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ABSTRACT

Automatic Broadcast News Speech

Summarization

Sameer R. Maskey

As the numbers of speech and video documents available on the web and on hand-

held devices soar to new levels, it becomes increasingly important to enable users to

find relevant, significant and interesting parts of the documents automatically. In

this dissertation, we present a system for summarizing Broadcast News (BN), Concis-

eSpeech, that identifies important segments of speech using lexical, acoustic/prosodic,

and structural information, and combines them, optimizing significance, length and

redundancy of the summary. There are many obstacles particular to speech such as

word errors, disfluencies and the lack of segmentation that make speech summariza-

tion challenging. We present methods to address these problems. We show the use

of Automatic Speech Recognition (ASR) confidence scores to compensate for word

errors; present a phrase-level machine translation approach using weighted finite state

transducers for detecting disfluency; and present the possibility of using intonational

phrase segments for summarization. We also describe structural properties of BN

used in determining which segments should be selected for a summary, including

speaker roles, soundbites and commercials. We present Information Extraction (IE)

techniques based on statistical methods such as conditional random fields and deci-



sion trees to automatically identify such structural properties. ConciseSpeech was

built for handling single spoken documents, but we have extended it to handle user

queries that can summarize multiple documents. For the query-focused version of

ConciseSpeech we also built a knowledge resource (NE-NET) that can find related

named entities to significantly improve the document retrieval task of query-focused

summarization. We show how all these techniques improve speech summarization

when compared to traditional text-based methods applied to speech transcripts.
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Chapter 1

Introduction

Imagine yourself coming back from a hard day at work and you start your television

to find a half hour show that has summarized all Broadcast News (BN) shows of

your interest in all the available news channels. It has kept track of the news you

have already seen on various topics so the show only contains new information. If

you have missed the news shows of the last four days, you can reset the program

to create a summary of news of all those days. Such a program is not available in

reality today. We have seen developments of some information sharing and storage

hardware that work with the current news channels; but none of them are “intelligent”

enough to automatically create programs that summarize news shows according to

users’ preferences. In this thesis, we present our automatic BN speech summarization

system that would take us a step closer to building such a technology.

BN is one of the most common medium in which people obtain news besides

1
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newswire. BN contains one or more speakers presenting, discussing or analyzing

current events that are deemed important. A team of producers, screenwriters, audio

and video editors, reporters and anchors are involved in the production of BN and

they generally follow a standard format of news reporting. Most BN shows contain

a sequence of reports on significant current events followed by some commercials,

weather, sports and entertainment news. This standard formatting of BN can be

useful for automatic processing of BN.

Automatic summarization of BN is a very difficult problem. We have seen pub-

licly accessible automatic summarization systems for newswire such as NewsBlaster

[McKeown et al., 2003] and MEAD [Radev et al., 2004]; but we do not have a pub-

licly available BN summarizer. This lack of a BN summarization system could be

due to inherent additional challenges that a BN summarizer faces which correspond-

ing text summarization systems do not. Text documents have word, sentence and

paragraph boundaries defined which makes it easier to choose the desired process-

ing unit reliably. Speech, however, is one long stream of audio signal with none of

these boundaries. Such lack of segmentation makes it difficult to process speech in

meaningful semantic units. This problem is typically addressed by employing speech

segmentation algorithms.

In order to process speech documents we need to convert speech signals into a

sequence of words that is meaningful for users. Automatic Speech Recognition (ASR)

engines that convert speech to text have only fair accuracy, even though they have

improved in recent years. Poor accuracy hurts speech summarizers because word

errors degrade the overall performance of a system that assumes well-formed sentences
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as input.

Another problem faced by speech summarization systems is disfluency. Even

though humans write well-formed grammatical sentences, when they speak they re-

peat or repair phrases, insert filled pauses such as ’uh’, and ‘oh’. Text-trained NLP

tools such as parsers and taggers suffer with reduced accuracy on speech documents

because of such disfluency. Not having adequate NLP tools that work well with

speech, added to other problems of processing speech, makes summarization of speech

more challenging than text summarization.

Even though such problems make BN speech summarization harder, there is extra

information available in speech that does not exist in text documents. Speech has

acoustic information that may help in identifying topic shifts or acoustically significant

segments. Spoken documents such as news broadcasts tend to have multiple speakers

who play different roles in the broadcasts. Identifying these roles may provide cues

to the structure of a broadcast, and can be exploited to deduce the significance

of segments for extractive summarization. Also, a speaker’s emphasis of particular

segments of speech may indicate the significance he or she attaches to that segment.

If we are able to address the additional challenges of speech summarization and

extract additional information in spoken documents we may be able to build a robust

BN summarization system that would be useful for many applications and devices.

For example, handheld devices could stream summarized news instead of full length

BN show where data transmission costs are expensive. A BN summarization system

could be tailored to users such as traders and investors who need to be constantly

updated on all the “Breaking News.” Instead of having to watch many different
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channels, they could watch automatically generated summaries of breaking news as

it occurs. A system that summarizes news from many different news feeds keeping

track of news that users have already watched can be useful for everyday BN news

viewers as well. If we extended our speech summarizer from BN to other sources of

speech as telephone conversation, voicemail, meeting and chat we would find even

more uses of speech summarizer.

A successful BN summarization system must perform three functions: computing

significance of segments in a story, finding redundant information, and computing the

“right length” for the summary. A summary should not contain irrelevant information

so finding the optimal set of significant segments is very important. On the other

hand if we just compile all the most relevant segments together, the summary may

contain a lot of redundant information. Such redundancy will decrease the value of

the summary to the user. Even if we are able to find significant segments without

redundancy, a summary will be of little use if it’s length exceeds the limit desired

by the user. Hence, an ideal summarizer will optimize all of the above functions to

produce a significant, non-redundant summary of the desired length.

In this thesis we present our system, ConciseSpeech, which not only optimizes

all the three functions we mentioned in the last paragraph, but also addresses the

problems and utilizes additional information available in spoken documents. We

first present algorithms to handle the additional challenges speech summarization

presents, particularly those of segmentation, disfluency and word errors. We then

address how we can obtain information from the speech signal that is independent of

transcripts. We then show how the relevance, redundancy and length of a summary
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can be optimized using an algorithm we have developed. We extend our system to

produce user-focused summaries.

When we built ConciseSpeech, we had to address several research problems, the

solutions of which we believe make contributions in the advancement of speech sum-

marization research. The main research contributions of the thesis are as follows:

• ConciseSpeech: One of the main contribution of the thesis is the BN sum-

marization system, ConciseSpeech. The system is built in a highly modular

fashion that can be extended easily by other developers. The system is fully

trainable and includes innovative methods for building a summary optimizing

redundancy, significance and length.

• IE for Spoken Documents: We present methods to extract entities and

relations from speech that are useful for summarization. Some relations such

as soundbites and soundbite-speakers have not been explored before to our

knowledge. The methods show that reasonably accurate IE engines can be

developed for spoken documents even though the task involves processing ASR

transcripts with errors and unsegmented speech.

• Use of Acoustic Information: We show in this thesis that acoustic infor-

mation such as pitch, amplitude and speaking rate can be effectively modeled

to compute the significance of segments for summarization. In fact, our experi-

ments also show that a summarizer based only on prosodic information is better

than a standard lead-summary baseline.1

1Lead summary baseline are created by extracting the first N sentences of a story.
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• Disfluency Removal: We also present a novel method for removing disflu-

ency from speech. We use a phrase-based machine translation method based on

Weighted Finite State Transducers (WFSTs). Since the algorithm is based on

WFSTs it can be easily integrated into many speech processing systems that

are also based on WFSTs with a simple composition operation.

• NE-NET: We also built a novel knowledge base, NE-NET that can relate

NEs. NE-NET can be queried with any NE and returns a set of related NEs

within a user-specified degree. We show that NE-NET can be used to improve

information retrieval.

1.1 Related Work

There has been considerable work on IE and summarization for text documents. Some

of the techniques used in text summarization are relevant for speech summarization

because one possible way to summarize speech is by using text summarization tech-

niques on transcribed speech. Hence we describe some relevant text summarization

methods first. Text summarization techniques can be broadly categorized by purpose

(indicative, informative), type (single or multiple documents), output method (ex-

traction, generation), level of processing (words, phrases, sentences), and approach

(corpus, discourse, knowledge). Among these techniques, let us first describe some

of the text summarization approaches that are relevant for speech summarization

techniques that we have proposed in this thesis.

The corpus-based approach uses a corpus of manually built summaries to train
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a feature-based model that predicts which segment should be included in the sum-

mary. Some examples of corpus-based approaches are [Kupiec et al., 1995, Hovy and

Lin, 1997, Witbrock and Mittal, 1999]. [Kupiec et al., 1995] marks the development

towards a trainable corpus-based summarizer. In this paper, [Kupiec et al., 1995] pro-

pose a Bayesian classifier that computes the probability of a sentence being included

in the summary using a set of features that are trained on 188 full-text/summary

pairs. On the other hand discourse-based approaches exploit the discourse structure

of a document for generating a summary. [Marcu, 1997a] proposes one such discourse-

based method. [Marcu, 1997a]’s method differs from corpus-based methods because

[Marcu, 1997a] did not use the corpus of any kind. Instead, he built a rhetorical struc-

ture theory (RST) trees using a rhetorical parser for unrestricted text that exploits

cue phrases. Rhetorical parsers are prone to word errors in the transcript which has

led us to explore more of corpus-based methods.

Similar to text summarization output, speech summaries can be a concatenation

of significant sentences extracted from the document or they can be sentences gener-

ated using text generation techniques. If we examine text summarization literature

we note that the extraction method has been successfully used in many domains and

applications. But there are also some systems that successfully generate sentences for

the summary. [McKeown et al., 2001] and [Witbrock and Mittal, 1999] both generate

their sentences in their summary. [Witbrock and Mittal, 1999] use a naive sentence

generator which does surface realization simply using bigram probabilities. [McKeown

et al., 2001] use a more sophisticated text generation that takes account of sentence

ordering and intersection. [McKeown et al., 2001]’s method of clustering themes and
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finding intersecting phrases to be selected by content planner allows them to select

phrase-level structures and combine them for the summary. But using generative

techniques similar to [McKeown et al., 2001] poses many challenges in the speech

domain. First, we will lose the originality of the speaker’s voice if we generate a sum-

mary. Second, text generation methods that rely on extensive syntactic information

may perform worse for speech transcripts. These reasons are motivating factors for

choosing extraction-based methods for summarizing spoken documents. Other meth-

ods, such as summarization based on lexical chains [Barzilay and Elhadad, 1997], can

potentially be useful for speech transcripts as well. But the possible degradation of

lexical chain computation due to errorful transcript is again a potential problem.

Some text-summarization techniques, especially extractive corpus-based methods,

have been used for summarizing spoken documents of different genres. Speech summa-

rization research has mainly focused on three different genres: BN [Hori, 2002, Maskey

and Hirschberg, 2005, Christensen et al., 2004], voicemail [Koumpis and Renals,

2000, Zechner and Waibel, 2000] and meetings [Galley et al., 2004, Murray et al.,

2005].

Most of the proposed methods extract segments (phrases, sentences) based on

acoustic and lexical features, and combine the selected segments to generate a sum-

mary. [Koumpis and Renals, 2000, Christensen et al., 2004] report encouraging re-

sults using lexical and prosodic features to extract relevant sentences. [Maskey and

Hirschberg, 2003, Maskey and Hirschberg, 2005] have shown that sentence extraction

for summary based on additional structural and discourse information can be useful.

One of the problems with sentence extraction based methods is that sentence segmen-
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tation of speech such as meetings can be very poor. [Galley et al., 2003] addresses this

problem by segmenting meetings into topics and extracting the topics using lexical

cohesion techniques.

A few methods compress the sentences or utterances instead of extracting seg-

ments. [Hori et al., 2002] remove redundant, irrelevant words and phrases in BN

sentences using four types of scores (word, linguistic, confidence and concatenation).

Recent work by [Hori et al., 2003] also removes irrelevant terms but uses a Finite

State Transducer to translate irrelevant terms to null. The voicemail summariza-

tion system of [Zechner and Waibel, 2000] removes disfluencies and uses the Maximal

Marginal Relevance algorithm [Carbonell and Goldstein, 1998] to generate a sum-

mary. [Koumpis and Renals, 2000] use a filtering approach by removing ASR errors

and disfluencies to compress sentences for voicemail summarization.

Instead of viewing summarization as a two step process of transcribing speech

and then summarizing it, [Banerjee and Rudnicky, 2006] use an interactive method

for summarizing meetings. They use ‘smart notes,’ which meeting participants en-

ter. These notes are collected and presented as a summary. Another user-interaction

based method is proposed by [He et al., 1999] which asks users to identify important

segments and stores user preferences. As more users use the system, preference his-

tories of users are combined to produce summaries for new users. One of the main

disadvantages of such an approach is that it is heavily dependent on the number of

users that view the same document, which is not viable for standalone application

like ours.

Most of the speech summarization algorithms mentioned above use statistical
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techniques. Also, the methods described above assume the availability of boundaries

that divide speech into smaller segments. Even though it is fair to assume that word

segmentation is available for speech because most ASR systems provide word bound-

aries, it is important for the speech to be segmented into semantically meaningful

chunks such as phrases, sentences, topics or stories. [Shriberg et al., 2000] chunk

speech input into sentences using prosodic features. [Hirschberg and Nakatani, 1998]

have shown that acoustic information can be used for identifying topic boundaries

and [Rosenberg and Hirschberg, 2006] used acoustic and lexical information to de-

tect story boundaries in BN. We will use [Rosenberg and Hirschberg, 2006]’s story

segmentation method for our BN.

Information Extraction (IE) methods are relevant to our task of speech summa-

rization as we extract entities and relations from BN. IE methods have been explored

widely for use in both text and speech domains. IE methods have obtained significant

attention due to DARPA-funded projects such as EARS, TIDES, TREC and TDT

[LDC, 2002].2 The tasks defined in these various projects include generating a rich

transcription that contains capitalization, punctuation and speaker diarization, and

detecting disfluency and named entities (person, people, organization). Many of these

tasks have been successfully addressed by [Snover et al., 2004a, Honal and Schultz,

2003, Shriberg et al., 1997] for disfluency, [Miller et al., 1999] for named entities and

[Allan et al., 1998] for topics. Most of the techniques have employed ML techniques

using ASR transcripts and acoustic features. The research on these topics suggests

that ML techniques are robust for speech but degrade with poor ASR performance.

2More information on these projects are available in NIST website http://www.nist.gov/speech/
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For example, [Miller et al., 1999] have found a significant correlation between ASR

Word Error Rate (WER) and the accuracy of named-entity detection.

The work described above on text and speech summarization and on IE can be

used to assess the potential advantages and disadvantages of various ways we can

summarize speech. As we mentioned previously, ASR transcripts are errorful and

this degrades the accuracy of many NLP tools. Also, text generation tools may have

difficulty processing disfluency and word errors in transcripts and generating sentences

that capture the original intent of the source. Thus, extraction-based approaches may

offer better solution for speech summarization than generation-based summarization.

1.2 Structure of the Thesis

The thesis is divided into nine chapters including this chapter. In this chapter we

introduced the concept of BN speech summarization and explained the related work

on summarization and IE of spoken data. There is no standard speech summariza-

tion corpus provided by LDC or any other organization so we have created our own

BN speech summarization corpus. We discuss our data annotation process and the

analysis of corpora in Chapter 2. After we prepared our data we built a collection of

feature extraction modules which we describe in Chapter 3.

With the data prepared and features extracted, we describe our first approach to

speech summarization. One of the first questions that arise when addressing speech

summarization is “How is speech summarization different from text summarization,

i.e. is speech summarization just a summarization of ASR transcripts?” We explore
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answers to this question in Chapter 4. We next build modules to address the chal-

lenges particular to speech summarization and describe them in Chapter 5. We then

build IE engines to extract useful entities and relations in BN spoken document and

discuss them in Chapter 6.

After building algorithms to address challenges and extract information particular

to BN, we combine all of these modules to build our BN speech summarization system,

which we present in Chapter 7. In this chapter we also present an algorithm to

optimize significance, redundancy and length of segments to generate a summary.

ConciseSpeech is extended to handle user queries as described in Chapter 8. We also

present a knowledge resource we have designed and built, NE-NET, which improves

information retrieval task for user’s queries. Finally, we conclude in Chapter 9 where

we discuss the contributions and limitations of our thesis.



Chapter 2

Corpus, Annotation and Data

Analysis

We conducted our experiments on a corpus of BN shows. Our corpus consists of

a subset of shows in the Topic Detection and Tracking (TDT) included in Global

Autonomous Language Exploitation (GALE)1 corpora provided by Language Data

Consortium [LDC, 2006]. There is no standard corpus available for BN summarization

experiments. So, we created our own BN summarization corpus by annotating select

shows from TDT and GALE corpora.2

1GALE is a multi-institute large project undertaken by NIST for automatically finding relevant

answers for a given set of question types. The evaluation of GALE consists of recognition, translation

and distillation. More information available at http://www.nist.gov/speech/tests/gale/index.htm

2Our annotation is publicly available at http://www.cs.columbia.edu/˜smaskey/thesis.

13
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2.1 Corpora

We have created two corpora which we call Columbia BN Speech Summarization

Corpus I (CBNSCI) and Columbia BN Speech Summarization Corpus II ( CBNSCII).

Both corpora consist of CNN Headline news shows collected over the period of 1998

to 2003 with annotations for summarization and IE experiments.

2.1.1 Columbia BN Speech Summarization Corpus I

CBNSCI consists of 216 stories from 20 CNN Headlines News shows from TDT-2

[LDC, 2002] corpus. Each news story has a corresponding summary. This summary

was created by an annotator extracting significant sentences. We describe the anno-

tation process in detail in Section 2.1.1.1. The corresponding audio files for these 20

shows consist of 10 hours of speech data. The corpus contains manually transcribed

and (some) close captioned transcripts for each of the BN show. The corpus also

contains ASR transcripts provided by the Dragon ASR engine.3 Manual transcripts

provided by LDC for these shows contain story segmentation and topic labels while

the ASR transcripts include word boundaries and pauses. Besides summarization an-

notation, 65 shows were further manually annotated with named entities, headlines,

anchors, reporters, interviewees, soundbites and soundbite-speakers following a label-

ing manual we prepared.4 We will explain our definition of soundbites, headlines,

interviewees in Section 3.3.

3Dragon ASR engine is a large vocabulary speech recognition system built by Nuance

4The labeling manual can be downloaded from www.cs.columbia.edu/˜smaskey/thesis. Labeling

manual has been used by other research groups for identifying anchors and reporters
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2.1.1.1 Annotating Extractive Summaries and Relations

We annotated CBNSCI for extractive summarization. One annotator extracted sum-

maries for the stories in CBNSCI. The annotator was not given explicit instruction

on the desired length of the summaries.

Figure 2.1: Web Interface for Summarization Annotation

A sample of the web-interface provided to summarization annotator is shown in

Figure 2.1. We note that the annotator can choose which story he/she wants to

summarize by selecting the SEGMENT (story) number then select the sentences of

the story by clicking on the buttons at the end of each sentence. Whenever an

annotator clicks the radio button at the end of the sentence, the text of the sentence
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is highlighted to ensure that the annotator gets the attention of the sentence he/she

just selected. After the annotator has finished selecting sentences to be extracted,

the annotator is sent to a confirmation page where he/she can read both the story

and summary on the same page. The annotator can change or confirm the summary.

A sample of this step of interface is shown in Appendix A.2. All the summaries are

stored in a MySQL database.

We also annotated the CBNSCI corpus for relations and entities such as speaker

roles, soundbites, NEs, Headlines, and Sign-Ons. Soundbites are statements in BN

that can be directly attributable to a person who is not an anchor or a reporter. We

call the speaker of a soundbite a soundbite-speaker. Headlines are the introductory

statements made by an anchor in BN in the beginning of the show. Signoffs are the

final comments made by anchors at the end of the show. Annotators were provided

with manual transcripts, a labeling manual and a labeling tool, dLabel.5

dLabel is a java based labeling tool that can be used to annotate sgml, xml or text

files. A screenshot of the tool can be seen in Figure 2.2. The tool lets an annotator

highlight a segment of BN transcript and click one of the buttons to put a start and

end tags around the selected text. The button that was clicked is used as reference

to decide on what kind of tags are to be used to surround the selected text. dLabel

can also be used to parse and update xml files and has many customizable functions

from buttons to fonts.

5dLabel is available through a link at http://www.cs.columbia.edu/˜smaskey/thesis
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Figure 2.2: dLabel Ver 2.5, Annotation Tool for Entities and Relations in BN

2.1.2 Columbia BN Speech Summarization Corpus II

CBNSCII consists of 20 CNN Headline News Shows from the TDT4 corpora. Besides

the manual and ASR transcripts already made available for the TDT4 corpora, we

also had access to ASR transcripts provided by SRI as part of the GALE project.

