferent technology architecture: Orange Book-
style secure systems. Worse yet, the Or-
ange Book prescribes results, not methods;
as such, it is difficult to find a precise match
between the attacks I described and abstract
mechanisms.

In any event, the question is moot today.
The Orange Book and its multi-hued kin have
been replaced by the Common Criteria [19],
an international effort at defining secure sys-
tems. In most ways, the Common Criteria is
even more abstract than its DoD predeces-
sor; one could not make meaningful state-
ments without at least specifying what pro-
tection profile one was interested in. (Apart
from that, one can make a strong argument
that that entire approach to system security
is flawed [89], but such a discussion is out of
scope for this paper.)

Two technical points are worth not-
ing. First, routing attacks could be miti-
gated by maintenance of separate rout-
ing tables (by multi-level secure routers)
for different security classifications. Sec-
ond, exactly what forms of authentication
are acceptable in any situation would de-
pend critically on detailed knowledge of ex-
actly what sorts of hosts were connected to
what sorts of network. In other words, eaves-
dropping may or may not be a concern.

8. Conclusions

Several points are immediately obvious from this anal-
ysis. The first, surely, is that in general, relying on the IP
source address for authentication is extremely dangerous.13

13 There are some exceptions to this rule. If the entire network, and all of
its components (hosts, gateways, cables, etc.) are physically protected,



Fortunately, the Internet community is starting to accept
this on more than an intellectual level. The Berkeley man-
uals [22] have always stated that the authentication proto-
col was very weak, but it is only recently that serious at-
tempts (i.e., Kerberos [99] and SunOS 4.0’s DES authenti-
cation mode [101]) have been made to correct the problem.
Kerberos and SunOS 4.0 have their weaknesses, but both
are far better than their predecessor. More recently, an ex-
tension to the Network Time Protocol (NTP) [66] has been
proposed that includes a cryptographic checksum [63].

A second broad class of problems is sequence number
attacks. If a protocol depends on sequence numbers—and
most do—it is vital that they be chosen unpredictably. It is
worth considerable effort to ensure that these numbers are
not knowable even to other users on the same system.

We may generalize this by by stating that hosts should
not give away knowledge gratuitously. A finger server, for
example, would be much safer if it only supplied informa-
tion about a known user, rather than supplying informa-
tion about everyone logged on. Even then, some censor-
ship might be appropriate; a refusal to supply the last login
date and other sensitive information would be appropriate
if the account was not used recently. (Never-used accounts
often have simple default passwords. Infrequently-used ac-
counts are often set up less carefully by the owner.) We have
also seen how netstat may be abused; indeed, the combina-
tion of netstat with the authentication server is the single
strongest attack using the standardized Internet protocols.

Finally, network control mechanisms are dangerous, and
must be carefully guarded. Static routes are not feasible in a
large-scale network, but intelligent use of default routes and
verifiable point-to-point routing protocols (i.e., EGP) are far
less vulnerable than broadcast-based routing.

9. Acknowledgments

Dave Presotto, Bob Gilligan, Gene Tsudik, and espe-
cially Deborah Estrin made a number of useful suggestions
and corrections to a draft of this paper.

10. Retrospective Conclusions

The Internet of 1989 was a much
simpler—and much friendlier—place than it
is today. Most of the protocols I looked at
were comparatively simple client-server pro-
tocols; today’s multi-party protocols—SIP
[88], Diameter [16], various peer-to-peer pro-
tocols, etc.—are much harder to analyze.

and if all of the operating systems are sufficiently secure, there would
seem to be little risk.

Often, the crucial question is not authentica-
tion but authorization: how do you know if a
certain party is permitted to perform a cer-
tain action?

The overall trend has been good. The In-
ternet Engineering Task Force (IETF) will
not standardize protocols where the only
mandatory-to-implement form of authentica-
tion is plaintext passwords; address-based
authentication is acceptable only in very re-
stricted circumstances. There are standard-
ized and/or widely deployed cryptographic
protocols for remote login, sending and re-
ceiving email, Web browsing, etc. As dis-
cussed earlier, outing is the major exception;
operationally, it is still not securable.

Most of the security problems we en-
counter on the Internet today are due to
buggy code (including, of course, buggy
code in cryptographic modules). To some ex-
tent, of course, that’s because there are
so many bugs; why launch a difficult at-
tack when there’s so much low-hanging fruit
available?

