Computer Security — An End State?

Steven M. Bellovin
snmb@ esearch. att.com

It seems that one cannot open a daily paper with-
out reading of yet another computer security breach.
Worse yet, even sites that one would think would be
well-protected, such as the CIA’s web site, have been
hacked. Is this inevitable? Will matters continue to
get worse? Or is there some fix in site for the com-
puter security problem?

Over the years, a number of fixes have been pro-
posed. Early systems introduced the notion of a priv-
ileged state. Concepts such as the reference monitor
and the trusted path have been codified. In the net-
work sphere, some swear by encryption, while others
deploy firewalls. We have even had a variety of gov-
ernment security standards, such as the Orange Book
and the Common criteria. But computers are still be-
ing hacked. Why have these solutions not worked?

In point of fact, most security problems are
caused by buggy software. Buggy software is the
oldest unsolved problem in computer science, and
I don’t expect that to change in the forseeable fu-
ture. Furthermore, the various panaceas proposed in
this area—structured programming, high-level lan-
guages, formal methods, n-version programming,
code walk-throughs, and more—have not succeeded.
There has certainly been progress—it is no longer
surprising when I find that my departmental compute
server has been running continuously for six months
or more—but we are still a long way from perfection.
And we cannot afford 25-year shakedown periods be-
fore the complex new applications we are deploying
become reliable.

Put another, we cannot have secure computer sys-
tems until we can build correct systems, and we do
not know how to do that—certainly not for a long
time, and probably not ever. Fred Brooks said it best
in his essay No Slver Bullets:

Not only are there no silver bullets now
in view, the very nature of software
makes it unlikely that there will be any—
no inventions that will do for software
productivity, reliability, and simplicity
what electronics, transistors, and large-
scale integration did for computer hard-
ware.

A corollary of this is that we cannot achieve drastic
improvements in computer security.

Does this mean that we are doomed? | don’t think
so, but we will have to adjust our attitudes, our expec-
tations, and—of course—our professional practices.

The most important change is to realize and ac-
cept that our software will be buggy, will have holes,
and will be insecure. Saying this is no different than
saying that California will experience earthquakes.
We don’t know precisely where or when they will
strike, but we know what to do to in advance: build
quake-resistant structures, plan for disaster relief—
and then go about our business.

We need to do the same sorts of things in the cy-
ber world. The challenge, though, is to learn how
to build hack-resistant systems. Not hack-proof —as
I have said, that is unobtainable—but a system that

Communications of the ACM, vol. 44, no. 3, March 2001, pp. 131—132.



can cope with the failure, under attack, of some com-
ponents. Thus, perhaps the Web site of a brokerage
might be defaced, but the system architecture would
be such that the account database isn’t at risk. Alter-
natively, perhaps the account database could be com-
promised, but there would be sufficient backups and
transaction logs that no loss of information would oc-
cur.

The second major change we must adopt is to
simplify security-critical programs. In the abstract,
this principle is obvious; what is less obvious is that
many more programs are now security-critical. Who,
ten years ago, would have thought that a word proces-
sor should be part of the trusted computing base? But
there is no way to be assured of the security of such a
complex component; the only possible solutions are
to split off the security-sensitive pieces into small, au-
ditable modules, or to provide new operating system
primitives that will have the same effect.

There are certainly other technical approaches.
For example, we can build fault-tolerant systems out
of unreliable components; is there a way to do the

same for security? But while that might improve
the odds, it is unlikely to provide a perfect security
shield. Fault-tolerant systems deal with natural fail-
ures, and Nature, and Einstein reminded us, is subtle
but not malicious. Hackers, of course, do their best to
shift the odds and to create improbable situations that
they can exploit.

But if we succeed at this challenge—if we can
build distributed systems and a cyber society that is
attack-resistant—then our networks should survive
and even flourish. No one expects major cities to
be 100% crime-free, but we do expect to be able to
carry out our daily activities in a reasonable degree
of safety. The same can and should be true of the
Net. There will never be absolute safety and perfect
assurance, online or off—but there never was.

The Vandals became vandals, and descended to
slashing car tires. Today they are hackers, and deface
Web sites. We must ensure that they do not become
Hackers and destroy our cities, or even our enjoyment
of them.