These transcripts contained sentence boundaries and phone outputs for words. These

were further enriched with story boundaries using segmentation tool provided by

[Rosenberg and Hirschberg, 2006]. We also had manual transcripts for these shows

that contained manual annotation for turn boundaries, topic labels, and story bound-

aries. Manual transcripts were annotated for speaker roles as well. Speaker roles are

the roles of the speakers in BN show such as anchors and reporters. 447 stories of

these shows were also annotated by three annotators for an abstractive and extrac-
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tive summaries. In average each show is 216 sentences long with slightly less than 10

sentences in each story with a wide variation on story lengths (ranging from a few

sentences to more than 50 sentences).

2.1.2.1 Annotation for Abstractive, Extractive Summaries

CBNSCII corpus was annotated for abstract (manually generated summaries), and

extractive summaries. One of the main differences between CBNSCI and CBNSCII is

the method used in generating summaries. Three native English-speaking annotators,

were asked to write a summary for each of the story in their own words but using

words from BN whenever possible. Unlike CBNSCI where we did not provide any

length requirements, for CBNSCII we asked the annotators to generate a summary

approximately 30% of the length of the original story. When they finished writing

abstracts, we asked them to extract sentences from the story that supported their

abstract. We provided them with the updated dLabel having < INSUMMARY >

and < /INSUMMARY > buttons to highlight the sentences to be extracted for the

summary.

Of the three annotators who generated abstracts, two of them also generated ex-

tractive summaries. Even though we had asked annotators to produce summaries

with summarization ratio of 30% they produced summaries that were of higher sum-

marization ratio for stories that were very short (4 to 5) sentences. This could be

explained by the difficulty of choosing sentences for a very short story. If a sentence

has 5 sentences choosing only 2 sentences amount to a summary of 40%. One of

the annotators was also asked to annotate the stories with speaker roles, soundbites,
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interviewees, soundbite-speakers and commercials.

2.2 Pre-processing of Corpora

After the completion of the annotation process, we had to perform a sequence of

pre-processing steps on the corpora to make it usable for our summarization and IE

experiments. We describe these pre-processing steps in the following sections.

2.2.1 Aligner

Our annotation of turn boundaries, speaker roles, summary, commercials and sound-

bites were done on manual transcripts. In order to build an automatic summarizer

based on ASR transcripts, we need to train our model on ASR transcripts which do

not have these annotations. We can easily run some of the automatic annotators on

ASR transcripts such as POS taggers but we cannot obtain sentence summary labels

without asking human labelers to re-label ASR transcripts. We did not want to ask

human labelers to annotate ASR transcripts because ASR accuracy changes, thus

making our models and annotation obsolete whenever there is an improvement on

ASR engine. In order to obtain manual annotation for ASR transcripts, we aligned

manual and ASR transcripts at the word level using Minimum Edit Distance (MED)

algorithm which has been explained in detail in [Navarro, 2001]. We built an aligner

that would align manual and ASR transcripts. We tested different combinations of

insertion, substitution, match and deletion costs. We used word level match cost of

0, substitution cost of 4 and insertion and deletion cost of 3 in our MED algorithm
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which gave us the best alignment.6

Using the aligner we were able to transfer the annotations made on manual tran-

scripts to the ASR transcripts. One of the problems we face in this transfer process

is the mis-match of boundaries. Manually or automatically labeled boundaries such

as sentence, turn and story boundaries may occur at different points in manual and

ASR transcripts. When we transfer a label for sentence Mi in the manual transcript

to sentence Ak in the ASR transcript, sentence boundaries may not match as i may

not equal k. In such cases we assign the labels to ASR sentences with the closest

matching manual sentence. An example of aligned manual and ASR transcripts with

the annotation is shown in Appendix A.1.

Another problem that we face in building an automatic summarizer is using man-

ually generated summaries to train an extractive summarizer. Our statistical model

for the summarizer is trained to extract segments by either classifying or ranking sen-

tences (segments) by significance. In order to train such a model we need a summary

label for each of the sentences in the story. Abstractive summaries have no notion

of segments from the original story, as the sentences generated in the summary by

humans are in their own words. Recall that in our instruction to the annotators, we

had asked the annotators to use the words from the original story whenever possible.

Such words allow us to associate the words in the summary with the words in the

original story by aligning the human generated summary sentences with the sentences

of the story. We used the aligner to align the summaries with the stories. Then we

computed the labels for the sentences in the story by computing the degree of match

6The alignment software is available at www.cs.columbia.edu/˜smaskey/thesis.
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between the words of the sentence in the story with the words in the summary, thus

can label all ASR sentences with summary label scores.

The use of aligner and transfer of manual annotations to ASR transcripts allow

us to explore the effects of various combinations of manual and automatic annotation

on ASR transcripts to identify the important annotations for summarization.



Chapter 3

Feature Analysis and Extraction

Many of our summarization modules are trained using Machine Learning (ML) meth-

ods. In this chapter we explain some of the features we use to train our ML algorithms

for our summarization and IE experiments. Although different problems may require

different sets of features, some features are useful for most of our experiments. We

extract features that can be roughly categorized into four broad classes - Lexical,

Acoustic/Prosodic, Structural and Discourse features. We describe the most

important of these feature types in this chapter.

3.1 Lexical Features

The lexical features we use have been motivated by features developed in previous

researches for text and speech summarization [Schiffman et al., 2002, Radev and

McKeown, 1998, Christensen et al., 2004]. Some of the lexical features we use are

listed in Table 3.1.

22
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Sub-Feature Type Feature

Named Entity Person Name Count

Organization Name Count

Location Name Count

Frequency Term Frequency (TF)

Inverse Document Frequency (IDF)

TFoIDF

Text Similarity Cosine Similarity

Centroid Similarity

Simfinder similarity

Word Types Is this a Function Word?

Is this a Content Word?

Part of Speech Tag (POS) Type of POS

Table 3.1: Lexical Features

• Named Entity: We have seen in our corpus that content-laden sentences have

a high percentage of NEs. For user focused summarization, NEs help to weight

the sentences according to the number of NEs that users may be interested in.

In order to extract NE based features, we first identify NEs. We identify person,

organization and location names. We compute Total NEs, Total sub-types of

NEs, and binary features such as “Does the sentence contain NE on topic?”.

• Frequency: Many summarizers available today use frequency of words as one

of the features to compute the significance of a sentence. Frequency of words
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provide clues to their significance and generality. Words such as “Kathmandu”

may occur less than “apple” and can potentially be more important if the story

is about Nepal. A frequency measure of words known as TFoIDF proposed

by Karen Sparck Jones [Robertston and Jones, 1976] has been widely used for

summarization. We use this measure as one of our features. TFoIDF (Term

Frequency x Inverse Document Frequency) proposes that a term is significant

if it rarely occurs in a corpus but occurs many times in a given document.

TFoIDF is computed using the following equation.

TFoIDF = TermFreq ∗ InvDocumentFreq (3.1)

where

TermFreq =
∑

ni (3.2)

where ni the number of times the ith term occurred in document d

InvDocumentFreq = log(
N∑
nij

) (3.3)

where N is total number of documents in the corpus and
∑
nij is the total

number of documents that contain the term i.

• Text Similarity Text similarity scores are important features for summariza-

tion because these scores help to identify redundant sentences in the story. Var-

ious text similarity metrics are available to identify similar sentences. We com-

pute similarity between sentences by computing cosine similarity, and Longest
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Common Subsequence (LCS). Cosine similarity between two documents or spans

of text is defined as follows:

Similarity(X, Y ) =
~Xo~Y

|| ~X|| · ||~Y ||
(3.4)

where ~X and ~Y are word vectors for sentences X and Y, and ~Xo~Y is a dot

product between them.

• Part of Speech (POS) POS tags are useful because they can be used to

identify adverbial and prepositional phrases. POS can also be used to identify

pronouns. Some of the POS features that were useful for our purpose were

count of various pronouns in the sentence, and counts of noun phrases. In order

to obtain POS, we used POS tagger provided by Ratnaparkhi [Ratnaparkhi,

1996].

3.2 Acoustic/Prosodic Features

Sub-Feature Type Feature

Intensity meanDB, maxDB, averageDB

Pitch F0 max, min, average, slope

Duration segment duration (secs)

Speaking Rate number of voiced frames/total frames

Table 3.2: Acoustic/Prosodic Features

Acoustic/Prosodic features have been examined in summarization [Inoue et al.,
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2004] and information extraction tasks from speech documents [Shriberg et al., 2000].

The motivation for using prosodic/acoustic features for these tasks is based on speech

prosody research [Hirschberg, 2002] that suggests that humans use intonational vari-

ation such as expanded pitch range, phrasing or intonational prominence to mark

the importance of particular segments in their speech. Our acoustic features include

features mentioned in [Inoue et al., 2004, Christensen et al., 2004] as well as some new

features that had not been explored before. Some of the acoustic/prosodic features

we use are shown in Table 3.2.

• Intensity: We extract the intensity (amplitude) of the speech signal with the

motivation that speakers may speak louder if they want to emphasize signifi-

cant segments of speech. We extract maximum and minimum intensity of the

signal for a given sentence. A large difference between maximum and minimum

intensity may signify significant information. We also extract average and slope

of the intensity.

• Pitch: There is considerable evidence that topic shifts may be marked by

changes in pitch [Hirschberg and Nakatani, 1996] and new topics or stories in

BN are often introduced with content-laden sentences which, in turn, are often

included in a summary. Inclusion of sentences at the beginning of a topic in a

story occurs often in BN stories because BN stories are shorter in length than

newswire stories. We extract maximum, minimum, mean and slope of pitch.

• Duration: Sentence duration represents the length of the sentence in seconds.

Our motivation for including this feature is twofold: Very short segments are not
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likely to contain important information. On the other hand, very long segments

may not be useful to include in a summary, simply so as not to produce over-long

summaries. This length feature can accommodate both types of information.

We obtain sentence length by subtracting the end from the start time for each

sentence.

• Speaking Rate: We extract speaking rate (the ratio of voiced/total frames)

with the motivation that a sudden change in speaker rate may signify a change

in emphasis on the segment of speech. We can roughly estimate speaking rate

by dividing the duration of a sentence by the number of words in the sentence.

We extract the acoustic/prosodic features using Praat [Boersma, 2001] tool. Praat

allows us to provide sentence boundary timestamps as one of the data tiers as shown

in Figure 3.1. We obtain the segment boundaries from the ASR transcripts. We can

see the features being extracted in Figure 3.1, where the top tier shows the speech

signal, the second from the top tier shows the extracted features and the third tier

shows the sentence boundaries.

3.3 Structural Features

BN programs exhibit similar structure for shows from the same news channel. Each

show usually begins with an anchor or anchors reporting the headlines, followed by

the actual presentation of those stories by the anchor and reporters. Programs are

usually concluded in the same conventional manner. We call the features which rely
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Figure 3.1: Acoustic Feature Extraction with Praat

upon aspects of this patterning and from the overall structure of the BN structural

features [Maskey and Hirschberg, 2003], comparable to [Christensen et al., 2004]’s

style features. The structural features we investigated for our study are listed in

Table 3.3.

• Speaker Role: Speaker role describes the role of the speaker in BN - anchor,

reporter or others. Anchors tend to say content-laden sentences in the beginning

of the turn when they introduce a story. If we know which turns are spoken by

anchors this can provide useful clues for a summarizer for selecting sentences.

In order to extract the speaker’s role as a feature, we first build a classifier that

classifies turns by speaker roles. We explain this classification process in Section

6.1
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Sub-Feature Type Feature

Speaker Role Anchor, Reporter, Other

Position Sentence, Speaker position

Relative positions of sentences and speakers

Turns Turn length, Turn position

Boundaries Sentences

Turn

Story

Segment Type Headline

Sign-on

Sign-off

Table 3.3: Structural Features

• Sentence, Turn and Story Positions: Position information is vital for sum-

marization because sometimes story highlights are presented in the beginning

of the story. We extract position of sentence, turn and story in BN. We also

extractive relative position of sentences within a turn, relative position of turns

within a story and relative position of story within the show.

• Previous and Next Turn Lengths: The features length of previous segment

and length of next segment help us differentiate between planned, unplanned,

formal and informal speech in news broadcasts. We compute the length of the

segment by counting the number of words in the segment and also by computing

the total time (seconds). For example, dialogs between anchor and reporter or
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reporters’ interviews are generally signaled by a sequence of short segments.

These features thus allow us to give less weight to such dialogs, since they seem

less likely to contain vital information for summarization.

• Segment Type: Some segments of BN are characterized by the role they play

in BN. These segments are Headlines, Teasers, Commercials. Headlines are

the first few turns by anchors where they present the summary of the headline

stories to be presented in the BN show. Teasers are highlights of the new story

that is about to follow after the commercial breaks. We identify these segments

by building a separate specialized detection modules which we explain in detail

in Chapter 6.

3.4 Discourse Features

Sub-Feature Type Feature

Given-New Given-Newness Score

Table 3.4: Discourse Features

Discourse features, such as [Marcu, 1997b]’s discourse trees, which model the

rhetorical structure of a text to identify important segments for extraction, have

been explored for summarization. We have explored a different discourse feature, by

computing a measure of ‘givenness’ in our stories. Following [Prince, 1992] we identify

‘discourse given’ information as information which has previously been evoked in a

discourse, either by explicit reference or by indirect (in our case, stem) similarity to
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other mentioned items. Our intuition is that given information is less likely to be

included in a summary, since it represents redundant information. Our given/new

feature represents a very simple implementation of this intuition and proves to be a

useful predictor of whether a sentence will be included in a summary. This feature is a

score that ranges between -1 and 1, with a sentence containing only new information

receiving a score of ‘1’, and a sentence containing only ‘given’ information receiving

‘-1’. We calculate this score for each sentence by the following equation:

S(i) =
ni

d
− si

t− d
(3.5)

Here, ni is the number of ‘new’ noun stems in sentence i, d is the total number

of unique noun stems in the story; si is the number of noun stems in the sentence i

that have already been seen in the story; and t is the total number of noun stems in

the story.

The intuition behind this feature is that, if a sentence contains more new noun

stems, it is likely that more ‘new’ information is included in the sentence. The term

ni/d in the equation 3.5 takes account of this ‘newness’. On the other hand, a very

long sentence may have many new nouns but still include other references to items

that have already been mentioned. In such cases, we would want to reduce the given-

new score by the ‘givenness’ in the sentence; this givenness reduction is taken into

account by si

t−d
.
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From Text to Speech

Summarization

When we built our speech summarizer, we asked ourselves a few questions that would

provide important clues for speech summarization. Is it sufficient to use or extend

text summarization techniques for use on speech transcripts? What makes speech

summarization different from text summarization? Should the summary output be

in speech or text or both? Should speech summarization be based only on the speech

signal? Can we build a speech summarizer just based on prosody? In this chapter

we present some of the answers to these questions that we have found in our re-

search. We performed a set of experiments that would help us illustrate the answers

to these questions. We first experimented on using text summarization technique on

speech transcripts. Then we used additional information available on speech signal

such as acoustic and structural properties. These experiments provided important

information regarding the usability of information that is not possible to exploit in
32
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text summarization method. We further explored the challenges particular to speech

summarization that text summarization does not have to address.

4.1 Extractive Speech Summarization Using Tran-

scripts

The goal of single document text or speech summarization is to identify information

from a text or spoken document that summarizes, or conveys the essence of a doc-

ument. Extractive summarization identifies important portions of an original

document and concatenates these segments to form a summary. How these segments

are selected is thus critical to summarization adequacy.

We use a ML technique to identify sentences to be extracted for the speech sum-

mary, similar to the approach of [Kupiec et al., 1995] for text summarization. The

classifier is trained using Summarization Corpus I which has binary summary labels

(inclusion or exclusion) for each sentence in a story. The trained model classifies

whether each sentence should be included or not in the summary. We concatenate

the sentences predicted by the model with “inclusion” label to produce the final

summary.

Since we are building a speech summarizer based on manual transcripts, we ex-

tracted lexical features from the transcripts to train our ML model. We used a subset

of lexical features described in Section 3.1 which include counts of person names,

organization names, and place names for each sentence. We also included the

total number of named entities in a sentence as a feature, in addition to the
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number of words in the current, previous and following sentence. Our fea-

ture selection algorithm selected the total number of NEs and the number of words

in the sentence as particularly useful features for predicting sentences to be included

in a summary. We trained our model with these features and binary summary labels

using a Bayesian Network learning algorithm. We explain the details of the Bayesian

Network algorithm in Section 7.1.2.2.

We then compared the summaries generated by our model with baseline sum-

maries. We generated baseline summaries by taking the first 23% of the sentences of

each story in BN. We chose the length of the baseline summary by computing the

average length of the annotated summaries in the corpus. It is standard to take the

first few sentences as a baseline for summarization tasks. For our purpose this is a

very strict baseline because the stories are short compared to newswire documents,

and headlines (significant sentences for summaries) are introduced in the beginning of

each story. Our summarizer based on lexical information only obtained an f-measure

of 0.487, as shown in Figure 4.1

We see in Figure 4.1 that we obtain an improvement of 5.9% over the strict baseline

by using text summarization techniques on the transcripts. This is an encouraging

result and shows the promise for text summarization techniques for speech summa-

rization. To confirm that our results are unaffected by the choice of classifier, we also

computed ROC curves for the classifiers we tried. The area under the curve (AOC)

of the ROC curve computes the ‘goodness’ of a classifier; the best classifier would

have an AOC of 1. For the classifiers we examined, we obtained an AOC of 0.771

for Bayesian Networks, 0.647 for C4.5 Decision Trees, 0.643 for Ripper showing that
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Figure 4.1: Summarizing Speech with Transcripts Only

Bayesian Networks are indeed the right choice for training the model.

We have to note that we are using manual transcripts for the above experiment,

and the same experiment on ASR transcripts will produce lower accuracy. The use of

manual transcripts allows us to estimate the ceiling of performance we can obtain in

the above experimental conditions. We explain our experiments with ASR transcripts

in later chapters. Also, we have not used the acoustic/prosodic information available

on speech signal. Acoustic/Prosodic information should be useful for finding signifi-

cant segments of significant speech for summarization, and we show this is the case

in the following section.
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4.2 Using Additional Information Available in Spo-

ken Documents

4.2.1 Adding Acoustic/Prosodic Information

We mentioned in Section 3.2 that humans use intonational variation for emphasizing

different parts of speech [Hirschberg, 2002]. In BN, we note that change in pitch,

amplitude or speaking rate may signal differences in the relative importance of the

speech segments produced by the speakers of BN. In order to test the effectiveness

of using acoustic/prosodic information, we extracted acoustic features for the same

set of sentences in CBNSCI that were used in the previous section 4.1. The feature

set includes speaking rate (the ratio of voiced/total frames); F0 minimum, max-

imum, and mean; F0 range and slope; minimum, maximum, and mean RMS

energy (minDB, maxDB, meanDB); RMS slope (slopeDB); sentence duration

(timeLen = endtime - starttime) as described in detail in 3.2.

After extracting the acoustic/prosodic information we re-trained our previous

Bayesian Network model. The new model includes the additional acoustic infor-

mation plus the lexical information. We tested our new model using 10-fold cross

validation on the same data set. The result in Figure 4.2 shows that there is addi-

tional information in the speech signal which is not captured by the words. We see

an improvement of 3.7% in f-measure for using this additional acoustic information.

This is a very encouraging result as it shows that a speech summarizer is not just an

extension of text summarizer of transcripts; using additional intonational information
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Figure 4.2: Adding Acoustic/Prosodic Information to Transcript Based Summarizer

as well improves the summarizer.

4.2.1.1 Speech Summarization Based on Acoustic Information Only?

We saw in the section above that the use of acoustic information improves the

transcript-based speech summarizer; but can we summarize speech without using

the transcript at all, that is, without knowing absolutely nothing about what is being

said, can we identify significant segments? In order to explore this somewhat radical

question, we performed the following experiment — we re-trained our ML model with

the same settings using only acoustic/prosodic described in Section 4.2. This model

essentially predicts if a sentence should be in the summary or not by simply using

pitch, intensity, duration and speaking rate as features for the model. The results in

Table 4.1 suggest that it is possible to summarize speech without transcripts
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Type Precision Recall Fmeasure

Baseline 0.430 0.429 0.429

Acoustic Only 0.443 0.495 0.468

Lexical Only 0.443 0.542 0.487

Table 4.1: Summarizing Speech Without Transcripts

almost as well as using transcripts alone. The significant improvement of 3.9%

in f-measure over the baseline with the use of acoustic/prosodic features shows that

speech can indeed be summarized fairly well by modeling only such information – in-

formation not available to text summarization algorithms. The acoustic-only model

does only slightly worse than summarizer based on lexical only information.

Intuitively, one might imagine that speakers change their amplitude and pitch

when they believe their utterances are important, to convey that importance to the

hearer. So a hypothesis that “the importance of what is said correlates with how

it is said” should be true. Otherwise we would expect the sentences that our lexical

features included in a summary to be different from those predicted for inclusion by

our acoustic/prosodic features. We computed the correlation coefficient between the

predictions of these two different feature-sets. The correlation of 0.74 supports our

hypothesis.