Password-guessing is still a common at-
tack; indeed, a new wave of password-
guessing has recently been observed
against ssh [106], a cryptographically-
protected replacement for the r -utilities.

There is no need to belabor the earlier
conclusions that predictable sequence num-
bers and address-based authentication are
bad. This is now well-accepted; for example,
the specification for a new transport protocol,
SCTP [100], mandates strong random num-
ber generation [6] for its analogous fields. But
how does one design a secure protocol?

One answer is to look at data flow of
the protocol. On what elements does au-
thentication depend? Can an attacker tamper
with or mimic those elements? What are the
guarantees, especially the security guaran-
tees, of each element? Naturally, the powers
of the attacker must be taken into account.
Seen from this perspective, the flaws in the
r -utilities are clear.

One more point should be mentioned: it
is often the availability of auxiliary data that
makes attacks possible. An attacker who
can create just one TCP connection can-
not guess the correct sequence number.
This is often a fruitful mechanism for block-
ing (or at least detecting) attacks.



References

[1] R. Braden, editor. Requirements for Internet hosts - com-
munication layers. RFC 1122, Internet Engineering Task
Force, Oct. 1989.

[2] Shadow Hawk gets prison term, February 1989. Phrack
World News XXIV, file 12 of 13.

[3] R. E. Droms and W. Arbaugh, editors. Authentication for
DHCP messages. RFC 3118, Internet Engineering Task
Force, June 2001.

[4] J. Schlyter, editor. DNS security (DNSSEC) NextSECure
(NSEC) RDATA format. RFC 3845, August 2004.

[5] B. Ramsdell, editor. Secure/multipurpose internet mail ex-
tensions (S/MIME) version 3.1 message specification. RFC
3851, July 2004.

[6] D. E. 3rd, S. D. Crocker, and J. Schiller. Randomness rec-
ommendations for security. RFC 1750, Internet Engineer-
ing Task Force, Dec. 1994.

[7] M. Allman and S. Ostermann. FTP security considerations.
RFC 2577, Internet Engineering Task Force, May 1999.

[8] D. Atkins and R. Austein. Threat analysis of the Domain
Name System (DNS). RFC 3833, August 2004.

[9] S. M. Bellovin. Using the domain name system for system
break-ins. In Proceedings of the Fifth Usenix Unix Security
Symposium, pages 199–208, Salt Lake City, UT, June 1995.

[10] S. M. Bellovin. Defending against sequence number at-
tacks. RFC 1948, Internet Engineering Task Force, May
1996.

[11] S. M. Bellovin. Problem areas for the IP security protocols.
In Proceedings of the Sixth Usenix Unix Security Sympo-
sium, pages 205–214, July 1996.

[12] M. Bishop. An application of a fast data encryption stan-
dard implementation. Technical Report PCS-TR88-138,
Department of Mathematics and Computer Science, Dart-
mouth College, Hanover, NH, 1988.

[13] M. Blum and S. Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM J. Comput.,
13(4):850–864, November 1984.

[14] I. A. Board. IAB official protocol standards. RFC 1083,
Internet Engineering Task Force, Dec. 1988.

[15] M. Butler, J. B. Postel, D. Chase, J. Goldberger, and J. F.
Reynolds. Post office protocol: Version 2. RFC 937, Inter-
net Engineering Task Force, Feb. 1985.

[16] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and
J. Arkko. Diameter base protocol. RFC 3588, Internet En-
gineering Task Force, Sept. 2003.

[17] J. D. Case, M. S. Fedor, M. L. Schoffstall, and J. R. Davin.
Simple network management protocol. RFC 1067, Internet
Engineering Task Force, Aug. 1988.

[18] J. D. Case, R. Mundy, D. Partain, and B. Stewart. Introduc-
tion and applicability statements for internet-standard man-
agement framework. RFC 3410, Internet Engineering Task
Force, Dec. 2002.

[19] Common criteria for information technology security eval-
uation, August 1999. Version 2.1.

[20] B. Cheswick and S. M. Bellovin. A DNS filter and switch
for packet-filtering gateways. In Proceedings of the Sixth
Usenix Unix Security Symposium, pages 15–19, San Jose,
CA, 1996.