4.2.2 Exploiting the Structure of Broadcast News

We saw in previous sections that using acoustic information improved a text based

summarizer. Can we do more to improve upon the lexical and acoustic/prosodic
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summarizer? BN programs, especially the same series, show similarity in ‘structure’.

We would like to exploit this structure to improve our summarizer for BN. In order

to show that using structural features further improves summarization, we performed

the following experiment.

For the same set of sentences from Summarization Corpus I, which we used for

our previous experiments, we extracted a subset of structural features described in

Section 3.3 such as normalized /sentence position in turn, speaker role, next-

speaker role, previous-speaker role, speaker change, turn position in the

show and sentence position in the show. We added these structural features to

the feature vector that already contained lexical and acoustic/prosodic features and

re-trained our Bayesian Network model. We tested on the same dataset that was used

for previous experiments. We obtained a further improvement of 1.6% in f-measure,

as shown in Figure 4.3 with f-measure of 0.54.

Figure 4.3: Improvement With the Addition of Structural Information



4.2. Using Additional Information Available in Spoken Documents 40

One of the issues that we have not addressed in this experiment is that structural

cues can be heavily dependent on the news program and we may lose the improvement

gained by the use of structural information if we test the system on broadcasts from

different channels. We propose to investigate this issue further as a part of future

work.

In the beginning of this chapter we asked a question - “Is it sufficient to use text

summarization techniques on ASR transcripts for summarizing spoken document?”

We have experimentally shown that it is not sufficient to summarize speech just by

employing text summarization techniques on ASR transcripts. Rather, a speech sum-

marizer should exploit acoustic/prosodic features of the speech signal and structural

information of the document to perform better. The difference of 5.3% in f-measure

due to this additional acoustic and structural information over just using lexical in-

formation supports this conclusion.

Our findings also suggest it may be possible to do effective speech summarization

without the use of transcription at all, whether manual (as employed here) or from

speech recognition. Two of our feature-sets, acoustic/prosodic and structural, are

independent of lexical transcription, except for sentence-level and speaker segmenta-

tion and classification, which have been shown to be automatically extractable using

only acoustic/prosodic information [Shriberg et al., 2000]. The accuracy of our acous-

tic/prosodic features alone (F = 0.47), and of our combined acoustic/prosodic and

structural features (F = 0.50) compares favorably to that of our combined feature-

sets (F = 0.54). So, even if transcription is not available, it is possible to summarize

broadcast news effectively.
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4.2.3 Combining All Available Information for Summariza-

tion

After experimenting with various combinations of feature sets we created all possi-

ble combinations of our 4 features classes —- Lexical (L), Acoustic/Prosodic (A),

Structural (S) and Discourse (D) information, producing 15 different feature sets to

experiment with. Then we ran a 10-fold cross validation experiment on these combi-

nations with the same data and model settings. The results are shown in Figure 4.4

which confirms our belief that speech summarization should use additional informa-

tion to produce a better summary.

From Figure 4.4 we can see that the best performing experiments combine all the

feature-sets L + A + S + D. This gives an f-measure of 0.54, recall of 0.61, precision

of 0.49 and an accuracy of 73.8% on our dataset with 10-fold cross validation. Our

system thus has an f-measure which is 11% higher than the baseline. The f-measures

for the individual feature-sets when tested alone are: discourse (0.13), structural

(0.33), acoustic/prosodic (0.47) and lexical (0.49). So we see that the lexical and

acoustic/prosodic feature-sets perform best alone, both surpassing the baseline.

When we look at the performance of discourse features alone, compared to that

of discourse plus structural features, we see that the f-measure improves from 0.33

to 0.39. Discourse features added to lexical improve the f-measure from 0.49 to 0.50,

and added to acoustic/prosodic features, improve the f-measure from 0.47 to 0.48. So,

there appears to be more redundancy of our discourse features with acoustic/prosodic

and lexical features than with the structural feature-set.
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Figure 4.4: F-Measure: Various Combinations of Lexical (L), Acoustic (A), Structural

(S) and Discourse (D) Information

To look more specifically at which of the features in our feature-sets are most useful

for predicting summary sentence selection, we performed feature selection on our

entire set of features using a selection algorithm that computed individual predictive

power of each feature and the redundancies between features. The five most useful

features are shown in Table 4.2. Note that the best performing individual features

include features from all four of our feature-sets with two from the lexical set and

one from each of the others. Interestingly, this set of five was also selected as the

optimal set of features by the feature selection algorithm. Our f-measure with just
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Table 4.2: Best Features for Predicting Summary Sentences

Rank Type Feature

1 A Time Length in sec.

2 L Num. of words

3 L Tot Named Entities

4 S Normalized SentPos

5 D Given-New Score

these features is 0.53 which is only 1% lower than the highest f-measure shown in

Figure 4.4.

The results mentioned above assume an exact match of a predicted summary sen-

tence to a labeled summary sentence. For summarization purposes, this measure is

generally considered too strict, since a sentence classified incorrectly as a summary

sentence may be very close in semantic content to another sentence which was in-

cluded in the gold standard summary. Another metric standardly used in summary

evaluation, which takes this synonymy into account, is ROUGE (Recall-Oriented Un-

derstudy for Gisting Evaluation) [Lin, 2004]. ROUGE measures overlap units between

automatic and manual summaries. Units measured can be n-gram, word sequences

or word pairs. For ROUGE-N, ROUGE-L, ROUGE-S and ROUGE-SU, N indicates

(the size of) the n-grams computed, L indicates the longest common subsequence, and

S and SU stand for skip bigram co-occurrence statistics with and without optional

unigram counting. ROUGE-N is computed using the following equation.
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ROUGE −N =∑
S∈Ref.Sum

∑
gramn∈S

Countmatch(gramn)∑
S∈Ref.Sum

∑
gramn∈S

Count(gramn)

Figure 4.5 presents results of evaluating our feature-sets using the ROUGE metric,

with N = 1 to 4 and all of the variants described above.

Figure 4.5: Rouge: Various Combinations of Lexical (L), Acoustic (A), Structural

(S) and Discourse (D) Information

The results shown in Figure 4.5 are similar to those shown in Figure 4.4 using the

f-measure metric. However, the difference between the baseline and our best combined

feature-set is even greater using ROUGE. We obtained our highest ROUGE score of

0.85 with ROUGE1 and ROUGE-L which is 27% higher than the baseline. If we take

an average of the performance of different ROUGE systems, we get a mean score of
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0.80, which is 30.3% above the baseline. This mean score may be a more reasonable

measure than ROUGE1, since it includes the performance of versions which look for

more than mere unigram overlap. Note that the combined acoustic/prosodic and

structural features alone obtain a ROUGE1 score of 0.76 and an average ROUGE

score of 0.68.

4.3 Additional Problems in Speech Summarization

We saw in the previous sections that the use of additional information improved our

speech summarizer; but there are additional problems that speech summarization has

to address. We saw in Section 4.2 that two of the best five features were based on

lexical information. The lexical information is highly dependent on the quality of

transcripts which, in turn, depends heavily on the errors introduced by ASR engines.

ASR introduces word errors and boundary errors, while speaking style introduces

disfluency errors. We explain these errors in the following sections and provide details

on how to address them in Chapter 5.

4.3.1 Word Errors

The experiments described in previous sections were tested on manual and close cap-

tioned transcripts; but a fully automatic summarizer has access to only ASR tran-

scripts. There are many problems that a speech summarization algorithm has to

handle that a text summarizer does not have to address in using automatically gen-

erated transcripts. Although the general performance of ASR engines has improved
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significantly in the last decade, ASR still produces transcripts with a significant num-

ber of word errors. Let us look at an example of an errorful ASR transcript shown in

Figure 4.6.

Figure 4.6: Word Errors

The transcript shown above contains three word errors. “Step”, “York” and “all”

have been misrecognized as “hip”, “work” and “call”. These word errors not only

make it very hard to understand the meaning of the text but also result in significant

challenges for downstream processing of the transcript, such as Named Entity (NE)

detection. For example, misrecognition of “york” may cause to fail NE detector to

label ’New York City’ as a location entity. Since NEs are important features for

summarization [Maskey and Hirschberg, 2005], lower accuracy in the detection of

NEs will result in the poor summarization accuracy. Word errors can also degrade

the performance of many other syntax-based NLP tools, such as chunking and parsing.

Summarization of a spoken document by text summarization methods alone may thus

yield poor summarization results if we do not address the word errors. We present

an experiment showing the use of confidence scores to take account of word errors in
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Section 5.1.

4.3.2 Disfluency Errors

One of the major differences between a text and a speech document is the lack of

disfluency in text documents. Humans generally write well-constructed sentences but

speak disfluently by repeating or correcting words and phrases, and adding words in

the sentences that break their grammatical construction.

Figure 4.7: Disfluency Errors

In the example shown above there are three types of disfluencies — ‘uh, um’

are fillers, ‘you, all of you’ is a repair and ‘on on’ is a repeat. We notice from the

example that disfluencies make it harder to understand the meaning of the text.

Disfluency such as ‘on, on’ can result in parsing errors because most of the NLP

parsers expect grammatically correct sentences. Increased parsing errors may result

in reduced summarization accuracy, especially for text summarization algorithms that

depend on accurate syntactic analysis. We propose a disfluency detection algorithm

in Section 5.2.
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4.3.3 Boundary Errors

Most extractive text summarization algorithms depend on sentence and paragraph

boundaries. Transcripts generated by ASR engines have no notion of sentence or

paragraph boundaries. ASR transcripts not only lack sentence boundaries but also

lack commas and capitalization that may help in detecting these boundaries. Text

summarization methods based on sentence extraction face a serious challenge without

sentence boundaries. The speech segment in the example below lacks two sentence

boundaries, resulting in a difficult situation for extracting sentences as the system

does not know where a sentence begins and ends. Instead of sentences we extract

intonational phrases as units for summarization as described in Chapter 5.

Figure 4.8: Boundary Errors

The problems we have mentioned above such as lack of boundaries, word er-

rors and disfluency in ASR transcripts can significantly degrade the performance of

summarization algorithms. We may be able to export some text summarization tech-

niques and features for speech summarization but we would need additional methods

to handle such errors. We present such techniques in the next chapter.



Chapter 5

Speech Summarization Challenges:

Word Errors, Disfluency and

Segmentation

In this chapter, we present methods to handle the additional challenges that we

described previously — word errors, disfluency and speech segmentation.

5.1 Overcoming Word Errors

One of the important tasks of a summarizer is to find redundant information. Finding

redundant information entails finding segments of text or speech that are similar in

meaning. One of the known methods to find similarity between sentences is Cosine

Similarity (CS). CS has been used to cluster sentences together to automatically

identify topics/sub-topics of a document or a collection of documents. Word errors in

49
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ASR transcripts reduce the performance of the CS score, which in turn, reduces the

accuracy of a clustering algorithm, thus making it harder to find redundant sentences

for summarization. We present a method to reduce the impact of word errors when

computing CS between sentences, allowing us to improve the summarization module

that finds redundant information.

5.1.1 Using Confidence Scores

ID Sentence Word Confidence Scores

1 this is headline news 1, 1,1,0.9, 1

2 dan rather reporting 0.8, 1, 0.9

Table 5.1: Example: Sentences in Paragraph 1

In order to compute similarity between text spans (sentences, paragraphs or docu-

ments) using the CS measure, we first create word vectors from the text spans. Word

vectors contain the counts of all the unique words in the documents. Then, we com-

pute the cosine angle between these word vectors. A cosine value of 1 represents no

difference between word vectors (the sentences are completely redundant) and cosine

value of 0 represents no similarity. Let us look at an example: let the sentences ID1

and ID2 be a paragraph I of a document D, as shown in Table 5.1. Let sentences

ID1’ and ID2’ be sentences from paragraph I’ of document D’. Let us compute the

similarity between the sentences ID2 and ID2’.

If we build the word vectors for these sentences in 2 paragraphs we get the word

vectors shown in Table 5.3, where dimension for these word vectors are defined by
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ID’ Sentence Confidence Scores

1’ This is Headline News, 1,0.8, 1, 1

2’ Dan Radar reporting CNN 0.8, 0.3, 1, 1, 1

Table 5.2: Example: Sentences in Paragraph 2

[headline,is, this, dan, news, rather, reporting, radar, cnn]

ID Word Vectors

ParaI-sentID2 [0,0,0,0,1,1,1,0,0]

ParaII-sentID2 [0,0,0,0,1,0,1,1,1]

Table 5.3: Word Vectors for Similar Sentences

If the word vectors obtained in Table 5.3 are from written text, then computing

CS between them is not a problem, as we would have known for sure that “Radar”

and “Rathar” are two different words. But if the sentences are from ASR transcripts,

assuming that these words are correct can give a false sense of dissimilarity between

sentences. If we look at the confidence score of “Radar” in Table 5.2 we note a low

confidence of 0.3. This low score should affect the similarity metric accordingly. How

to take account of low confidence in a similarity metric is the question we are seeking

to solve. We take an approach that is simple yet effective. We weigh each dimension

of the word vector with its confidence score. Hence, for the dimension of the word

“Radar,” instead of getting values of 0 and 1 as shown in the 8th column (2nd to the

last)of the word vectors in Table 5.3, we get values 0 and 0.3 as shown in Table 5.4.

If there are many occurrences of the same word we take the average of confidence

scores and weight the dimension with that average.
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ID ASR Confidence-Weighted Word Vectors

ParaI-sentID2 [0,0,0,0,0.8,1,0.9,0,0]

ParaII-sentID2 [0,0,0,0,0.8,0,1,0.3,1]

Table 5.4: ASR Confidence-Weighted Word Vectors for Similar Sentences

In this vector based model, word errors in the spoken document transcriptions

are effectively addressed by introducing weights for each dimension and changing the

weights according to the ASR confidence score for each word. The confidence level

on the word prediction will change the similarity score for documents. This would

enable us to have a low similarity score if we believe there is a probability of many

words being misrecognized.

We test the above confidence-weighted similarity metric by clustering documents

on the same topic with the intuition that a better clustering of these documents should

translate to a better module for identifying documents with redundant information.

We explain our experiment in the following section.

5.1.2 Clustering Experiment

We clustered 1841 TDT2 [LDC, 2002] documents into 69 different clusters where

cluster sizes ranged from 1 to 301 documents.1 All of the documents were annotated

by human labelers with a topic-label describing the cluster they belong to. We re-

moved foreign documents because we were primarily testing clustering module for

English. We also removed multiple-topic documents to better test the effect of our

1This experiment was done jointly with Sasha Blair-Goldensohn
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model on a set of documents for each topic. This resulted in 62 clusters for this

experiment. We performed the experiments in three different conditions to distin-

guish the improvement in clustering using the confidence-weighted CS metric that we

described in previous section. We first clustered a baseline ASR word vectors where

ASR transcripts were treated as regular text. Then we clustered confidence-weighted

ASR word vectors where we weighted the vectors with confidence scores. Then we

clustered close-captioned word vectors to estimiate the improvement ceiling. The

results are shown in Table 5.5.

The metric used to compute results in Table 5.5 is proposed by [Rosenberg and

Hirschberg, 2007] which introduces “homogeneity” as a measure akin to precision,

measuring the degree a given cluster cluster contains elements from a single true

cluster; “completeness” as a measure akin to recall measuring the degree to which

the elements of the same cluster are grouped together; and “validity” as a measure

akin to F-measure, combining homogeneity and completeness in a harmonic mean.

The measures scale from 0 to 1 with 1 being perfect score. A perfect clustering

method will have all three scores equal to 1.

Exp. Type Homogeneity Completeness Validity

ASR Baseline 0.78 0.668 0.72

Confidence-Weighted 0.758 0.705 0.731

Manual Transcript 0.928 0.952 0.928

Table 5.5: Overcoming Word Errors

The drop in the validity score in Table 5.5 when ASR transcripts are used instead
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of manual transcripts shows that word errors can significantly degrade overall perfor-

mance of a clustering algorithm based on CS. But we also see that we gain about 1%

in the validity score when we use confidence-weighted CS metric for clustering. The

improvement of 3.7% in completeness shows that more correct documents of each

cluster are being identified but a 2.2% drop in homogeneity could mean that some

documents are assigned to wrong topics. This could happen because for confidence

weighted clustering algorithm to fully utilize the advantage of word confidences, a

cluster needs to have a large enough set of correct words in the cluster which happens

only after the first few iterations in clustering. This does not happen until after a

few iteration of clustering The improvement of 1% in the clustering experiment shows

that the use of ASR confidence scores to weigh the word vectors has reduced, though

by a small amount, the impact of word errors in computing similarity between text

segments.

ASR word errors are one of the challenges speech summarization faces and we have

presented a method to deal with such errors. Improved clustering due to improved

similarity metric gives a better chance of finding redundant information, and thus a

chance to develop a better speech summarizer. Another method to use confidence

weights for summarization is to assign a lower summary score for sentences with many

low confidence words. Too many low confidence words in a sentence would mean we

cannot rely on linguistic and discourse features dependent on the identify of these

words. In the following section we address the next challenge speech summarizers

face, disfluency.
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5.2 Disfluency Removal

Disfluency is common in speech and can also significantly degrade the overall per-

formance of a speech summarizer. Disfluency detection can be useful for increasing

the readability of a speech transcript, thus possibly improving the accuracy of a sum-

marizer. In this section we propose a phrase-level machine translation approach for

disfluency detection using Weighted Finite State Transducers (WFSTs).2.

Repeats I want to buy three glasses

* three glasses of tea

Repairs I want to buy three glasses

* no five cups of tea

Fillers I want to buy three glasses

* umm four glasses please

Table 5.6: Example of Disfluencies

5.2.1 Definition and Related Work

We follow the definition of [Stolcke and Shriberg, 1996] and divide disfluencies into

three main components: reparandum (the words that are repaired), interregnum

2The work presented in the following Section was jointly done with Bowen Zhou and Yuqing Gao

at IBM. The algorithms and techniques presented here is owned by IBM Corporation with a Patent

Filed By IBM with a title “Disfluency Detection for a Speech-to-Speech Translation System Using

Phrase-Level Machine Translation Approach with Weighted Finite State Transducers” IBM docket

no. YOR920060506US1
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(filler words or filled pauses) and resumption (the new set of words that repair the

reparandum). In this thesis we detect three types of disfluencies: repeats (reparan-

dum edited with the same sequence of words), repairs (reparandum edited with

different sequence of words) and filled pauses (words in interregnum region).

Fillers are placed at the interruption point of the speaker’s turn. Fillers include

filled pauses such as ‘um’, ‘uh’, ‘well’; discourse markers such as ‘well’, ‘then’, ‘you

know’ and editing terms. Filled pauses may serve to signal hesitation or confusion

in the speaker or to signify change in a given topic of conversation depending on the

type of filled pause a speaker uses. In Table 5.6 ‘umm’ is a filled pause placed at the

interruption point ‘*’.

Repeats are one of the most common types of disfluencies. In the above example in

Table 5.6, ‘three glasses’ is a repeat. Any such occurrences of verbatim repetition of a

portion of a spoken utterance are ‘repeats’. The phrase ‘three glasses’ is reparandum,

which is repaired with ‘five cups’ after the interruption point.

There has been a significant amount of work in disfluency detection [Kim et al.,

2004, Nakatani and Hirschberg, 1994, Heeman et al., 1996, Honal and Schultz, 2005,

Johnson et al., 2004, Snover et al., 2004b, Spiker et al., 2000]. Some disfluency detec-

tion systems have been built in the DARPA EARS Rich Transcription program. Most

systems that have been proposed use combinations of prosodic and lexical features

though some systems are lexically driven [Snover et al., 2004b] without any use of

acoustic features. Snover et. al. [Snover et al., 2004b] rely exclusively on word based

information and have shown that reasonable performance can be obtained without

using acoustic features. Johnson and Charniak [Johnson and Charniak, 2004] use a
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Tree Adjoining Grammar (TAG) noisy channel model and [Heeman et al., 1996] focus

on similarity and the length of repeated sequence of words in the ASR transcripts.

On the other hand Nakatani and Hirschberg [Nakatani and Hirschberg, 1994] have

shown the advantages of using acoustic/prosodic features. They successfully detected

interruption points (IP) by building a decision tree with acoustic features. [Shriberg

et al., 1997] also proposed a method of detecting IPs by building a decision tree model

based on prosodic features only. [Stolcke et al., 1998] improved this system with the

addition of a hidden event language model (LM) to detect boundaries and various

types of disfluencies.

The addition of prosodic features to word based features has some clear advan-

tages. For example, usually the intonation of a speaker is disrupted at the interruption

point indicating some form of restart. Such information is useful and has been shown

to be significant [Liu et al., 2003]. [Liu et al., 2003] successfully combined lexical

and prosodic features and detected the onset of reparandum. Even though the use of

combined lexical and prosodic features has some clear advantages, it should be noted

that the prosodic features may not always be easily available.

5.2.2 Approach

We view the disfluency removal problem as a process that transforms the “noisy”

disfluent transcript into a “clean” one [Honal and Schultz, 2003, Honal and Schultz,

2005]. Such a transformation can be described using statistical machine translation

models. Particularly, Zhou et. al [Zhou and Gao, 2006] have formulated a fast phrase-

based statistical translation using FST’s for a speech-to-speech (S2S) translation. We
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are motivated to apply a similar framework as [Zhou and Gao, 2006] to address

disfluency detection.

There are several advantages of the proposed scheme. First, this approach enables

the disfluency detection component to be easily integrated with other FST-based

components by a simple FST composition operation, providing a unified search space.

Second, the proposed approach obtains very high speed and memory efficiency using

an optimized decoder.

5.2.2.1 Translation Model

Based on a source channel model approach to statistical machine translation [Brown

et al., 1993], translating a foreign token sequence nJ
1 to a target token sequence cI1

can be viewed as a stochastic process of maximizing the joint probability of p(n, c)

as stated in Equation 5.1

ĉ = argmaxcI
1
Pr(nJ

1 , c
I
1) (5.1)

The joint probability can be obtained by summing over all the hidden variables

that can be approximated by maximization. For machine translation purposes these

random variables take account of alignment, permutation, and fertility models as

described in [Brown et al., 1993]. For our purpose we view disfluency detection as

translation from a noisy token sequence nJ
1 := n1, n2, ..., nJ to a clean token sequence

cI1 := c1, c2, ..., cI . Since the removal of disfluency will entail removal of words from

nJ
1 we would still require alignment and fertility models as I < J .

We simplify the training of our translation model by retokenizing the cI1 sequence.

Instead of a clean speech transcript without any disfluent words, we append a tag
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that signifies the type of disfluency for each disfluent word in nJ
1 . This retokenization

produces cI1 with the same number of words as nJ
1 such that I = J as shown in the

following example.

• Noisy Data: I want to buy three glasses no five cups of tea

• Clean Data: I want to buy REPAIR0 REPAIR1 FP0 five cups of tea

These modifications to the standard machine translation model simplify our model in

the following ways: i) We do not require a fertility model since the number of words

in clean and disfluent speech are equal and words in the noisy speech transcript are

preserved as disfluent tags ii) With disfluent words retokenized (I = J) we have a

perfect alignment between the noisy and clean transcripts in the parallel corpora,

removing the need for an alignment model.

5.2.2.2 Phrase Level Translation

Repeats and repairs are difficult to detect because the reparandum of these disfluen-

cies can include more than one word. In our example in Table 5.6 the reparandum

is “three glasses” - a two word phrase. The reparandum phrase can be of any length

though phrases longer than five words are very rare. Word-based disfluency detection

algorithms have difficulty in detecting such disfluent phrases because the classifier not

only has to classify words as disfluent or not but also has to detect the start and end

boundaries of the reparandum. This added complexity in repeat and repair detection

can be addressed if we assume that disfluency occurs in phrases. Since we define a

phrase as a sequence of one or more words, single word disfluencies are also addressed
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with such phrase assumption.

Our phrase level translation model is built in a process that is similar to the one

described in [Zhou and Gao, 2006]. Since our bi-text alignment is a perfect one-to-

one mapping, the phrase pair extraction procedure is simple, and the only variable

to consider is the phrase length limit. The length limit on the phrase size makes

a significant difference in the size of the dictionary. We chose a maximum phrase

size of five, as 99.9% of the disfluent phrases in our training corpus were smaller

than five words. Our algorithm include techniques for phrase pair extraction, the

phrase translation model estimation, and the WFST implementations. The process

also includes techniques to determinize and minimize the transducers to optimize the

search procedure.

We denote the phrase segmentation by introducing a hidden variable pK
1 to the

Eq. 5.2 summing over the joint probability. In addition, we can approximate the sum

over the hidden variables using a maximum operator.

ĉ = argmaxcJ
1

∑
pK
1

Pr(pK
1 , n

J
1 , c

J
1 ) (5.2)

≈ argmaxcJ
1
maxpK

1
Pr(pK

1 , n
J
1 , c

J
1 ) (5.3)

5.2.2.3 Weighted Finite State Transducer Implementation

We can implement Equation 5.2 using weighted finite state transducers. Using the

chain rule we can easily decompose the joint probability into a chain of conditional

probabilities as follows, in a similar way to [Zhou et al., 2005, Zhou and Gao, 2006]:

Pr(pK
1 , n

I
1, c

I
1) = P (cJ1 ). (5.4)
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P (pK
1 |cJ1 ). (5.5)

P (nI
1|pK

1 , c
J
1 ) (5.6)

We can compute the conditional probabilities of equations 5.4, 5.5 and 5.6 by using

the parallel corpus and the phrase dictionary. Furthermore, we can build WFST for

each probability distribution - L, N and P where L is a language model, N is the

translation model and P is the phrase segmentation model respectively.

The arc probabilities for the translation model N are computed by computing the

relative frequencies from the collected phrase pairs.

P (c|n) =
N(c, n)

N(c)
(5.7)

where N(c, n) is the number of times a clean phrase c is translated by a noisy

phrase n. The above equation overestimates the probabilities of rare phrases. In order

to take account of such overestimation we smoothen our translation probability by

performing a delta smoothing. We add a small numerical quantity δ on the numerator

of Equation 5.7 and add δ.|V | on the denominator where V is the size of the translation

vocabulary for a given phrase.

The language model plays an important role in a source channel model like ours.

Our language model L is a standard trigram language model with the n-gram proba-

bilities computed from the clean corpus that has disfluent words tagged as REPEAT,

REPAIR and FP (filled pauses). In other words, we used the annotated side of the

parallel corpus as the language model training data. We built a back-off 3-gram lan-

guage model, and encoded it as a weighted acceptor as described in [Zhou and Gao,

2006] to be employed by our translation decoder.
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After building all three types of WFSTs we can perform a cascaded composition of

these finite state transducers as shown in the equation below to obtain a translation

lattice that translates sequence of noisy words to clean phrases.

T = P ◦N ◦ L (5.8)

For decoding, we employed the decoder that is developed in [Zhou and Gao,

2006] using a multilayer search algorithm. Specifically, we have one layer for each

of the input FSMs: the noisy input/acceptor, the translation model lattice, and the

language model lattice. At each layer, the search process is performed via a state

traversal procedure starting from the start state, and consuming an input word in

each step in a left-to-right manner. This can be viewed as an optimized version

of on-the-fly or dynamic composition. However, specialized versions of composition

have the advantage of not only having the potential to be many times faster than

general composition implementations found in FSM toolkits, but also in incorporating

information sources that cannot be easily or compactly represented using WFSTs. For

example, the decoder can allow us to apply translation length penalties and phrase

penalties to score partial translation candidates during search. In addition, they can

incorporate new parameter values ( e.g., language model weight) at runtime without

the need for any modification of the input WFSTs.

One significant disadvantage of using WFST based translation method is a lack

of simple feature based probabilistic training algorithm for WFSTs. Even though

Eisner [Eisner, 2002] has proposed a training algorithm for “probabilistic WFST”, it

is not an easy task to add features for parameterization of WFSTs. For example, if
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we want to add a feature that defines “if the previous word is the same as the current

one,” in the WFST we would need to add self looping arcs for all the words in the

vocabulary, adding significant amount of confusability. It is obvious that any more

complicated rule for parameterization would add many arcs to the translation lattice.

We propose a simple method to add such features in our WFST framework.

We limit ourselves to nominal features. We extract nominal features for each

word and convert them to binary strings. We append each binary string to the end

of each noisy word. For example we can have features such as “if the next word is the

same as current one,” and “if the part of speech of next words is the same as current

on.” If f1, f2 were the binary features mentioned above each of our noisy word n is

appended with f1f2 producing nf1f2 . Adding too many features can increase data

sparsity problems, so we have to be careful about the number and type of features

we use.

5.2.3 Disfluency Detection Experiment

We tested our method on the Penn III Switchboard Tree Bank corpus. We split our

data into a training set of 1221502 words and a held-out test set of 199520 words. We

performed all of our experiments on manual transcripts. We do not assume that we

have sentence boundaries or interruption point information, but we do assume that

we have turn boundaries, so that the decoder can handle sizable chunks of speech

without severe memory problems.

For training, we used the annotation for repeat, repair and filled pauses that were

provided with the corpus. We converted the Switchboard annotation to produce a



5.2. Disfluency Removal 64

parallel text corpus of clean and noisy speech transcripts where all the disfluent words

in a noisy transcript align with disfluent token IDs. These disfluent token IDs signify

the type of disfluency for the corresponding word in the noisy transcript as shown in

the example in Section 5.2.2.1. Let us define C as the annotated clean corpus and N

as the corresponding noisy parallel corpus.

We first extracted two lexical features for all the 1.22 million words in corpus C

and appended these feature values to each word, thus obtaining a corpus CF. The

two features we extracted were “are part of speech tags of any of the next two words

the same as the current one?” and “are any of the next two words the same as the

current word?.” In order to obtain part-of-speech feature values, we use automatic

part-of-speech tagger [Ratnaparkhi, 1996]. The training corpus had 13287 repair

phrases with only 48 phrases longer than 5 words. Most of the disfluent phrases are

composed of one or two words. 11.8% of all the phrases constitute more than 2 words.

Using the phrase extraction algorithm employed in [Zhou and Gao, 2006] we ex-

tracted all the parallel phrases from the corpora N and CF. We set the limit of phrase

size as five words. We obtained a phrase dictionary with 2.85 million entries. Each

entry consists of a noisy phrase, a corresponding clean phrase and a probability for the

translation, computed as described in Section 5.2.2.3. We smoothened the transition

probability with a δ of 0.01.

We built the WFSTs as described Section 5.2.2.3 and composed them to produce

a noisy to clean speech translation lattice. We built the language model using the

IBM language model toolkit. The size of the final translation lattice is listed in Table

5.7.
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When we tested our model on our held out test set we obtained the results listed

in Table 5.8. We tested our method by using the standard precision, recall and F-

measure. The scores were computed at the word level. The train and test data

are heavily skewed with very few positive examples of disfluency. In our test set of

199520, only 6.93%, of words were disfluent, so f-measure is a reasonable metric for

the system evaluation.

Type # of states # of transitions

Translation 1,635,398 3,426,379

LM 234,118 1,073,678

Table 5.7: The Size of the Translation Lattice and LM

We built two different types of translation lattices to examine the effects of lan-

guage model. When we added the language model (LM) to the translation model,

the f-measure improved for repeats by 4.9%, precision by 4.8% and recall by 5.1%.

Similarly for repairs, f-measure improved by 6.7%, precision by 3% and recall by 7.5%.

The addition of the LM only slightly improved filled pause results signifying that the

LM is more critical for detecting repeats and repairs than filled pauses. We also note

that the improvement in f-measure and recall with the addition of LM for repairs

is significantly higher than it is for repeats, possibly showing that surrounding word

context is more important for repair detection. The f-measure for repeat detection is

39.6% higher than the f-measure for repair detection. We obtain a very high recall of

0.86 and f-measure of 0.797 for repeat detection.

We are able to detect filled pauses with a greater accuracy than repeats and
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Disfluency Precision Recall F-measure

w/o LM REPEAT 0.695 0.809 0.747

REPAIR 0.479 0.256 0.334

FILLED PAUSE 0.953 0.998 0.975

with LM REPEAT 0.743 0.860 0.797

REPAIR 0.509 0.331 0.401

FILLED PAUSE 0.955 0.998 0.976

Table 5.8: Disfluency Detection Results on Held-out Test Set

repairs. We obtain an f-measure of 0.976 for filled pause detection. One of the

reasons that the same translation model does very well for filled pauses but not for

repeat and repairs is because most of the filled pauses are unigrams and a few set of

words constitutes most of the filled pauses. The most common filled pause in our test

corpus was “uh” constituting 82.7% of all the filled pauses. The least occurring filled

pauses were “ah”, “anyway” that occurred only once.

One of the key advantages of using our method for disfluency detection is speed.

We are able to detect disfluency in one thousand sentences in less than a second using

a memory optimized WFST decoder developed for phrase-based translation [Zhou

and Gao, 2006].

5.2.4 Disfluency Removal and Summarization

We described a novel approach that is based on a phrase-level translation framework

for detecting repeats, repairs and filled pauses. Our method requires a parallel corpora
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of noisy and clean speech transcripts and not many other natural language resources.

We removed disfluencies in our CBNSCII corpus using a method similar to that

described above.3 We performed a 10-fold cross validation in the same settings as we

described in Chapter 4. We gained less than 1% improvement in overall summariza-

tion score. We did not see much gain possibly because of the following reasons. First,

the model was trained on telephone conversations but tested on BN — the speaking

style between BN and telephone conversation differ significantly. Second, BN speech

is less disfluent than other spoken conversations because anchors read from scripts.

So far, we have addressed two challenges that speech summarizer face including

word errors and disfluency. Next, we look at the problem of speech segmentation.

5.3 Speech Segmentation: What Unit to Extract?

We have mentioned previously that the extraction unit chosen, whether a sentence,

syntactic constituent, or other segment, has a significant impact on the overall quality

and fluency of the summary. Sentences may not always be ideal unit to extract, as

they are hard to detect. What unit to extract and how to detect the boundaries

for such a unit is another major challenge a speech summarizer has to address. In

this section, we compare sentences, intonational phrases and pause-based acoustic

‘chunks’ as candidate units of extraction, and show that extraction of automatically

segmented intonational phrases may produce better speech summaries.4

3We used a slightly different disfluency removal system than the one described above. The

algorithm described above could not be used outside IBM for legal reasons.

4This work was done jointly with Andrew Rosenberg at Columbia University
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Generally, speech segments extracted for summarization should be semantically

meaningful and coherent stretches of speech. Segmentations currently used or pro-

posed for extractive summarization include words, phrases, sentences, and speaker

turns. Choice of segmentation unit greatly influences the length and quality of the

resulting summary. If speaker turns are extracted, the shortest summary will be a

single turn, which may contain many sentences, not all of which may be important.

If there are only ten turns in a document, a compression ratio of less than 10% is

impossible — a significant limitation for many summarization tasks. We have the

most control over the length of the summary if we extract individual words. How-

ever, by sacrificing higher-level structural, semantic and syntactic information from

the source document, this approach is likely to be limited to a set of key words.

Sentences might be a better choice of segmentation for extraction, since they are

shorter than turns, affording finer control over the length of a summary. Moreover,

sentences are also semantically and syntactically meaningful units. However, longer

sentences may also include modifiers, phrases and clauses which are not essential for

the summary. Phrase extraction is a promising alternative to sentence extraction, but

identifying phrases in speech transcripts using current Natural Language Processing

(NLP) tools is errorful, for the reasons we have described before. It is however possi-

ble to identify phrasal units using acoustic and prosodic information from the speech

source.
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5.3.1 Speech Segmentation

In order to determine which segmentation type is best for extractive summarization

of spoken documents, we must first produce candidate segments at different levels of

granularity. We describe these segmentations and the techniques used to generate

them next.5

Segmentation number per story avg. length (words)

250ms Pause 43.2 11.47

500ms Pause 19.1 25.97

Sentence 26.9 18.46

Intonational Phrase 71.2 6.96

Table 5.9: Speech Segmentation Statistics

5.3.1.1 Pause-Based Segmentation

To generate pause-based segments, we calculated the pause duration between each

pair of ASR-hypothesized words. We inserted a segmentation boundary at every

pause that exceeds a pre-determined threshold. For these experiments, we constructed

two input segmentations — one using a 250ms threshold, another with a threshold of

500ms. Obviously, the set of boundaries selected with a 250ms threshold is a superset

of those selected with a 500ms threshold. We hesitate to use a threshold below 250ms

due to the potential confusion of stop gaps with phrasal boundaries [Santen, 1992].

5This is a joint work done with Andrew Rosenberg and is not published yet
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5.3.1.2 Automatic Sentence Segmentation

We used an automatic sentence boundary detector from ICSI [Liu et al., 2006] to

produce sentence segmentation together with confidence scores for each hypothesized

boundary. This module comprises three components: a language model (LM), a

prosodic model (PM), and a strategy for combining the models. The PM is imple-

mented as a decision tree which predicts whether or not a given word occurs at a

SU boundary based on acoustic features of the word. The SU detection module is

implemented as a majority voting combination of a Hidden Markov model (HMM),

Conditional Random Field (CRF) and Maximum Entropy (ME) model. Each of these

accepts a word sequence, the hidden event sequence produced by the LM, and output

from the PM as input, and produces hypothesized SU boundaries. The training data

for this model was manually annotated human transcriptions of BN. On automatically

recognized speech, it operates with an error rate of 57.23%.

5.3.1.3 Intonational Phrase Segmentation

The third kind of speech segmentation we looked at was Intonational Phrases (IPs).

To produce training material for a ToBI-based intonational phrase (IP) model, we

asked an expert ToBI labeler to manually annotate one half hour TDT4 show, an

ABC “World News Tonight” broadcast for (binary) pitch accent presence on each

word and for level 4 phrase boundaries. The annotator annotated the ASR transcript

of this show, marking a hypothesized word as ending an intonational phrase if the

phrase ended after or within the ASR-hypothesized word boundaries. After omitting

regions of ASR error, silence and music, the training material included approximately
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20 minutes of annotated speech and 3326 hypothesized words.

Using the J48 java implementation in weka [Witten and Frank, 2000] of Quinlan’s

C4.5 algorithm [Salzberg, 1994] to train a model on this single annotated show, we

classified each ASR word in our summarization material as either preceding an into-

national boundary or not. This decision tree is trained using feature vector containing

only acoustic information: pitch, duration and intensity features. These features are

extracted from raw and speaker normalized pitch and intensity tracks calculated us-

ing Praat [Boersma, 2001]. The features that were the most indicative of the presence

of a phrase boundary were: a long pause following the word, a descending change of

energy over the final quarter of the word, lower minimum energy relative to the two

preceding words, and decreased standard deviation of pitch. On the training mate-

rial, based on ten-fold cross-validation experiments, intonational phrase boundaries

are predicted with 89.1% accuracy, and an f-measure of 0.665 (precision: 0.683, recall:

0.647).

5.3.2 Segment Comparison for Summarization

We next built summarizers that extract segments based on these four segmentation

units: pauses of 250ms and 500ms, sentences, and IPs. We extracted features for

each segment type and assigned summary labels to each unit, using the forced align-

ments with manual summaries described in Section 2.1. We constructed each of our

four summarizers as a binary Bayesian Network classifier [Heckerman, 1995] where

the summarizer’s task is to determine whether a given segment should be included

in the summary or not. All the experiments were performed on the documents of
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Summarization Corpus I.

5.3.2.1 Features

We used only acoustic and structural features that were independent of the word

identities hypothesized in the ASR transcripts. Using only acoustic/prosodic and

structural features allows us to avoid the potential effects of word errors in the seg-

ments we extract.

We extracted aggregated acoustic features over the candidate segments. We ex-

tracted the minimum, maximum, standard deviation, mean of f0, ∆ f0, RMS intensity

(I) and ∆I over each segment. We also extracted the z-score (value−mean
std.dev.

) of the maxi-

mum and minimum within the segment over these four acoustic information streams.

Using the pitch (f0) tracks only, we extracted three pitch reset features. These were

calculated by taking the difference between the average of the last 10, 5 or 1 pitch

points (calculated using a 10ms frame) in the current segment, and the average of the

first 10, 5 or 1 pitch points in the following segment. We normalized the f0 and inten-

sity tracks using z-score normalization, and calculated speaker normalized versions of

the previously described features. We also included in the feature vector the average

word length within the segment. The raw pitch tracks were extracted using Praat’s

[Boersma, 2001] ‘To Pitch (ac)...’ function, intensity tracks using ‘To Intensity...’.

These features totaled 87, most based on duration, energy, and pitch.

Using hypothesized story boundaries [Rosenberg and Hirschberg, 2006] and speaker

turn boundaries provided by ICSI [Liu et al., 2006], we extracted a set of structural

features for each segmentation. For each segment, we identified its length, absolute
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and relative start time, relative position in the current speaker turn and relative posi-

tion in the story. Additionally, based on the speaker identifications produced by the

diarization module, we calculated the relative position of the current segment based

on all of the material spoken by its speaker. We used these features to build four

different summarizers each based on different segment length that we have described

above.

5.3.2.2 Intonational Phrases for Speech Summarization

The results of 10-fold stratified cross validation experiments are shown in Table 5.10.

We find that the best summarization (using f-measure) is obtained from the sum-

Segmentation Precision Recall F-Measure

250ms Pause 0.333 0.622 0.432

500ms Pause 0.255 0.756 0.381

Sentence 0.362 0.540 0.434

Intonational Phrase 0.428 0.650 0.516

Table 5.10: Information Retrieval-based Summarization Results

marizer which uses IPs as its input segmentation unit. The summaries produced

represent a significant improvement of 8.2% in f-measure over sentence-based sum-

maries. Note that, on average, there are about 2.75 intonational phrases for every

sentence. This enables the summarizer to extract smaller segments for inclusion in

summaries. However, the superior performance of the IP-based summarizer improve-

ment is not simply due to its ability to extract smaller segments. When we compare
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the IP-based summarizer to the summarizer trained on 250ms pause-based segments,

we see a considerable difference in f-measure. Note that, while this pause-based seg-

mentation does operate on more units than the sentence-based summarizer (there are

1.6 250ms-pause-based segments for each sentence), the sentence-based results are

slightly better. Thus, merely extracting shorter segments does not necessarily im-

prove summarization performance. Using more linguistically meaningful units, even

when they are somewhat errorful, provides the best summarizer performance.