[21] D. E. Comer. Internetworking with TCP/IP: Principles,
Protocols, and Architecture, volume I. Prentice-Hall, En-
glewood Cliffs, NJ, second edition, 1991.

[22] Computer Systems Research Group. UNIX User’s Refer-
ence Manual, 4.3 Berkeley Software Distrubtion, Virtual
Vax-11 Version. Computer Science Division, Department
of Electrical Engineering and Computer Science, Univer-
sity of California, Berkeley, 1986.

[23] M. R. Crispin. INTERNET MESSAGE ACCESS PROTO-
COL - VERSION 4rev1. RFC 3501, Internet Engineering
Task Force, Mar. 2003.

[24] D. H. Crocker. Standard for the format of ARPA Internet
text messages. RFC 822, Internet Engineering Task Force,
Aug. 1982.

[25] W. J. Croft and J. Gilmore. Bootstrap protocol. RFC 951,
Internet Engineering Task Force, Sept. 1985.

[26] D. W. Davies and W. L. Price. Security for Computer Net-
works. John Wiley & Sons, second edition, 1989.

[27] Defense Commuications Agency. Defense data network
subscriber security guide, 1983.

[28] D. E. Denning and G. M. Sacco. Timestamps in key distri-
bution protocols. Communications of the ACM, 24(8):533–
536, August 1981.

[29] W. Diffie. The first ten years of public key cryptography.
Proceedings of the IEEE, 76(5):560–577, May 1988.

[30] W. Diffie and M. E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, IT-11:644–
654, November 1976.

[31] DoD trusted computer system evaluation criteria. DoD
5200.28-STD, DoD Computer Security Center, 1985.

[32] Technical rationale behind CSC-STD-003-83: Computer
security requirements. DoD CSC-STD-004-85, DoD Com-
puter Security Center, 1985.

[33] Trusted network interpretation of the “trusted computer sys-
tem evaluation criteria”. DoD NCSC-TG-005, DoD Com-
puter Security Center, 1987.

[34] R. E. Droms. Dynamic host configuration protocol. RFC
2131, Internet Engineering Task Force, Mar. 1997.

[35] M. Dworkin. Recommendation for block cipher modes of
operation: Methods and techniques. National Institute of
Standards and Technology, December 2001. Federal Infor-
mation Processing Standards Publication 81.

[36] S. Dyer. Hesiod. In Proceedings of the Winter Usenix Con-
ference, Dallas, TX, 1988.

[37] D. Eastlake 3rd. Domain name system security extensions.
RFC 2535, Internet Engineering Task Force, Mar. 1999.

[38] M. W. Eichin and J. A. Rochlis. With microscope and
tweezers: An analysis of the Internet virus of november
1988. In Proc. IEEE Symposium on Research in Security
and Privacy, pages 326–345, Oakland, CA, May 1989.

[39] M. Elkins. MIME security with pretty good privacy (PGP).
RFC 2015, Internet Engineering Task Force, Oct. 1996.



[40] E. Feinler, O. Jacobsen, M. Stahl, and C. Ward, editors.
Blacker Front End Interface Control Document. In Fein-
ler et al. [41], 1985.

[41] E. Feinler, O. Jacobsen, M. Stahl, and C. Ward, editors.
DDN Protocol Handbook. SRI International, 1985.

[42] P. Ferguson and D. Senie. Network ingress filtering: De-
feating denial of service attacks which employ IP source
address spoofing. RFC 2827, Internet Engineering Task
Force, May 2000.

[43] R. Finlayson, T. P. Mann, J. C. Mogul, and M. M. Theimer.
Reverse address resolution protocol. RFC 903, Internet En-
gineering Task Force, June 1984.

[44] E. Gerich. Unique addresses are good. RFC 1814, Internet
Engineering Task Force, June 1995.

[45] V. Gill, J. Heasley, and D. Meyerx. The generalized TTL
security mechanism (GTSM). RFC 3682, February 2004.

[46] F. T. Grampp and R. H. Morris. Unix operating system se-
curity. AT&T Bell Laboratories Technical Journal, 63(8,
Part 2):1649–1672, October 1984.

[47] O. Gudmundsson. Delegation signer (DS) resource record
(RR). RFC 3658, December 2003.