Note that, due to potential error in automatic story segmentation, there may be

a different number of automatic and manual stories for each show. In fact, there

are more than 4 times as many manually annotated stories as those derived from

automatic segmentation. Therefore, in order to evaluate the performance of the sum-

marizer against human summaries, we compared summaries of entire shows against

one another, rather than performing a story-by-story comparison. Thus, the target

summaries for each of the twelve training shows were constructed by concatenat-

ing human summaries of manually-transcribed and manually-segmented stories. The

automatic summaries of each show are concatenated automatic summaries of each

automatically-segmented story.

We also compared the results using ROUGE measure. We note that the improve-

ment in summarization is even more pronounced when we use ROUGE for evaluation.

IP-based summarization ROUGE scores are higher than those obtained by extract-

ing 250ms pause-based segments – 13.5% using ROUGE-1, 8%, using ROUGE-2

and 14.4% using ROUGE-L. Moreover, IP-based summaries are dramatically better

than sentence-based summaries. The improvements seen in summarization scores,
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f-measure, ROUGE-1, ROUGE-2 and ROUGE-L confirm that hypothesized IPs are

an excellent unit for extractive summarization of BN.

Segmentation ROUGE-1 ROUGE-2 ROUGE-L

250ms Pause 0.437 0.103 0.415

500ms Pause 0.440 0.128 0.412

Sentence 0.394 0.096 0.377

Intonational Phrase 0.572 0.183 0.559

Table 5.11: Speech Segments and ROUGE scores

Based upon a comparison of four types of input segmentation, sentences, two

pause-based segmentations, and IP segmentation, and using summarizers trained on

the same corpus and using the same features, we found that IPs are the best can-

didates for extractive summarization, improving over the second highest-performing

approach, sentence-based summarization, by 8.2% f-measure. We attribute the su-

perior performance of the IP-based summarizer to the fact that IPs are shorter than

sentences in our corpus but are more linguistically and semantically meaningful units

than simple pause-based segments.

5.4 Additional Challenges?

In the previous 3 sections — 5.1, 5.2, 5.3 — we addressed the 3 basic challenges a

speech summarizer faces compared to text-based summarizers: word errors, disflu-

ency and speech segmentation. One should note that this is not an exhaustive list of

all the obstacles a speech summarizer faces, but these are three additional problems
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that are essential to be addressed by any successful speech summarizer that text sum-

marization system do not have to deal with. We saw that addressing the word errors

using ASR confidence scores improved the clustering of documents in same topics

which should help summarizer. We presented a phrase-based machine translation

approach for disfluency detection, which improved speech summarizer, though only

slightly. Then we saw that the choice of speech segmentation makes a considerable

difference in speech summary, and we presented the results that showed that speech

summarizer based on intonational phrases is the best. We next show how we can

extract additional information available in spoken documents.



Chapter 6

Information Extraction for Speech

Summarization

There are some instances of entities and relationship types such as anchors, reporters,

commercials that are found only in BN. These relations that do not exist in text

documents can provide an added benefit in computing sentence significance for sum-

maries. Sentences spoken by an anchor have higher likelihood of being included in a

summary. Commercials should be excluded from the summaries. Soundbites spoken

by important speakers potentially are useful for summarization. We would like to use

information provided by these relations in our summarization system; but in order to

do so we must first identify these relations. In this chapter we explain these relations

and our methods to automatically identify them in BN.

77
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6.1 Speaker Role Detection

The primary speakers in Broadcast News (BN) are news anchors. Anchors intro-

duce stories which are generally presented by reporters. The roles they fulfill are

reflected in their speaking style and content. Anchors read prepared transcripts while

reporters speak more informally. We would like to automatically detect anchors and

reporters in BN to improve our BN summarization system.

There has been some previous work done in speaker role detection. Barzilay et

al [Barzilay et al., 2000] built a maximum entropy model and a Boostexter model to

perform a three-way classification of speakers in English BN. They used key words,

context, duration features and explicit speaker introductions to distinguish among

speaker types, obtaining classification accuracy of about 80%. Yang [Liu, 2006] con-

structed a maximum entropy model for distinguishing among the same speaker types

in Mandarin BN, reporting comparable accuracy by combining language model scores

trained for each speaker type.

There is also considerable research on speaker diarization, the segmentation of

spoken corpora into distinct speakers and the clustering of such segments into ‘same

speaker’ clusters; but these work do not in general attempt to identify individual

speakers or their roles.

6.1.1 Approach, Experiment and Results

We viewed our speaker role detection as a classification problem where we need to

classify each sentence into one of the classes - anchors, reporters or others. We had
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Class Precision Recall F-Measure

ANCHOR 0.912 0.901 0.906

REPORTER 0.69 0.756 0.721

OTHER 0.668 0.552 0.604

Table 6.1: Speaker Role Detection Results Using C4.5 Decision Trees

manual labels for speaker roles for all the sentences in CBNSCII corpus. In order to

identify the best training algorithm for speaker role classification we performed 10-

fold cross validation experiments using a set of training algorithms including Bayesian

Networks, Decision Trees and Support Vector machines. We found out that for the

task of speaker role identification decision trees based on C4.5 training procedure

performed the best. One of the reasons decision trees may have done better than

other algorithms such as Bayesian Network is that many of the acoustic features are

real values, and real values need to be discretized for training Bayesian Networks

to compute conditional probability tables (CPTs) for the nodes, thus losing some

information on the process.

We trained a C4.5 decision tree model from our labeled data. We allowed pruning

of the trees to take account of over-fitting as our dataset is not very large and we did

not restrict binary splitting of nominal attributes. The results shown in Table 6.1 are

for 10-fold cross validation results. We obtain a very high accuracy of 83.24% with

a high f-measure for anchor detection of 0.90. We believe these are one of the best

results reported for anchor detection with the use of ASR transcripts in the speaker

role detection literature. We performed a feature selection with information gain
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Pred Anchor Pred Reporter Pred Other

2561 239 43 Anchor

198 817 66 Reporter

50 128 219 Other

Table 6.2: Confusion Matrix for Speaker Role Detection Experiment

criteria for training the model. Automatically extracted features such as intensity,

speaker cluster information, turn position and named entities were one of the most

useful features.

We should note that f-measure for reporter and other classes are significantly

lower. The data is skewed with a higher percentage of anchors than any other classes,

so availability of more training samples for anchor classes is probably the reason

anchor detection does the best. This is evident if we look at the confusion matrix in

Table 6.2. The high distribution of Anchor classes is expected as most of the news

are reported by anchors.

The speaker role detection system we have built will be used to automatically

identify the roles for each sentence of the story we are summarizing. We explain the

results on using speaker roles for summarization in Section 7.3.

6.2 Soundbite Detection

Frequently, anchors and reporters introduce segments of speech by others, which

support a news story. These speakers may be interviewed, or clips of their speech

(e.g. a speech or interview quotations) may be included in the newscast. These clips,
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physicist <SOUNDBITE-SPEAKER> richard seed < /SOUNDBITE-SPEAKER>wants

to open a clinic in chicago unlike any other in the world to clone humans. but there

is a huge cost. <SOUNDBITE> i’m talking to some people, and i have

enough to get started, but not enough to finish the project. <SOUNDBITE>

Figure 6.1: Soundbite and Soundbite-Speaker Example

when they can be identified by speaker, are of considerable value in news corpora, since

they contain material representing views that are clearly and directly attributable

to the speaker, rather than third party commentary. We term such segments as

soundbites; we term the speakers of such material soundbite-speakers. In Figure

6.1 the turn within the tags <SOUNDBITE> and < /SOUNDBITE> is a soundbite.

To our knowledge, no research has yet been done on soundbite detection in BN. In

the literature, speaker role detection is perhaps the most relevant to our task [Barzilay

et al., 2000, Liu, 2006]; such work attempts to classify speech segments as to the type

of speaker (anchor, reporter or other) producing the segment. A large proportion of

the category ‘other’ is comprised of our soundbite-speakers. Anchors tend to speak

often in a broadcast and any individual soundbite-speaker will tend to occur very

infrequently in a single newscast.

We performed our experiments on a subset of the TDT2 BN corpus [LDC, 2002].

All of the features we extract from the corpus are extracted from these ASR tran-

scripts, except for the turn segmentation. This is based on the manual segmentation

of the human transcriptions, automatically aligned with the ASR transcripts. Note
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that we use the automatic cluster ids generated for TDT2 in computing features such

as the distribution of speaker turns in broadcasts.

6.2.0.1 Approach

We trained a statistical model that would classify each turn as to whether it is a

soundbite or not. We built a Conditional Random Field (CRF) based model. We

define our CRF with the following parametrization. Let o =< o1, o2, ..., oT > be the

observation sequence of turns in each broadcast show. Let s =< s1, s2, ..., sT > be

the sequence of states. The values on these T output nodes are limited to 0 or 1,

with 0 signifying ‘not a soundbite’ and 1 signifying ‘a soundbite’. The conditional

probability of a state sequence s given the input sequence of turns is defined as

p∧(s|o) =
1

Zo

exp

(
T∑

t=1

∑
k

λkfk(st−1, st,o, t)

)
where Zo is a normalization factor over all state sequences and fk(st−1, st,o, t) is an

arbitrary feature function. λk is a weight for each feature function. The normalization

factor Zo is obtained by summing over the scores of all possible state sequences:

Zo =
∑
s∈ST

exp

(
T∑

t=1

∑
k

λkfk(st−1, st,o, t)

)
This can be computed efficiently in our case using dynamic programming, since

our CRF is a linear chain of states as shown in Figure 6.2.

We used Prosodic/Acoustic, Structural and Lexical features to identify soundbites

in our corpus. Prosodic/Acoustic features are useful for detecting soundbites in BN,
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Figure 6.2: Linear chain CRF for Soundbite Detection

since change in pitch, amplitude or speaking rate often differentiate between speech

segments produced by various speakers.

We further hypothesize that a turn uttered by a soundbite-speaker may exhibit

different acoustic features from a turn spoken by an anchor or reporter, due not only

to changes in speaking style but also variation in signal quality and the background

noise of the soundbite recording. While anchors and reporters are often recorded in

the studio, soundbites are generally recorded in the field (and often spliced in for an

interview) or are cut from other recorded events. So, recording conditions vary con-

siderable for soundbites, and acoustic features may capture some of this variation and

thus aid in prediction. Our Prosodic/Acoustic feature-set includes features described

in Section 3.2. We hypothesize that our generally non-professional soundbite-speakers

may have a different speaking rates from the trained speech of anchors and reporters,

based on Bolinger’s description of newscaster speech [Bolinger, 1982]. Similarly, our

pitch and energy features are motivated by the possibility that these may vary differ-

ently for trained anchors and reporters. On average, ‘turn duration’ for soundbites

was 26 seconds shorter than non-soundbite turns so we use duration feature as well.

The structural features we investigated for our current study include normalized
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position of turn in the broadcast; turn position in the show; speaker distribu-

tion; previous and next speaker cluster id; and top-ranking speakers in the

broadcast.1 The positional feature encodes where the current turn is in the broadcast;

soundbites, for example, rarely occur at the beginning or end of a broadcast. ‘Speaker

change’ is a binary feature, indicating whether the current speaker is different from

the previous one.

The ‘speaker distribution’ feature captures the percentage of turns belonging to a

given speaker in the broadcast, as calculated from the automatic speaker clustering

information (i.e., identification of individual speakers by unique identifier for each

segment) provided in TDT2. We hypothesize that the overall percentage of turns for

any soundbite-speaker should be very low compared to the anchors and reporters;

note however that, with automatic speaker clustering, we are adding a degree of noise

here. The information on identify of previous and next speaker ids should also help in

identifying soundbites, as there is a very low probability of two soundbites occurring

together. Soundbites are usually followed by anchor or reporter comments. ‘Top-

ranking speakers’ indicate whether the current speaker is among the top 3 speakers

in the broadcast in the number of turns produced; this feature is intended to rule out

anchors in particular as speakers of a soundbite.

We extract all of our lexical features from the ASR transcript, with no capitaliza-

tion or punctuation. Our lexical features include number of words in the turn,

cue phrases, and distribution of cue words. Cue phrases are currently identified

1We have already described some of these features in Chapter 3. In this section we only explain

features particular to soundbites that have not be explained before.
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by inspection of the soundbite turns as well as the turns that precede and follow

them. These can be important cues for a turn transition. Since we train and test on

shows that are primarily CNN Headline News, our cues are dependent on the type of

cue phrases used in these broadcasts. Cue words and phrases such as anchor names,

“headline news”, “reporting from” are all useful in indicating an upcoming soundbite.

6.2.0.2 Experiment, Results and Discussion

To classify segments as soundbite segments or not, we built CRF models using the

Mallet tool [McCallum, 2002]. This tool allows us to build CRF models with varying

degrees of Markov order. In order to test the effect of previous context, we built CRF

models with a Markov order of 0, 1 and 2 and compared them to MEMM models.

Figure 6.3 compares the performance of the different models.

Figure 6.3: 10-fold Cross Validation Results for Soundbite Detection
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Type Precision Recall Fmeasure Accuracy

Baseline 0.18 0.18 0.18 0.465

MEMM 0.431 0.545 0.478 0.602

CRF 0.522 0.624 0.566 0.674

Table 6.3: Soundbite Detection Results

We note that our model significantly outperforms the baseline as shown in Table

6.3. Our baseline model is randomly assigning labels to turns such that distribution

of soundbite labels closely matches the distribution of training data. We do not use a

“majority class baseline” because it would result in a baseline with a recall and an f-

measure of 0, since the data has a very skewed distribution with a very few soundbites.

The CRF 10-fold cross-validation results are significantly higher than the baseline.

This f-measure is 38.56% higher than baseline and the best performing iteration has

an f-measure 64.7% higher than the baseline. Similarly, recall and precision for the

CRF model is 45.38% and 34.2% higher than the baseline respectively.

The first model on the left in Figure 6.3 is a CRF model with a markov order of 1,

with the observation conditioned both on the parent state and the previous parent.

The second model is maximum entropy model where the observation is conditioned

on the parent state only and the current state is dependent on the previous state. The

best model, shown on the right of the figure, is a 1-order CRF model with the current

state depending only on the previous state. Intuitively, we would assume that for a

task such as soundbite detection, a higher order model would do better. However,

our experiments showed that a 2-order degrades overall performance.
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With the 1-order model, we obtained 67.43% accuracy in soundbite prediction

with precision of 0.522, recall of 0.624 and an f-measure of 0.566. For this model,

the maximum accuracy we obtained in a single iteration was 85.9%. For the same

iteration we obtained a precision of 0.816, recall of 0.838 and f-measure of 0.827, which

were also the highest among all the iterations. The lowest accuracy and f-measure for

this model were 55.1% and 0.394. The difference in results between best and worst

iterations was thus quite high, with a difference of 30.8% in accuracy and 43.3% in

f-measure.

The significant difference in the best and the worst iteration of the cross-validation

experiment for the soundbite detection suggests either that the variability in the

soundbites is quite high or that our annotation is somewhat noisy. We suspect,

anecdotally, that both these possibilities are true. Our annotators reported some

difficulty in labeling the data.

In order to determine whether conditioning the observations on more context

would improve performance, we built a CRF model in which the observations were

conditioned on previous states. The model generated with such conditioning did

worse than CRF models that conditioned only on the parent state. The f-measure on

10-fold cross validation f-measure was lower by 9.01%, recall was lower by 4.89% and

precision was lower by 11.34%. Such a difference in performance shows that either

the model is overfitting the data or that our features are not dependent across turns.

We think it likely that some of our features — in particular, the acoustic features

— may not be dependent on prior context, since soundbites are often recorded in

completely different contexts from the rest of the broadcast, even for interviews, and
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later spliced in to the show.

We also built Maximum Entropy Markov (MEMM) models for soundbite detection

to compare to our CRF models. CRFs are similar to MEMMs except MEMMs suffer

from a label bias problem due to normalization over local features rather than over

the entire sequence. The results presented in Table 6.3 show that the MEMM model

does slightly worst than the CRF models. For the same Markov order and similar

conditioning of features over states, the CRF model does better than MEMM by

7.28% on accuracy, 8.76% on f-measure, 7.88% on recall and 9.06% on precision.

Our experiments on soundbite detection suggest to us that this task is more dif-

ficult than the related but more general task of speaker role labeling. To explore

this hypothesis on our corpus, we built a reporter detection model with the same set

of features used for soundbite detection, but we used a Bayesian Network model for

training purposes. We also built a Bayesian Network model for soundbite detection

and compared the results. For reporter detection, the Bayesian Net model could

classify reporter vs. non-reporter segments with an accuracy of 72%, an f-measure of

0.665, precision of 0.719 and recall of 0.618. However, a similar Bayesian Net model

built on the same set of features classified soundbites more poorly, with an accuracy

of 67.6%, an f-measure of 0.522, precision of 0.477 and recall of 0.577. These results

are considerably lower than results for reporter detection.
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6.3 Commercial Detection

Besides identifying the roles of the speakers and soundbites, we also extracted com-

mercials from BN. There has been a lot of research on commercial detection in the

video research community in which video cues are used for identifying commercials.

One of the main differences between such systems and ours is that we use only speech-

based cues. With the availability of the speech signal and an ASR transcript we use

lexical and acoustic information to determine which segments are commercials.

We detect commercials by training a ML model to classify each sentence as be-

longing to a commercial or not, then obtaining the posterior probability of the classes

and using this in a post-processing step we have developed that tunes the start and

end of commercial boundaries according to the probability mass distribution of com-

mercials over a given window size. Let us first describe the trained ML model and

then the details of window-tuning algorithm.

We first compared training algorithms that differed significantly in their training

criterion, i.e. some training methods try to maximize information gain for each feature

(decision trees) while some try to create a hyperplane to minimize errors (SVMs). Our

best performing algorithm was again C4.5 decision trees, so we built a decision tree

model for commercial detection. After we predicted whether each sentence was part

of a commercial or not using this decision tree, we used the posterior probability

obtained from the decision tree to further tune the predictions.

The motivation for performing such post-processing is that the likelihood of a

sentence being a part of a commercial is high if all the sentences before and after it

are labeled as commercial, since commercials generally contain contiguous sentences.



6.3. Commercial Detection 90

Class Precision Recall F-Measure

NON-COMMERCIAL 0.96 0.971 0.965

COMMERCIAL 0.555 0.471 0.51

Table 6.4: Commercial Detection Results Using C4.5 Decision Trees

Hence we post-process the predictions provided by our trained model to improve our

system. We call our post-processing a window tuning algorithm because we take a

running window of size N over all the predictions and update the predictions for the

sentence in the middle of the window taking the surrounding sentence predictions

into account.

The running window algorithm takes the sentences of window size N then sums the

posterior probability provided by our statistical model. If the total average probability

is higher than a threshold and all sentences before and after the current sentence in

the given window belong to NON-COMMERCIAL sentences we update the class of

the sentence to NON-COMMERCIAL, i.e. if there is only one sentence surrounded

by non-commercial sentences then that sentence is less likely to be commercial. For

our purposes we chose a window size of three.

The 10-fold cross validation results tested on ASR transcripts are reported in

Table 6.4. The total accuracy of the system is 93.39%. However, we get an f-measure

of 0.51 which is lower than the speaker role detection f-measure. The possible reasons

for this lower performance are the fact that the data is heavily skewed, with more

than 90% of the sentence in BN belonging to the NON-COMMERCIAL class. Also,

the acoustic features extracted for commercials will be much noisier because of the
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background music that typically occurs in commercials. Another possible reason for

our lower performance is that the ASR may be performing worse for commercials,

thus producing noisy transcripts. A noisy transcript lowers the accuracy of our lexical

features, further reducing the quality of features used in training of the model. Hence

the overall higher degree of noise in the pre-processing step is the likely cause for

lower accuracy on commercial detection.

In Chapter 5 we addressed the challenges we face in speech summarization and

in this chapter we showed how to automatically extract additional information only

found in BN. In the next chapter we show how to combine these information to build

our BN speech summarizer ConciseSpeech.



Chapter 7

ConciseSpeech: Single Document

Broadcast News Speech

Summarizer

Our BN speech summarizer, ConciseSpeech, summarizes a single BN document by

identifying significant segments of BN show, extracting them and concatenating them

together to generate a summary of user-desired length. The system uses a statistically

trained model to identify the importance of segments, and uses an algorithm we have

developed to optimize significance, redundancy and length of summary. We describe

the details of ConciseSpeech in this chapter.