[48] K. Harrenstien. NAME/FINGER protocol. RFC 742, Inter-
net Engineering Task Force, Dec. 1977.

[49] C. Hedrick. Routing information protocol. RFC 1058, In-
ternet Engineering Task Force, June 1988.

[50] A. Heffernan. Protection of BGP sessions via the TCP
MD5 signature option. RFC 2385, Internet Engineering
Task Force, Aug. 1998.

[51] M. Horowitz and S. J. Lunt. FTP security extensions. RFC
2228, Internet Engineering Task Force, Oct. 1997.

[52] V. Jacobson, R. Braden, and L. Zhang. TCP extension for
high-speed paths. RFC 1185, Internet Engineering Task
Force, Oct. 1990.

[53] L. Joncheray. A simple active attack against TCP. In Pro-
ceedings of the Fifth Usenix Unix Security Symposium, Salt
Lake City, UT, 1995.

[54] S. Kent. Comments on “Security problems in the TCP/IP
protocol suite. 19(3):1–20, July 1989.

[55] S. Kent, C. Lynn, J. Mikkelson, and K. Seo. Secure bor-
der gateway protocol (S-BGP) – real world performance
and deployment issues. In Proceedings of the IEEE Net-
work and Distributed System Security Symposium, Febru-
ary 2000.

[56] S. Kent, C. Lynn, and K. Seo. Secure border gateway pro-
tocol (Secure-BGP). IEEE Journal on Selected Areas in
Communications, 18(4):582–592, April 2000.

[57] S. A. Kent and R. Atkinson. Security architecture for the
Internet protocol. RFC 2401, Internet Engineering Task
Force, Nov. 1998.

[58] M. L. Lambert. PCMAIL: a distributed mail system for
personal computers. RFC 1056, Internet Engineering Task
Force, June 1988.

[59] M. Leech. Key management considerations for the TCP
MD5 signature option. RFC 3562, Internet Engineering
Task Force, July 2003.

[60] J. R. Linn. Privacy enhancement for Internet electronic
mail: Part I: message encipherment and authentication pro-
cedures. RFC 1040, Internet Engineering Task Force, Jan.
1988.

[61] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), vol-
ume 1055, pages 147–166. Springer-Verlag, Berlin Ger-
many, 1996.

[62] K. McCloghrie and M. T. Rose. Management information
base for network management of TCP/IP-based internets.
RFC 1066, Internet Engineering Task Force, Aug. 1988.

[63] D. Mills. Mail list message
<8901192354.aa03743@huey.udel.edu>, January 19
1989.

[64] D. L. Mills. Internet delay experiments. RFC 889, Internet
Engineering Task Force, Dec. 1983.

[65] D. L. Mills. Exterior gateway protocol formal specification.
RFC 904, Internet Engineering Task Force, Apr. 1984.

[66] D. L. Mills. Network time protocol (version 1) specifica-
tion and implementation. RFC 1059, Internet Engineering
Task Force, July 1988.

[67] P. V. Mockapetris. Domain names - concepts and facilities.
RFC 1034, Internet Engineering Task Force, Nov. 1987.

[68] P. V. Mockapetris. Domain names - implementation and
specification. RFC 1035, Internet Engineering Task Force,
Nov. 1987.

[69] J. C. Mogul. Simple and flexible datagram access controls
for unix-based gateways. In USENIX Conference Proceed-
ings, pages 203–221, Baltimore, MD, Summer 1989.

[70] R. T. Morris. A weakness in the 4.2BSD unix TCP/IP soft-
ware. Computing Science Technical Report 117, AT&T
Bell Laboratories, Murray Hill, NJ, February 1985.

[71] S. Murphy, M. Badger, and B. Wellington. OSPF with digi-
tal signatures. RFC 2154, Internet Engineering Task Force,
June 1997.

[72] J. Myers and M. P. Rose. Post office protocol - version 3.
RFC 1939, Internet Engineering Task Force, May 1996.

[73] NBS. Data encryption standard, January 1977. Federal In-
formation Processing Standards Publication 46.

[74] NBS. DES modes of operation, December 1980. Federal
Information Processing Standards Publication 81.

[75] R. M. Needham and M. Schroeder. Using encryption for
authentication in large networks of computers. Communi-
cations of the ACM, 21(12):993–999, December 1978.