92
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7.1 System Architecture

Our fully trainable system consists of seven main components. Each of the compo-

nent may include sub-modules. The first component is a pre-processing engine that

processes speech signal and transcripts to extract features. The extracted features

are stored in a rttmx file format. An rttmx file is a special format file which con-

sists of a matrix where rows represent words and columns represent annotation or

features. An example rttmx file is shown in Appendix A. The component router

forwards the information stored in the rttmx file to the feature extraction module

that extracts lexical, acoustic, discourse and structural information. The router up-

dates the rttmx file with these features. The rttmx file is passed on to the IE module

that extracts information on anchors, reporters, soundbites and commercials. After

the pre-processing, feature extraction and IE stages, the rttmx file is passed on to

two different modules - a clustering module which finds redundant information and

a statistical estimation module which computers the significance of segments of BN.

The redundancy and significance scores produced by these modules are passed on to

the summary compilation module, which combines these scores to produce a final

summary. We look at the details of individual components in the following sections.

The pre-processing component cleans the data, extracts relevant information and

converts the data from xml and sgml formats to the common rttmx format. This

pre-processing component contains many sub-modules which include xml-to-rttmx

converter, sgml-to-rttmx converter, speech segmentation module, dis-

fluency removal, summary label extractor, rttmx aligner. The rttmx

aligner aligns the manual and ASR transcripts using Minimum Edit Distance method
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Figure 7.1: ConciseSpeech System Architecture
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that we have described in Section 2.2.1. At the end of the pre-processing phase, we

have a rttmx file that contains all boundary information including sentence, turn and

story boundaries.

The feature extraction component consists of four main modules which extract

lexical, acoustic, structural and discourse features. This component depends on the

boundary information provided by the pre-processing components, so poor speech

segmentation can significantly degrade the accuracy of features.

The IE component extracts information on anchors, reporters, soundbites and

commercials. We described details of each of these modules of this component in

Chapter 6. After extracting information on previously mentioned relations and enti-

ties, IE component updates the rttmx file by passing these information to the com-

ponent router.

7.1.1 Component Router

In Figure 7.1 we note that Component Router (CR) is one of the central components

of the system. Instead of building a standard pipeline based architecture, we opted

to build a system with a CR because we wanted our system to be easily trainable in

a new data environment. We also wanted the system to be flexible enough so that

many of the components can be easily modified if required. Since we are dealing with

BN, data environment can vary significantly depending on what kind ASR engine

and segmentation modules are available. Instead of directly passing information from

component to component we pass information through the CR, so that it can check

for inconsistencies and inform the data receiving module. Such an information routing
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system also allows us to easily create multiple data paths that can be used for training

and testing, which helps us to re-train our summarizer for new news channels or new

data formats. For example, if we want to retrain our model with ABCWorldNews

Tonight shows and we believe the headline detection system may not work well, we

can easily create a path with CR that bypasses the headline detection module in the

training of the system.

7.1.2 Statistical Modeling: Segment Significance

After data has passed through pre-processing, feature extraction and IE components,

we have all the information we want to estimate the significance of segments for

a summary. In Chapter 4 we have seen that we were able to successfully build a

summarizer based on Bayesian Networks to identify the significant sentences for a

summary. In this Section we will seek more detail on statistical modeling techniques

that we have experimented with for summarizer.

There are various statistical techniques that ranks or classifies segments for its

significance such as Decision Trees, Bayesian Networks, Ripper, Support Vector Ma-

chines (SVMs), Hidden Markov Models (HMMs) and Conditional Random Fields

(CRFs) to name a few. Each of these statistical techniques has its advantages and

disadvantages. Decision Trees can make very complex decisions with a fairly limited

data and it is easy to interpret the graphical representation of decision trees, but the

decisions are strict as the thresholds on nodes are not probability estimates. Bayesian

Networks provide a mechanism to strictly define the parent child relationship between

various attributes of the data, allowing the system to realize the relationships within
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data. On the other hand, Bayesian Networks cannot encode time dependent informa-

tion on the nodes. SVMs have gained wide attention due to its successful application

on various NLP and Spoken Language Processing problems. The training process is

quite slow for multi-class SVM and it needs hand tuning of alpha parameter. All the

previously mentioned classifiers do not take account of time dependent information.

BN data has a temporal nature, i.e. the turn that is being spoken by a reporter can

be affected by what an anchor said in the previous turn. Taking account of such

temporality in the data should be very useful for summarization as we do not want to

include any redundant information in a summary. There are few sequence modeling

techniques that have been successfully applied to NLP such as Maximum Entropy

Markov Models (MEMMs), CRFs and Hidden Markov Models (HMMs). Since we

have labeled data, training HMMs is straight forward with computation of relative

frequencies. Hence, we explore the use of HMMs for summarization in the next sec-

tion.

7.1.2.1 Using Continuous HMMs for Speech Summarization

Since BN shows are critically temporal in nature — news shows exhibit clear patterns

as they unfold, we want to take advantage of various types of such patterns in our

classification. Some of these arise from the temporal sequence of speaker turns or from

the repeated occurrence of particular phrases before or after turns. Hidden Markov

Models (HMM) have been used successfully for modeling such temporal data.

While HMMs are used in many language processing tasks, they have not been

employed frequently in summarization. A significant exception is the work of Conroy
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and O’Leary (2001), which employs an HMM model with pivoted QR decomposition

for text summarization. However, the structure of their model is constrained by

identifying a fixed number of ‘lead’ sentences to be extracted for a summary. We

introduce a new HMM approach to extractive summarization which addresses some

of the deficiencies of work done to date.

We define our HMM by the following parameters: Ω = 1..N : the state space,

representing a set of states where N is the total number of states in the model; O =

o1k, o2k, o3k, ...oMk : the set of observation vectors, where each vector is of size k; A =

{aij} : the transition probability matrix, where aij is the probability of transition from

state i to state j; bj(ojk) : the observation probability density function, estimated by

ΣM
k=1cjkN(ojk, µjk,Σjk), where ojk denotes the feature vector; N(ojk, µjk,Σjk) denotes

a single Gaussian density function with mean of µjk and covariance matrix Σjk for

the state j, with M the number of mixture components and cjk the weight of the

kth mixture component; Π = πi : the initial state probability distribution. For

convenience, we define the parameters for our HMM by a set λ that represents A,

B and Π. We can use the parameter set λ to evaluate P (O|λ), i.e. to measure the

maximum likelihood performance of the output observables O. In order to evaluate

P (O|λ), however, we first need to compute the probabilities in the matrices in the

parameter set λ.

The Markov assumption that state durations have a geometric distribution defined

by the probability of self transitions makes it difficult to model durations in an HMM.

If we introduce an explicit duration probability to replace self transition probabilities,

the Markov assumption no longer holds. Yet, HMMs have been extended by defining
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state duration distributions called Hidden Semi-Markov Model (HSMM) that has

been successfully used [Tweed et al., 2005]. Similar to [Tweed et al., 2005]’s use

of HSMMs, we want to model the position of a sentence in the source document

explicitly. But instead of building an HSMM, we model this positional information

by building our position-sensitive HMM in the following way:

Figure 7.2: Topology of HMM

We first discretize the position feature into L number of bins, where the number

of sentences in each bin is proportional to the length of the document. We build 2

states for each bin where the second state models the probability of the sentence being

included in the document’s summary and the other models the exclusion probability.

Hence, for L bins we have 2L states. For any bin lth where 2l and 2l − 1 are

the corresponding states, we remove all transitions from these states to other states



7.1. System Architecture 100

except 2(l+ 1) and 2(l+ 1)−1. This converts our ergodic L state HMM to an almost

Left-to-Right HMM though l states can go back to l − 1. This models sentence

position in that decisions at the lth state can be arrived at only after decisions at

the (l− 1)th state have been made. For example, if we discretize sentence position in

document into 10 bins, such that 10% of sentences in the document fall into each bin,

then states 13 and 14, corresponding to the seventh bin (.i.e. all positions between

0.6 to 0.7 of the text) can be reached only from states 11, 12, 13 and 14. The topology

of our HMM is shown in Figure 7.2.

We built trained a continuous HMM model described above using acoustic features

extracted from CBNSCI corpus. We obtained encouraging results with f-measure of

0.41 with 8-state HMM.1

ModelType Precision Recall F-Meas

HMM-8state 0.26 0.95 0.41

HMM-2state 0.27 0.79 0.40

Table 7.1: Speech Summarization Using HMM with Acoustic Features

Even though we were able to use continuous HMM for summarization with acous-

tic features it is challenging to include lexical and structural features in our HMM

framework. Our HMM which is based based on Gaussian mixtures assumes that ob-

servation features can be parametrized using a normal distribution. Such restrictions

can be limiting for summarization purposes, where lexical and structural features can

be on nominal and binomial distributions. In order to overcome this limitation on

1The details of the experiments and results are available in [Maskey and Hirschberg, 2005]
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the use of features by the type of modeling, we used a modeling technique that can

easily integrate various kinds of features such as Bayesian Networks.

7.1.2.2 Bayesian Network for Summarization

Given a set of features the Bayesian Network identifies the significant segments by

computing a joint probability over all the features and the class. We have a big feature

set with lexical, acoustic and structural features. In order to make the computation

of joint probability tractable Bayesian Network decomposes the joint probability over

all features into conditional probabilities according to the structure of the Bayesian

Network.

Given a Bayesian Network G = {X,E} where X = {x1, x2, ..., xn} are nodes and

E = {(xi, xj) : i 6= j} are arcs, we can factorize the joint distribution over all the

variables into the product of local terms as follows:

P (x1, x2, ..., xn) =
n∏

i=1

P (xi|πxi
) (7.1)

where πxi
are parents of node xi and P (xi|πxi

) is the conditional distribution of xi,

given its parents πxi
. Here the xi’s represent our acoustic, lexical and structural

features.

One of the reasons a Bayesian Network is suitable for our purpose is because it

allows us to encode the relationship between features using the network structure.

For example the structural feature’s relationships can be encoded with a network

structure as shown in Figure 7.3. In this network, ASRSENTID (sentence position)

is dependent on the role of the speaker and the ASRENTIDNORMPOS (normalized
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sentence position) is dependent on unnormalized sentence position.2

Figure 7.3: A Subgraph of Bayesian Network Graph for ConciseSpeech

After we find the topology of the graph represented in Figure 7.3, we only need to

find values of the parameters of the Conditional Probability Tables (CPTs) at each

node. We can estimate the parameters of the CPT by finding Maximum Likelihood

Estimates (MLE). If we let θi be a parameter vector for the CPT of node xi and define

2The figure only shows a small portion of the graph, since the original graph with all nodes are

too large to display here.
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θ(xi, πxi
) = P (xi|πxi

, θi) then we can find parameter values using MLE as follows:

θ(xi, πxi
) =

m(xi, πxi
)

m(πxi
)

(7.2)

where m(xi, πxi
) represents the number of times the node and its parents are jointly

in a particular configuration and m(πxi
) represents the number of times the parents

are in that configuration.

For our experiments, since we have continuous features mixed with nominal fea-

tures, we first converted all the continuous features into discrete features so that we

could compute CPTs for each node where node is a feature. We then performed

10 fold cross validation on all our data of CBNSCII corpus. We obtained f-measure

of 0.456, precision of 0.328 and recall of 0.749 using lexical, acoustic and structural

features. The predicted labels and their posterior probability were then passed on to

our optimization algorithm to generate the final summaries. We describe the opti-

mization algorithm in the following section, and further discuss our results in Section

7.3.

7.2 Optimizing Redundancy, Significance and

Length for Summary Generation

A summarizer should be able to provide a summary in user’s target summarization

ratio and should remove all redundant information. In order to build a summarizer

we believe we need to optimize the computation of three functions: i) significance

ii) redundancy and iii) length. Our summary generation algorithm include three
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modules corresponding to these functions, which we combine to produce an optimal

summary. The algorithm uses a statistical method to compute significance scores,

which are interpolated with centroid scores. These scores are used to extract signifi-

cant but non-redundant segments until a user-defined summarization ratio is reached.

We have already described our Bayesian Network based statistical model that com-

putes segment significance. Here we describe our modules that compute centroid of a

document, cluster the segments to find redundant information and the compiles the

segments to produce a summary respectively.

7.2.1 Computing Centroid of a Document

Most BN news story have one central topic and various subtopics related to the main

topic. Finding the main topic and subtopics is important because it allows the system

to keep the summary focused on a central theme without losing relevant information

on subtopics. This concept has been explored previously by finding the centroid of a

document or of a set of documents. Various methods have been proposed to compute

the centroid of a document. [Radev et al., 2000] assumes that the centroid is a set

of words in the document that has tf ∗ idf scores above a certain threshold. They

hypothesize that the sentences that contain the words from a centroid are indicative

of the topic of the document. We compute centroid of a document by this method.

We first create a document vector where each dimension is a unique word. We next

compute the tf ∗idf measure for all the words in the document. Using a threshold t we

remove all the words below a given threshold estimated empirically. The remaining

document vector is a centroid vector of the document. We next compute a centroid
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score for each sentence in the document by computing the similarity between the

centroid vector and the tf ∗ idf vector of each of the sentence using a cosine similarity

measure we described in Section 3.1. We represent the sentence of a document as a

tf ∗ idf vector, i.e.

Si = tf1log(N/df1), tf1log(N/df1), ..., tfnlog(N/dfn)

where tfi is the term frequency of ith term in the sentence, N is the total number

of documents in the corpus and dfi is the inverse document frequency, i.e. the number

of documents the term appears in.

7.2.2 Combining Significance and Centroid Scores

After computing the centroid of the document we need to rank the significant sen-

tences for the summary based on the proximity to centroid and the significance rank-

ings obtained from our trained model. We first obtain the significance score Spfor

each sentence based on the predictions of our statistically trained model. We obtain

Sp = Sp1, Sp2, ..., Spn for all the sentences. We then obtain the centroid scores for all

n sentences Sc = Sc1, Sc2, ..., Scn. We combine the scores Spi and Sci for all sentences

as shown in Equation 7.3.

Si = wc ∗ Sc + wp ∗ Sp (7.3)

We choose the weights wc and wp manually. For our experiments we chose wc of

0.5 and wp of 0.5. The scores Si for each sentence can be used to extract the best

sentences for the summary.
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7.2.3 Compilation

Compilation is the last step in the algorithm. Compilation ‘compiles’ the significant

sentences taking account of following constraints i) sentence order, ii) redundancy

removal iii) and user-defined summary length limit.

One of the disadvantages of using a centroid based method is that two redundant

sentences can get equally high significance scores if both are closely related to the

central topic/theme of the document. In order to compile a summary without redun-

dancy but still include the relevant significant sentences, we built an algorithm which

we describe next.

Let us define mij to be the similarity score between sentence i and j. Similarity

score is computed by computing word overlap between two sentences. If we have

n sentences in the story we get nxn square matrix with similarity score. A high

similarity score mij would signify redundant information between two sentences i

and j. Given a summarization ratio R we need to extract L sentences such that

L/N is approximately R where N is the total number of sentences. If we simply

choose a threshold t and extract the sentences with significance scores higher than

the threshold then we will not be able to control the length of the summary. If we sort

the sentences by the scores and extract the top sentences to match the summarization

ratio R we we may have redundant sentences. Instead we use the algorithm to compile

the sentences for the summary as shown in Figure 7.4. Let SimSentSet be a set of

sentences (i, j) that are similar to each other with a mij > Tm where Tm is a threshold

of similarity.

The algorithm described in Figure 7.4 compiles the sentences with highest signifi-
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S= set of segments in document;

N = total number of sentences;

R= summarization ratio

SUMM = {} //set of segments in summary

sort(S) by significance score

L = 0; i=0

while ( (L/N) < R) )

S_to_Add = Highest(SimSentSet that contain S_i)

if (! (SUMM contains S_to_Add) )

SUMM = SUMM.add(S_to_Add)

L = L + Length(S_to_Add)

i++;

end

sort(S) by position

Figure 7.4: Algorithm for Summary Compilation

cance scores until the summarization ratio is reached. It does not include any sentence

that is similar (redundant) enough to any other sentence already in the summary set

SUMM . It then reorders the compiled sentences to the original document position

to generate the final summary.
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7.3 Evaluation and Discussion

We evaluated our summarizer, ConciseSpeech, using automatic evaluation tools and

manual methods. For automatic evaluation, we used standard IR measures (Preci-

sion, Recall, F-measure) and ROUGE [Lin, 2004]. For manual evaluation, we followed

the guidelines provided for human evaluators for the Document Understanding Con-

ference (DUC) 2007 and asked human judges to rate our summaries on a scale of 1

to 5 to evaluate the responsiveness of the summary to the topic of the story.3

We previously asked human annotators to produce summaries that were 30% of

the original length, so for all our experiments we set the summarization ratio to

0.3. We first produced summaries using our baseline summarizer. The baseline sum-

marizer extracted the first 30% of the sentences and concatenated them to produce

a summary.4 We computed ROUGE scores for these summaries by comparing the

baseline summaries with human generated summaries of annotator 1 (ANN1), an-

notator 2 (ANN2) and both annotators. The results are shown in Table 7.2. We

obtain ROUGE-2 scores between 0.38 to 0.40 and ROUGE-L scores between 0.46 to

0.5. A ROUGE score in the range of 0.4 is rather high for a baseline. One possible

explanation for this high baseline ROUGE score is that the anchors in BN tend to

introduce stories by providing important information in the beginning of the story,

and our stories are relatively short compared to newswire stories.

3More information the DUC 2007 guidelines can be obtained from

http://duc.nist.gov/duc2007/tasks.html

4The tested story, summary pairs are available on the web for viewing at

http://www.cs.columbia.edu/˜smaskey/thesis
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Type Annotator Rouge-2 Rouge-L

Baseline System Annotator 1 0.402 0.505

Annotator 2 0.385 0.469

Annotator Both 0.402 0.498

ASR Based System Annotator 1 0.487 0.629

Annotator 2 0.431 0.555

Annotator Both 0.470 0.608

ASR with Automatically Extracted Relations Annotator 1 0.493 0.634

Annotator 2 0.437 0.561

Annotator Both 0.474 0.612

Manual Transcript Based System Annotator 1 0.664 0.720

Annotator 2 0.524 0.580

Annotator Both 0.607 0.666

Table 7.2: Rouge Results for ConciseSpeech

After we computed our baseline summaries, we built ConciseSpeech summaries.

First we split CBNSCII corpus into a 90% training set and a 10% test set. For the

sentences in the training set, we extracted the lexical and acoustic features described

in Chapter 3. We had the manual labels from our annotators for all the sentences

as to whether they should be included in the summary or not. We used the manual

labels provided by ANN1 for training our summarizer. Using the manual labels of

ANN1 and features extracted, we trained a Bayesian Network classifier as described

in Section 7.1.2.2. The classifier predicted whether the given sentence with its lexical
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and acoustic properties should be included in a summary with a probability Sp. We

took the label and the posterior probability of the classifier Sp and passed them to

our optimization algorithm with a summarization ratio of 0.3 and centroid scores

Sc. The optimization algorithm selected the most significant but non-redundant sen-

tences until it reached the summarization ratio of 0.3. The final summaries generated

by the summarizer were then evaluated using ROUGE. We again compared the au-

tomatically generated summaries with the human generated summaries of ANN1,

ANN2 and both of the annotators. The results are shown in Table 7.2. We obtained

ROUGE-2 and ROUGE-L scores of 0.487 and 0.629 respectively. These are signifi-

cantly higher scores than the baseline summarizer with an improvement of 8.5% in

ROUGE-2 and 12.4% improvement in ROUGE-L scores for ANN1. These are very

promising results considering that our model is based on ASR transcripts with

no manual annotations. As we noted above, the baseline summaries are already

very competitive in this domain. Obtaining such improvements over such a high base-

line is very promising. If we look at the ROUGE scores in comparison with the human

summaries generated by ANN2 we see that scores degrade by 5.6% for ROUGE-2 and

7.5% for ROUGE-L respectively. Even though the scores are lower than those ob-

tained by comparing with ANN1, they are still much higher than the baseline scores,

showing that our system is quite robust; i.e. it is not over-modeling a particular. This

conclusion is further strengthened when we compared the automatic summaries with

both annotators. ROUGE scores when evaluated with both annotators were 0.47 for

ROUGE-2 and 0.608 for ROUGE-L slightly higher than our ANN2 comparison and

slightly lower than our comparison with ANN1, as we had expected.
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In the summarizer described above, we did not include information such as speaker

role, commercials and soundbites. We described our automatic IE systems for iden-

tifying this information in Chapter 6. We automatically extracted this information

for all of our sentences in training data set and added the new features to our feature

set. We re-built the summarization system described above and again evaluated it in

the same setting. The results are shown in Table 7.2. The new model does slightly

better than the previous one, with an improvement of 0.6% on ROUGE-1 and 0.5%

on ROUGE-L for ANN1. The overall improvement on ROUGE for ANN2 is also

around 0.5%. We had hoped for better results using this additional information. One

of the reasons we probably did not see more improvement could be because the ex-

traction system is also based on ASR transcripts which are noisy to start with. The

predictions of these relations based on noisy input may not be good enough to add

more value to the overall feature set that have already been added previously. Even

though we see only slight improvement over our previous summarizer, we again beat

the baseline summarizer with a wide margin of 9.1% on ROUGE-1 and 12.4% on

ROUGE-2 metric.

Our fully automatic summarizer, ConciseSpeech, takes only ASR transcript and

the speech signal, and produced summaries that were promising according to the

evaluation we described above. Next, we wanted to see if we could get further im-

provement if we used manual transcripts and manual annotation. We should note

that obtaining manual transcripts and manual annotation for many of our relations

is not practical for real-time systems. We built manual-transcript based summarizer

to find the highest accuracy that can be reached with our framework. We took all



7.3. Evaluation and Discussion 112

the manual transcripts for our stories and built our system following the method we

have described above. We obtained results as shown in Table 7.2. We see a significant

improvement from our previous summarizer that used ASR transcripts. We obtain

ROUGE scores of 0.664 and 0.720 for ROUGE-2 and ROUGE-L which is an improve-

ment of 17.1% and 8.6% respectively. We examine the story summary pairs produced

by the system based on ASR transcript and manual transcript, respectively. First,

manual transcripts have no word errors unlike ASR transcripts. Second, we are com-

paring ROUGE scores with the baseline human summaries that were generated from

manual transcripts. There are instances in the summary when the ASR based sum-

marizer and manual transcript based summarizer both selected the same sentences

but the automatic summaries generated from manual transcripts had slightly higher

ROUGE scores because the manual summaries had words such as 19000 written out

in numbers while ASR transcripts produced “one nine zero zero zero.” So the same

sentence was written differently. Also, for manual transcript based summaries we

used manually annotated roles, commercials and soundbites. These annotations can

be very useful when they are correct. For our ASR based summarizer we used auto-

matically extracted relations which are not as accurate as the manual annotations.

Our automatic evaluation of ConciseSpeech showed promising results. Our sum-

marizer did significantly well than the baseline summarizer. We would like to see if

we obtain similar improvement when evaluated by humans. We performed manual

evaluation of our summaries. We used Amazon Mechanical Turk to obtain human

evaluators to rate our automatically generated summaries. Amazon Mechanical Turk

gives an experimenter access to a pool of human annotators to perform various tasks
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Figure 7.5: Manual Evaluation Scores for the Automatically Generated Summaries

over the web.5 The experimenter can give an assessment test to the annotators to

exclude annotators who may not fit the profile for the experiment. For our manual

evaluation we randomly sampled 16 stories from our test set. We obtained baseline

summaries, automatic summaries based on ASR transcripts, automatic summaries

based on manual transcripts and the summaries prepared by human annotators. We

then asked the humans to rate the summaries on a scale of 1 to 5 with the guide-

lines similar to DUC 2007.6 Basically, humans had to assess how well the summary

5Wisam Dakka helped us to setup evaluation experiment in mturk. www.mturk.com

6The guidelines we provided to our annotators is available at

www.cs.columbia.edu/˜smaskey/thesis along with the data
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responds to the main topic of the story. The human evaluators would see a story

and then a corresponding summary which they would read and score. We had 5 or

more human evaluators perform this task, so we had multiple scores ranging from 1

to 5 for each summary of each story. For each summary set we computed the average

human score, as shown in Figure 7.5. We obtained an average score of 2.32 for base-

line summaries. If we compare this average with automatic summaries generated by

ConciseSpeech using ASR transcript, we get an improvement of 12.44% for a score

of 2.94. The improvement using human evaluation is consistent with our automatic

evaluation results that showed similar improvement. Our summarizer based on man-

ual transcripts did significantly better than the one based on ASR transcripts. We

obtained an improvement of 16%. We had seen a similar improvement of 17.1% and

8.6% using ROUGE-2 and ROUGE-L metrics, making our results consistent across

automatic and human evaluation. For our automatic evaluation, ROUGE scores were

computed by using ANN1 summaries as our gold standard.

For our manual evaluation we also made the human summaries of ANN1 com-

pete with our automatic summaries, i.e. we asked the evaluators to rate the human

summaries without telling them that they are manually generated human summaries.

We found that our automatically generated summaries were almost as good as human

generated summaries in the ratings of evaluators. The human summaries were only

0.14% better than the summaries generated by our summarizer based on manual tran-

scripts. This observation further strengthens the findings in summarization research

that two humans may summarize the same story differently. Our human evaluators

did not have clear preference to human summaries over our automatic summaries
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even though our automatic summaries had only ROUGE scores of 0.63.

In this chapter we presented our BN summarizer, ConciseSpeech, and we evaluated

the system using the ROUGE evaluation measure. Our fully automatic summarizer

based on ASR transcripts and speech signal was able to improve over the baseline by

a wide margin. We saw a further improvement with the use of manual transcripts. In

the next chapter we show how we can extend ConciseSpeech to handle user queries.



Chapter 8

Extending ConciseSpeech:

Query-Focused Speech

Summarization

ConciseSpeech takes BN as input and produces a summary that users can browse.

The general-purpose summary produced by ConciseSpeech does not take into account

the user’s preference on topics and stories. We would like to extend ConciseSpeech

such that it can take a user’s query as input and produce a summarized answer

relevant to the query.

We need to perform some changes to ConciseSpeech to build such a query-focused

speech summarizer. First, we need to add a module that analyzes a query to extract

relevant information. Second, we need an information retrieval engine that can search

a corpus of BN documents. Third, we need to change the selection criteria for comput-

ing the scores that are used to select significant sentences. Fourth, we need to identify
116
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redundant information across multiple documents instead of one document. These

additional problems makes query-focused speech summarization a harder problem.

In the following sections we describe the modules we added to extend ConciseSpeech

to build a query-focused summarizer.

8.1 Query-Focused Speech Summarization

One of the motivations for extending ConciseSpeech to handle queries was our par-

ticipation in the Global Autonomous Language Exploitation (GALE) project. GALE

is a large-scale multi-institution project that allows the users of the system to search

for answers to a given set of question types. GALE is an ideal test bed for testing

query-focused speech summarization because the corpora for GALE include a large

set of spoken documents as well as text documents. One of the goals of GALE is

finding and distilling (summarizing) information in the corpus to produce answers

for a given type of question. There were 14 question types for year 1 in GALE, and

17 question types for year 2. Question types varied from finding relations between

two entities to producing biographies. We were focused on producing answers for a

template that seeks statements made by a person about a topic (Template 5).

Let us look at an example of a query in Figure 8.1 that our query-focused summa-

rizer needs to handle . The query contains two main arguments: a person argument

and a topic argument. The query also has a < context > argument that allows us to

narrow the search to a given source type. Users can modify the < source− type > ar-

gument in the query to constrain the search in the subset of corpus that only contains
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<query template-number="5" query-id="GNG012">

<query-text>FIND STATEMENTS MADE BY OR ATTRIBUTED TO [Osama bin Laden]

ON [the September 11, 2001 terrorist attacks on the United States]

</query-text>

- <query-arg arg-num="1" arg-type="Person">

<arg-value>Osama bin Laden</arg-value>

</query-arg>

- <query-arg arg-num="2" arg-type="Topic">

<arg-value>the September 11, 2001 terrorist attacks on

the United States

</arg-value>

</query-arg>

- <context>

- <source-type>

<source>AFA</source>

<source>ALR</source>

<source>ALJ</source>

</source-type>

</context>

</query>

Figure 8.1: Sample Template 5 GALE Query
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English BN.

The overall architecture of our query-focused summarization system is shown in

Figure 8.2. The query analyzer extracts relevant and important terms from the query

and finds the NEs that are the main focus of the query. After finding the main NEs

we estimate the number of documents to be retrieved. The Indri Document Retrieval

engine [Strohman et al., 2005] is used to retrieve the relevant set of documents that

may contain the statements we are interested in. After the documents are retrieved,

we pass the sentences of each document through a filtering module that filters out

malformed sentences. After the filtering stage, we extract the lexical features we

desribed in Section 3.1. These features are passed on to a scoring module. The

scoring module uses a set of rules to give weights to each sentence. The rules are gen-

erated manually by analyzing the data (We could not induce the rules automatically

because there was not enough data for statistical learning.)The sentences are passed

to a clustering module to find redundant and similar sentences. Finally the answer

generation module uses the weights assigned by scoring module and the similarity

score provided by clustering module to produce an answer. We explain briefly each

of the module below.

8.1.1 Query Analyzer

The query analyzer takes a query and extracts relevant information from the query

and passes it to the IR engine. The query for finding statements has two arguments

– i) the person who made the statement ii) the topic of the statement. The query

analyzer parses each of the arguments and extracts the person argument to extract
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Figure 8.2: Query Focused ConciseSpeech

mainNE and subMainNE. MainNE is found by stripping of all prefixes and suffixes

of the person argument. The extracted prefixes which are commonly the titles such

as “president,” “senator” are listed as subMainNE. We explicitly defined subMainNE

because in our data analysis we found many instances of modifiers such as “president

said, senator told” preceding statement.

Another important function of the query analyzer is to find the surface variations

of the NEs in the query. For example, “Osama bin Laden” may be mentioned in the

news as “Osama”, “Bin Laden,” and other surface variations. Knowing these various

surface forms is important for information retrieval purposes as it has been shown in

information retrieval literature that expanding queries with such additional surface

forms usually improves the search results [Xu and Croft, 1996]. We have built a tool

that provides surface variations of any given NE using the NE graph we generate in
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said— has said— has told— told— announced— stated +

reported — clarify— quote— cite— reported +

asserted— replied — insisted— denied— speaking +

called— reiterated— spokesman— spokeswoman +

— spokesperson— accused— declared— charged +

address— message— call — appealed— announc +

reports— quoted— clarified— asserts— assert— insist +

— appeal— deny— accuse— addressed— criticized +

pointed out— statement issued by

Table 8.1: Common Say-Verbs

Section 8.2.3.

There are some common patterns in the style of introducing statements by news

anchors or reporters. Some of these patterns are “Person said,” “... was announced by

Person,” “He told others that ...” We gathered these patterns manually and came up

with the verbs associated with these patterns such as “said, told, announced, spoke.”

These are called “verbs of saying.” The verbs of saying that we extracted from our

data analysis are shown in Table 8.1. We pass these verbs to our IR engine to expand

query to improve document retrieval accuracy.

8.1.2 Information Retrieval

After the query is analyzed we pass it to the IR engine to retrieve information from

the GALE corpus. The corpus consists of English, Arabic and Chinese Newswire,
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Blogs, Chats and BN. We next explain the use of Indri for document retrieval.

8.1.2.1 Document Retrieval Using Indri

Indri is a very robust query language and can handle ordered and unordered phrases.

Indri supports a structured query language which can be represented in a xml format,

allowing Indri to handle very complex GALE queries with phrase matching, weighted

expression, boolean filtering, etc. Indri query is defined as shown in Equation 8.1.

query := (beliefOp)+ (8.1)

where beliefOp adds various belief weights by operators such as #weight, #com-

bine, #not and term weights by operators such #syn, #datebefore allowing us to

easily incorporate source and date restrictions as well. We use #combine operators

to expand the query with the verbs of saying. We pass the expanded query to Indri

retrieval engine. Indri returns a set of relevant documents ranked according to the

relevance with the question.

8.1.3 Filtering Module

After we receive the relevant documents, we filter out the sentences that are unlikely

to be a part of the answer due to disfluencies, word errors or non-understandable

tokens assigned by the ASR engine. The ASR engine we are using [Zheng et al.,

2007] assigns @repeat@ tokens to segments of the speech signal whenever the signal

is too noisy to decode. We cannot assign significance scores to a sequence of @repeat@

tokens so we remove sentences with too many @repeat@ tokens. The filtering module
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has a set of hand-crafted rules to remove these kind of sentences.

8.1.4 Feature Extraction and Scoring

Our scoring mechanism for query-focused summarizer is significantly different than

the scoring module of ConciseSpeech. In ConciseSpeech, we had no notion of user’s

queries so we only needed to compute significance relative to other sentences in the

story. In query-focused summarizer, the arguments of query defines the significance

of sentences in the story. We extracted a set of lexical features based on query

arguments. The first set of features were based on the first argument of the query.

Based on mainNE and subMainNE extracted in 8.1.1 we extract features such as the

count of MainNEs and subMainNEs. We then extracted a feature that computes

a distance between topic argument and the sentence using a word overlap measure.

We further extracted features that are defined by a set of hand-crafted rules. Some

examples of the rules for feature extraction are - Does the sentence contain mainNE

and topic text? Does the sentence contain a verb of saying? Does the sentence contain

verb of saying with subMainNE within a window of 5 words? We developed these

rules manually by carefully looking at our annotated data.

After the feature extraction process was complete, we scored each sentence for it’s

relevance to the query. Unlike the scoring module of ConciseSpeech, we could not

build a statistical model for scoring for our query-focused summarizer due to lack

of enough training data. Hence, we created a set of hand-prepared rules for scoring

relevance of each sentence. We show some examples of scoring rules here.

1. If hasSubTopicText == true && hasSubMainNE == true && hasSaidVerb ==
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true then SaidTopicNEScore = 1

2. If NE SayVerb TopicText Pattern == true || SayVerb TopicText NE Pattern

== true then statementPatternScore = 1

3. If hasMainNE == true then mainNEScore = 1;

We linearly combined all of the scores with various weights to obtain a total score

for each sentence. We compared the total score of the sentence with a threshold which

was defined empirically. If the total score was higher than the threshold we appended

the sentence to our answer. We performed many iterations of experiments where we

compared the generated answer with gold standard by varying the value of threshold

until we found the optimal threshold.

Sentences whose score surpasses the threshold are then clustered to identify the

redundancy. We use the clustering algorithm developed for GALE to eliminate re-

dundancy.1 The resulting set of sentences is the final answer to the question.

8.1.5 Evaluation

We evaluated our system on Template 5 GALE queries. Given a GALE query, the

system fetched documents using Indri search engine. The retrieved documents were

automatically annotated for various entities and relations which were then passed

on to our system. The system extracted the most significant sentences relevant to

the query. We had the gold standard answers provided by LDC for each of these

queries. We evaluated the system by computing precision, recall and f-measure using

1We are just end-users of the clustering module and treat it as black box.
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Length Precision Recall F-measure

3200 0.14 0.402 0.265

4800 0.112 0.420 0.258

6400 0.093 0.478 0.260

7200 0.082 0.478 0.251

Average 0.107 0.445 0.258

Table 8.2: Nuggeteer Results for Template 5 queries

nuggeteer evaluation tool [Marton and Radul, 2006]. The results are shown in Table

8.2. We obtain f-measure of 0.258, precision of 0.107 and recall of 0.445. The reported

numbers are the average for 10 queries of Template 5 with a thresholding for answer

lengths of 3200, 4800, 6400 and 7200 characters.

We note that the precision is quite low for the system while recall is significantly

better. One of the main reasons for this behaviour is that template 5 question is

about finding statements made by a person on a given topic; and in most cases

there are only a few instances of statements made by a person on a particular topic.

When there are only few instance of statements in the corpus and we retrieve many

documents our precision drops significantly because most of the documents do not

contain statements by the person. But we cannot retrieve very few documents for all

queries because there are some queries which have many statements available in the

corpus. Hence, in order to improve precision, we need a better way to find relevant

documents. We address this issue in Section 8.2. Also, in the above evaluation, we are

searching a mixed corpus which also contains translated speech and text. The foreign
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spoken document, when transcribed and translated, has many word errors especially

for named entities. NE detector frequently fails to detect NEs on these texts. For

our question not being able to find the name of the person who made the statement

significantly degrades the overall performance.

8.2 Improving Summarization with Query Expan-

sion Using NE-NET

If we provide more documents relevant to the query it is likely that the query-focused

summarizer will be able to find more relevant information to produce a better sum-

mary. We wanted to improve the document retrieval module to find more relevant

documents. We hypothesize that finding related NEs for the name in the query

argument and using these to enrich the query can improve the document retrieval

module for query-focused speech summarization we described in last section. We

describe a method to find the related NEs and experiments showing an improvement

in document retrieval accuracy for GALE templates.

8.2.1 Related Named Entities

In IR literature we see that knowing if the query terms are NEs can be effectively

used for improving IR. If we know the query term is NE then a higher weights can be

assigned for matching NE terms than matching other content words. If we search our

corpus for “Orhan Pamuk” (a nobel laureate) then a document that contains men-

tions of “Orhan Pamuk” will have higher likelihood of being relevant than documents
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Figure 8.3: The Wikipedia page of the Turkish novelist [Orhan Pamuk].

with no mention of Orhan Pamuk. For example, Indri estimates the ranks of the doc-

uments to be retrieved by computing the expectation over the posterior probability of

P (M |D) where M is the model and D is the set of documents as shown in Equation

8.2

P (r|D) =

∫
P (r|M)P (M |D)dM (8.2)

Documents that contain “Orhan Pamuk” will have higher P (r|D). Indri can in-

corporate new information using #combine operator that can affect the computation

of P (r|D). In such IR engine, if we provide information on related NEs to “Orhan

Pamuk” such as “The Black Book” (the book Orhan Pamuk wrote), besides the query
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term, P (r|D) will improve for better or worse. In our experiments we show that pro-

viding related NEs with the query improves the relevance ranking of the document.

But the important question remains, which is how to find these related NEs.

Even though there are many NE detection systems [Baluja et al., 2000, Mikheev

et al., 1999] with high accuracy, we do not have many systems that relate NEs without

an explicitly defined relationships. Given a NE, finding all related NEs is a difficult

problem because NEs can be related to each other in many different ways and in many

different contexts. Thus, we have not seen a knowledge source that can provide all the

related NEs for a given NE. Such relationships can be very useful for summarization.

Currently, we use the counts of NEs and NE types to weight the sentences to be

included in a summary in ConciseSpeech. If we know the related NEs we can weight

the counts of NEs according to the number of related NEs available on the document.

In order to find the related NEs we built a knowledge source which we call Named

Entity Network (NE-NET).

Unlike WordNet where human annotators relate words, we built our network au-

tomatically. Also, unlike other NE relations mined from web [Matsuo et al., 1999]

our relations have a higher precision with very little noise. To do this, we make use

of Wikipedia: a structured knowledge source created by contributors and constantly

edited for accuracy.

8.2.2 Related Work

A significant amount of work has been done in building networks of “person names”

in the social network research and in social theory research. [Matsuo et al., 1999]
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presents a system, Polyphonet, that uses search engines to measure the co-occurrence

of names assuming that co-occurrence with some frequency represents some kind of

relationship between the co-occurring person names. [Culotta et al., 2004] identify

unique individuals in email messages, finds their homepage and fills out their per-

sonal information; links are placed between the owner of the web page and persons

discovered on the web pages. Even though these techniques work reasonably well, the

resulting network does not have an accuracy of the same degree as that of WordNet,

such that it can be used as a knowledge source. Also, we are not interested in a

network of just any person names; we are interested in Named Entities that may be

of some importance to many NLP tasks, and usually these NEs have some probability

of occurring in the news or on the web.

Another closely relevant work is WordNet [Miller et al., 1990]. WordNet pro-

vides relationships between words such as synonyms, hyponyms, and hypernyms while

FrameNet provides relations between semantic concepts. Our work is different from

these because we do automatic acquisition of knowledge from Wikipedia. There

has been recent work based on WordNet and Wikipedia [Suchanek et al., 2007] which

builds a semantic knowledge with ontology based on Wikipedia categories. [Suchanek

et al., 2007] produces an ontology that defines relationships such as “Elvis” born− in

“1943” by identifying all the persons born in category ’1943’ listed in Wikipedia. In

our NE-NET we have not limited our network by trying to define relationships to

build ontology. We let any two aspects be related if they are annotated as such by

Wikipedia annotators.
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8.2.3 Building NE-NET

Wikipedia contributors continuously annotate Wikipedia pages by linking important

aspects on each page to other Wikipedia pages, which may or may not yet exist.

(Unfortunately, this procedure is not as clean as it seems; contributors may refer to the

same page in different ways, and one page may have several titles.) We downloaded

all of Wikipedia articles and the links between the aspects of the document. (Aspects

are words that have been linked to other documents) We traversed through each

document and each aspect in the document. We built a new node for each new

aspect and added a link to the existing graph. We iterated this method until we

processed all the documents in Wikipedia which resulted in a huge graph with nodes

as aspects of documents and edges defining relations between them. In total there

are about 7 million nodes. Of those, 1.5 million have an actual Wikipedia page, and

35 million edges.

Let us consider an example of a Wikipedia page about Orhan Pamuk, shown in

Figure 8.3, winner of 2006 Nobel Prize in literature. The page includes links to more

than 90 aspects. Many of these aspects are NEs that are highly relevant to Orhan

Pamuk, such as “Thomas Mann”, “Marcel Proust”, “Leo Tolstoy”, and “Fyodor

Dostoevsky.” Each of the aspects are listed as nodes in NE-NET and are linked to

the node of Orhan Pamuk to obtain a graph shown in Figure 8.4

After building the Wikipedia graph we enriched its nodes, as we will describe next,

with several useful metadata that can be useful for IR.

Category: This field defines the type of NE and has one of the following values:

person, organization, location, misc, and common. If a page is about a NE, the first
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Figure 8.4: A subgraph of Turkish novelist [Orhan Pamuk].

four values determine what type of NE the page is about. The fifth value indicates

that the page is not about a NE [Dakka and Cucerzan, 2008].