[76] R. M. Needham and M. Schroeder. Authentication revis-
ited. Operating Systems Review, 21(1):7, January 1987.

[77] R. Perlman. Network Layer Protocols with Byzantine Ro-
bustness. PhD thesis, M.I.T., 1988.

[78] D. C. Plummer. Ethernet address resolution protocol: Or
converting network protocol addresses to 48.bit ethernet ad-
dress for transmission on ethernet hardware. RFC 826, In-
ternet Engineering Task Force, Nov. 1982.

[79] J. Postel. Internet control message protocol. RFC 792, In-
ternet Engineering Task Force, Sept. 1981.

[80] J. Postel, 1989. private communication.



[81] J. B. Postel. Internet protocol. RFC 791, Internet Engineer-
ing Task Force, Sept. 1981.

[82] J. B. Postel. Simple mail transfer protocol. RFC 821, Inter-
net Engineering Task Force, Aug. 1982.

[83] J. B. Postel and J. F. Reynolds. File transfer protocol. RFC
959, Internet Engineering Task Force, Oct. 1985.

[84] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-
4). RFC 1771, Internet Engineering Task Force, Mar. 1995.

[85] E. Rescorla. SSL and TLS: Designing and Building Secure
Systems. Addison-Wesley, 2000.

[86] J. F. Reynolds and J. B. Postel. Assigned numbers. RFC
990, Internet Engineering Task Force, Nov. 1986.

[87] M. T. Rose. Post office protocol: Version 3. RFC 1081, In-
ternet Engineering Task Force, Nov. 1988.

[88] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. John-
ston, J. Peterson, R. Sparks, M. Handley, and E. Schooler.
SIP: session initiation protocol. RFC 3261, Internet Engi-
neering Task Force, June 2002.

[89] F. B. Schneider, editor. Trust in Cyberspace. National
Academy Press, 1999.

[90] D. Seeley. A tour of the worm, 1988.
[91] D. Senie. Changing the default for directed broadcasts in

routers. RFC 2644, Internet Engineering Task Force, Aug.
1999.

[92] U. S. P. Service and B. Wijnen. User-based security model
(USM) for version 3 of the simple network management
protocol (snmpv3). RFC 3414, Internet Engineering Task
Force, Dec. 2002.

[93] T. Shimomura. Takedown. Hyperion, 1996.
[94] K. Sollins. TFTP protocol (revision 2). RFC 783, Internet

Engineering Task Force, June 1981.
[95] E. H. Spafford. The Internet worm program: An analy-

sis. Computer Communication Review, 19(1):17–57, Jan-
uary 1989.

[96] M. St. Johns. Authentication server. RFC 931, Internet En-
gineering Task Force, Jan. 1985.

[97] M. St. Johns. Draft revised IP security option. RFC 1038,
Internet Engineering Task Force, Jan. 1988.

[98] M. St. Johns. Identification protocol. RFC 1413, Internet
Engineering Task Force, Feb. 1993.

[99] J. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An
authentication service for open network systems. In Proc.
Winter USENIX Conference, pages 191–202, Dallas, TX,
1988.

[100] R. J. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, and M. Kalla.
Stream control transmission protocol. RFC 2960, Inter-
net Engineering Task Force, Oct. 2000.

[101] B. Taylor and D. Goldberg. Secure networking in the Sun
environment. In Procedings of the Summer Usenix Confer-
ence, Atlanta, GA, 1986.

[102] P. Vixie. DNS and BIND security issues. In Proceedings of
the Fifth Usenix Unix Security Symposium, pages 209–216,
Salt Lake City, UT, 1995.

[103] V. L. Voydock and S. T. Kent. Security mechanisms in
high-level network protocols. ACM Computing Surveys,
15(2):135–171, June 1983.

[104] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin,
S. F. Wu, and L. Zhang. Protecting bgp routes to top level
DNS servers. In Proceedings of the 23rd International Con-
ference on Distributed Computing Systems (ICDCS), May
2003.

[105] B. Wellington and O. Gudmundsson. Redefinition of DNS
authenticated data (AD) bit. RFC 3655, Internet Engineer-
ing Task Force, Nov. 2003.

[106] T. Ylonen. SSH – secure login connections over the inter-
net. In Proceedings of the Sixth Usenix Unix Security Sym-
posium, pages 37–42, July 1996.