Context: This field is a list of all the textual context of an aspect (node in the

graph). For example, “Orhan Pamuk” will have 92 context entries as it was mentioned

92 times on other Wikipedia pages.

Surface: Wikipedia contributors refer to an entity by using different terms.

For example, for the entity “Orhan Pamuk”, contributors use the surface terms

“Orhan,” “Pamuk,” “Orhan Pamuk,” “Orhan Parmuk,” and others, including ones

with spelling mistakes. The value of this field of a particular node contains a list of

all the surface terms used in Wikipedia to refer to the entity “Orhan Pamuk.”

Abstract: Wikipedia contributors create a few sentences to describe each Wikipedia
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page. Unfortunately, not all pages have such descriptions. The abstract field in our

system contains this human description. Figure 8.5 shows the abstract of the entity

“Berlin”. The abstract for ”Orhan Pamuk” is empty.

First Paragraph: To overcome the problem of missing abstracts, we attach each

node to its first paragraph.

<abstract>

Berlin is the capital city and one of the sixteen

states of the Federal Republic of Germany. It is the

heart of the Berlin-Brandenburg metropolitan region,

located in northeastern Germany </abstract>

Figure 8.5: The abstract of the entity “Berlin,” provided by Wikipedia contributors.

8.2.3.1 Enriching Nodes with TFoINF

After the building process described above has been completed, every node in the

network includes the properties we have described above. Thus, we can easily access

NE-NET to find all the related NEs for a given node. We can also use this information

to compute a new measure that we propose — Term Frequency * Inverse Network

Frequency (TFoINF ). The measure computes the importance of NE given its fre-

quency and the number of relations with other NEs in the network. The measure is

motivated by TFoIDF . TFoIDF finds the representative words of the document

by computing Term Frequency (TF ) and multiplying with Inverse Document Fre-

quency (IDF ) which scales the TF by the number of times the word occurred in

the other documents. If “Orhan Pamuk” occurs only a few times in a collection of
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documents and TF is high in the current document, the overall score of TFoIDF

will be high. The final score is dependent on the collection of documents used for

computing IDF . Note that IDF is determined simply by computing the number

of documents in which the term occurred, without taking into account if the word

occurred in the document is relevant for the task. On the other hand Inverse Network

Frequency INF in TFoINF takes the relevance of the word when computing the

counts. We are able to take account of such relevance in computing INF because

each node in our graph is a term in Wikipedia. Whenever there is a relevant connec-

tion between two terms we have an arc joining them. This means instead of counting

all the documents where the term occurs we can count the nodes the term is linked

to get INF values. Hence we define our measure with the following equations for a

term Ti within a particular document Dj

TFoINFi,j = TFij.INFi (8.3)

where

TFij =
ni,j∑
k nk,j

(8.4)

where the numerator ni,j is the frequency of term in document Dj. Ther term fre-

quency is normalized by the denominator, the total number of all terms in document

Dj. The INF for the term Ti is provided with the following equation.

INFi = log(
|S|∑
e(i, k)

) (8.5)
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Node Properties

1 Total Incoming Arcs

2 Total Outgoing Arcs

3 Category

4 Context

5 Surface

6 Abstract

7 First Para

8 Inv Network Frequency

Table 8.3: Basic Node Level Service in NE-NET

where |S| is the size of the graph (the total number of nodes in the graph) and∑
e(i, k) is the sum of edges between the node i and node k where i 6= k and

distance(i, k) = 1.

TFoINF provides information on the relative importance of a term Ti in the

document taking account of its TF and the number of times it is linked by other NE

in the NE graph.

8.2.4 Evaluation: Improvement in Document Retrieval Us-

ing NE-NET

Query focused summarization involves retrieving documents that are relevant to user’s

query from a large corpus, then summarizing the retrieved documents. If we provide

more relevant documents to a summarization engine it is likely that the summaries
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can be more relevant. Hence, one of the tasks in building a better query-focused

summarizer is to improve the document retrieval component. In this section we show

how we can use NE-NET to improve document retrieval.

For our experiments we needed a large corpus that can be indexed and a set of

queries for testing document retrieval. We chose to index the TDT4 corpus. TDT4

has 58, 850 English documents which include the text of newswire and BN reports

from various channels. We indexed all of the TDT4 documents using the UMass Indri

index building tool [Strohman et al., 2005]. We chose GALE queries to search the

TDT index because we had gold standards provided by LDC.

We performed two sets of experiments to see if we can improve document retrieval

using NE-NET. The first experiment involved searching the TDT4 corpus with regular

queries. Regular queries are GALE queries formatted in Indri query style. The

second experiment involved searching the TDT4 corpus with expanded queries, where

expanded terms were retrieved using NE-NET. For example, for the GALE query

“Provide informatio non Ehud Barak” we obtain a regular Indri query that only

contains the query-term “Ehud Barak” and the NE-NET query that contains the

following relevant NEs as relevant terms:

• Ehud Barak, taba summit, dan shomron, bandar bin sultan, yehoshua saguy,

limor livnat, amnon lipkin-shahak, ahron bregman, yossi sarid, binyamin ben-

eliezer, krav maga, sayeret matkal, tal law, education minister of israel, 1973

israeli raid on lebanon, moshe arens, blue line (lebanon), list of defense ministers

of israel, electronic data systems, amir peretz, camp david 2000 summit, meretz-

yachad, al-aqsa intifada
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We note the high accuracy of our NE-NET in finding related NEs in the example

shown above for “Ehud Barak.” In order to select only the most relevant NEs to the

query we computed INF normalized by the ratio of outDegree and inDegree for the

NE. We added these terms in the query using “#combine” operator of Indri.

Figure 8.6: NE-NET vs Regular Queries: A Mixture of Query Types Showing an

Improvement of NE-NET Queries over Regular Queries for various K values

For our experiments we first took 19 GALE queries which had relevant answers

in TDT4 corpus and also had human relevance annotation. The human annotation

for relevance of documents was provided by LDC and consisted of a list of document

names that were relevant for a given query. These queries were not limited to any

particular template type. For each query we used NE-NET to retrieve the related

names of the query term and expanded the query as described above. We then

searched our corpus twice, first using the regular query and next using NE-NET
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query. We compared the returned documents with the relevance judgments made by

human annotators. The annotation provided a list of relevant documents for each

query. We compared the documents retrieved with the gold standard using precision,

recall and f-measure. We tested each query by choosing the Top K documents of the

returned results with K = 5, 10, 20, 50, 100.

The average precision, recall and f-measure for various K values are shown in

Figure 8.6. We note that regular queries quickly degrade as we increase the value

of K. but the f-measure for NE-NET queries do not degrade at all – even when

we choose more top ranked documents. In fact, for top 50 and 100 documents, f-

measure for NE-NET queries is higher than for regular queries by 5.97% and 4.86%

respectively.

We see in Table 8.6 that most of the gain in F-measure is due to better preci-

sion. Retrieving more documents with only the query terms quickly degrades for

regular queries. For NE-NET queries, our expansion technique provided enough rel-

evant terms to retrieve relevant documents even for higher K values. We see that

the precision of NE-NET queries is 12.30% and 10.88% higher for the top 100 and

50 documents in comparison with regular queries. For the same queries we see a

degradation of recall. However, the ratio of increase in precision and decrease in re-

call is high enough that we see significant improvement in f-measure. We should also

note that when we choose very few documents, such as the top 5 documents, regular

queries perform better than NE-NET queries. We expect this behavior because the

documents that are ranked in the top 5 or 10 are likely to be very relevant as there

will be documents with an exact match to the query terms. Usually the problematic
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K Type Prec Recall F-Measure

Top 5 REG 0.316 0.211 0.188

NE-NET 0.242 0.188 0.155

Top 10 REG 0.232 0.238 0.169

NE-NET 0.205 0.206 0.145

Top 20 REG 0.145 0.273 0.133

NE-NET 0.192 0.217 0.145

Top 50 REG 0.079 0.289 0.093

NE-NET 0.188 0.217 0.142

Top 100 REG 0.064 0.309 0.082

NE-NET 0.188 0.217 0.142

Table 8.4: Precision Recall and F-Measure for NE-NET and Regular Queries

documents are the documents that are ranked lower than the top 10, and these were

the ones NE-NET was able to handle better. We should also note that the query

set we chose has a mix of different GALE query types. Hence the use of NE-NET is

flexible enough for us to use in all query types for GALE.

In this chapter we extended ConciseSpeech to handle user’s queries. We tested

our system within the GALE distillation task and found that our system produced

reasonable user-focused speech summaries. We further showed that the information

retrieval module of user-focused summarization can be improved by expanding queries

with related NEs that were automatically obtained from our knowledge source, NE-

NET.



Chapter 9

Conclusion, Limitations and

Future Work

In this thesis, we presented a technique to summarize BN spoken documents. Our

approach is based on extracting significant segments of speech and then combining

them. Our results show that our method for summarization works significantly better

than a baseline summarizer that extracts the lead N sentences of a story. In order to

compute the significance of sentences for summaries, we showed that there are chal-

lenges we have to address that are specific to the speech domain, such as word errors,

disfluency and segmentation. We presented techniques to address these problems.

We then presented IE methods to extract relations particular to BN such as speaker

roles, soundbites and commercials. We then showed how to combine these sources

of information in one coherent statistical framework to predict the significance of

segments for inclusion in a summary. The segments predicted to be significant were

combined by our algorithm that optimized significance, redundancy and length to
139
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produce a summary of a desired summarization ratio. We further extended the sum-

marizer to handle user queries and produce a query-focused summary. To handle user

queries better we created a knowledge resource, NE-NET, and showed that the use of

NE-NET significantly improves document retrieval for query-focused summarization.

There are a few limitations to the work we have presented in this thesis. One

of the biggest limitations of our summarizer is that it does not perform any kind

of syntactic analysis on ASR transcripts to rewrite long sentences; this would be

especially important since BN spoken sentences tend to widely vary in length. We

should note though that text generation is a difficult task, and generating sentences

from ASR transcripts is probably even harder as sentences in ASR transcripts do not

adhere to grammatical rules and contain many word errors.

Another limitation of our summarizer is that we perform most of the experiments

at the sentence level. We noted that using intonational phrases could potentially

produce a better summarizer (at least using the ROUGE metric) but we had our final

summarizer extract sentences because we did not know the effect on comprehension

when we concatenate intonational phrases. If we can find a better way to combine

IPs such that it does not degrade the readability of the summaries, we should explore

the possibility of building a summarizer based on phrases or words.

NE-NET is a very useful resource for retrieving related entities but it cannot be

used to identify the relationship between two entities. The lack of such information

can limit the usability of NE-NET. especially for tasks where we need to identify all

the related entities pertaining to the type of the current relation.

Although our summarizer has limitations, we believe we have made contributions
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in increasing knowledge of how to summarize BN. We list our contributions here. The

main research contributions of the thesis are as follows:

• A speech summarizer, ConciseSpeech, that can summarize BN documents by

optimizing significance, redundancy and length

• Experiments showing that it is possible to summarize speech just with prosodic

information [Maskey and Hirschberg, 2006b]

• Definition and use of novel structural information for speech summarization

[Maskey and Hirschberg, 2003]

• Use of word confidence scores to improve clustering of spoken documents with

text for summarization

• A phrase-based machine translation approach for disfluency removal [Maskey

et al., 2006]

• New IE techniques for extracting information pertaining to speaker roles, sound-

bites and commercials[Maskey and Hirschberg, 2006a]

• Experiments showing the possible uses of intonational phrases for summaries

• A knowledge resource, NE-NET, that can relate NEs and can be used to improve

document retrieval
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9.1 Future Work

For our future work we would like to address the limitations we have mentioned previ-

ously. We want to perform syntactic processing such that we can identify significance

on smaller segments of sentences, such as phrases. Also, such processing would help

in rewriting sentences. We want to explore using intonational phrase to produce a

comprehensible summary. We want to improve NE-NET by adding the type of re-

lationship on arcs of the network such that NE-NET can be queried not only for

related entities but for entities that fall under given relationship types. We want to

build upon our IE engines to extract more relations from speech that can be useful

for summarization.

Besides addressing these limitations, we would also like to explore the statistical

learning algorithms that can model the hierarchical nature of information in BN. BN

contains a strict hierarchy over the type of segment we are examining. BN shows

contain stories which contain turns, turns contain sentences, and sentences subsume

phrases and words. Each of these segments can be used to extract information partic-

ular to their segment type. For example, we can extract POS or word senses for words

while we can obtain parse trees for sentences and extract speaker roles for turns. In

most of the summarization algorithms, we see that the hierarchical nature of this

information is not maintained. For example, turn, story information is flattened to

sentence level. We would like to address how to maintain the hierarchical nature

of information in BN documents to improve speech summarization as a part of our

future work.



Appendix A

Data Processing

A.1 Example of RTTMX file

...

on NA SENT_146 NA 10/01/2000#14:15:46.84 TURN_10

cnn NA SENT_146 NA 10/01/2000#14:15:46.84 TURN_10

kitty NA SENT_147 NA 10/01/2000#14:15:46.84 TURN_10

goes INSUMMARY_38 SENT_148 NA 10/01/2000#14:16:00.11 TURN_10

...

website NA SENT_150 NA 10/01/2000#14:16:00.11 TURN_10

napster NA SENT_151 NA 10/01/2000#14:16:00.11 TURN_10

...

Rttmx file contains tuples of data where columns are attributes for every word in

the document. Every tuple represents a word with the first column stating the word

value.
143



A.2. Web-Interface for Summarization Annotation 144

A.2 Web-Interface for Summarization Annotation

Figure A.1: Confirming Segment Selection for Summarization Annotation

The annotators were asked to reconfirm the selected sentences for the summary

by making them able to read the summary and story in a same page. They could go

back and change the summary if they wanted to.



Appendix B

User Queries for Summarization

B.1 Instruction for GALE Templates 4 and 5 in

Year 2

B.1.1 Template 4: Provide information on [organization ‖

person]

Examples for Template 4

• PROVIDE INFORMATION ON [May 1 terrorist organization]

Relevant:

Objective: May 1 is an extremist organization

Time: May 1 was active between 1987 and 1995

History/Activity: May 1 was involved in numerous bomb attacks

145
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Members: May 1 announced its merger with ELA

Activity: May 1 was involved in the murder of a policeman

• PROVIDE INFORMATION ON [Paul Bremer] Activity Date: 2003-01-01 to

2003-12-31

Relevant:

Role: Iraq’s U.S. administrator, Bremer

Statement: Iraq’s U.S. administrator, [[ Bremer, said ]] Thursday [2003-07-31]

[[ that general elections could be held in Iraq within a year. ]]

Meeting: [[ British Foreign Secretary Jack Straw went into a meeting ]] on

Monday [2003-08-21] [[ with Paul Bremer. ]]

Meeting: “The meeting reached some positive results on the plan to create con-

stitutional and political councils,” Barzani told reporters after meeting Bremer

in Salaheddin, close to Arbil.

B.1.2 Template 5: Find statements made by or attributed

to [person] ON [topic(s)]

Examples for Template 5

• FIND STATEMENTS MADE BY OR ATTRIBUTED TO [Iraqi Deputy Prime

Minister Tariq Aziz] ON [Iraqi President Saddam]

Irrelevant:
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Tariq Aziz should be able to provide ”important information” about Saddam’s

regime (not actually saying that Aziz did or would say something-just hoping

for something)

Tariq Aziz is talking, we don’t know how much, we don’t know how accurate

(says there is the existence of a statement, but doesn’t provide any actual or

hypothesized content of a statement)

• FIND STATEMENTS MADE BY OR ATTRIBUTED TO [Gao Xingjian] ON

[politics]

Relevant:

No comment: Gao Xingjian has chosen not to talk about politics

No comment: Gao Xingjian avoided the questions, when asked repeatedly

whether he had felt any political pressure

No comment: Gao Xingjian had no comment on whether he had been under

any political pressure

Irrelevant:

Gao Xingjian was convinced that the situation in China would deteriorate (in-

formation was likely to be received by a statement, but there’s no actual evi-

dence to confirm a statement)



Appendix C

Examples Stories and Automatic

Summaries

C.1 Sample Automatic Summaries and Human Sum-

maries

STORY

CNN20001211.1400.1485.story.txt

some french butchers are giving away meat in an attempt to regain public confidence

in their products

jennifer eccleston explains

a bevy of butchers ferry steaming platters of barbecued beef to crowds in a central

paris park. it’s sane cow day in paris, according to the 200 butchers who organized

the free cookout

they’re hoping locals will cast aside mounting fears in france over bse, the deadly

brain wasting disease in cattle, and its human equivalent, variant creutzfeldt jakob

disease

i said to my husband, david, that it would be good to go the luxembourg gardens
148
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and see representatives of the beef producers, and taste good meat

and the meat is really good

we like it very much

when asked if she was afraid of bse, or as it’s commonly known, mad cow disease,

michele nicolas said it didn’t scare her at all music to the ears of today’s sponsors

the bse panic broke out in france in october when it was revealed that potentially

contaminated meat, from a herd in which one bse case had been identified, had been

put on sale in supermarkets

as a result, stores in paris took beef off the shelves, and it was removed from school

menus nationwide

today’s barbecue hopes to shore up consumer confidence in the troubled beef industry

the aim of this operation is, above all, to make consumers understand that we are

small butchers, and we work in our shops with beef raised exclusively for meat, and

with that kind of beef, there is no problem

these are beef that have not eaten animal based feed

they eat grains, and not animal feed

so, there is no risk

france’s agriculture ministry announced four new cases of bse in cattle last friday,

bringing this year’s total to over 120 cases, more than four times the figure for 1999

cases have also been reported in britain, ireland and belgium, and, most recently, in

germany

european union ministers, reacting to europe wide concerns, last week announced a

six month ban on the use of meat and bone meal in all animal fodder

it’s considered the main route for bse contamination

jennifer eccleston, cnn,

BASELINE SUMMARY

CNN20001211.1400.0015.summaryB.txt

Score : 2.40

five

some french butchers are giving away meat in an attempt to regain public confidence
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in their products

jennifer eccleston explains

yeah

a heavy of what’s your is very steaming platters of hard to keep peace to proud in a

central paris park it’s saying how day in paris forty two hundred @reject@ we work

out

they’re hoping @reject@ has to side mounted fears his land over the s. e. c.

AUTOMATIC SUMMARY based on ASR transcripts

CNN20001211.1400.1485.summaryA.txt

Score: 3.20

Some french butchers are giving away meat in an attempt to regain public confi-

dence in their products

A heavy of what’s your is very steaming platters of hard to keep peace to proud in a

central paris park it’s saying how day in paris forty two hundred we work out

They’re hoping has to side mounted fears his land over the SEC

When asked if she was afraid of BSE or as it’s commonly known as mad cow disease

michele said it didn’t scare her at all

The BSE panic broke out in france in october when it was revealed that tend to

weaken time and it meet won the case had been identified had been put on sale un-

supervised

European union ministers reacting to your like stern’s last week announced a six

month ban on the use of meat and bone meal in all animal fodder

AUTOMATIC SUMMARY based on Manual transcripts

CNN20001211.1400.1485.summaryM.txt

Score : 4.20

Some french butchers are giving away meat in an attempt to regain public confi-

dence in their products
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They’re hoping locals will cast aside mounting fears in france over bse the deadly

brain wasting disease in cattle and its human equivalent variant creutzfeldt jakob

disease

When asked if she was afraid of bse or as it’s commonly known mad cow disease

michele nicolas said it didn’t scare her at all music to the ears of today’s sponsors

The bse panic broke out in france in october when it was revealed that potentially

contaminated meat from a herd in which one bse case had been identified had been

put on sale in supermarkets

France’s agriculture ministry announced four new cases of bse in cattle last friday

bringing this year’s total to over 120 cases more than four times the figure for 1999

Cases have also been reported in britain ireland and belgium and most recently in

germany

European union ministers reacting to europe wide concerns last week announced a

six month ban on the use of meat and bone meal in all animal fodder

HUMAN SUMMARY based on Manual transcripts

CNN20001211.1400.1485.summaryH.txt

Score: 3.80

some french butchers are giving away meat in an attempt to regain public confi-

dence in their products.

a bevy of butchers ferry steaming platters of barbecued beef to crowds in a central

paris park. it’s sane cow day in paris, according to the 200 butchers who organized

the free cookout.

they’re hoping locals will cast aside mounting fears in france over bse, the deadly

brain wasting disease in cattle, and its human equivalent, variant creutzfeldt jakob

disease.

france’s agriculture ministry announced four new cases of bse in cattle last friday,

bringing this year’s total to over 120 cases, more than four times the figure for 1999.



Bibliography

[Allan et al., 1998] Allan, J., Carbonell, J., Doddington, G., Yamron, J., and Yang,

Y. (1998). Topic detection and tracking pilot study: Final report. In Proceedings of

the Broadcast News Understanding and Transcription Workshop, pages 194–218.

[Baluja et al., 2000] Baluja, S., Mittal, V. O., and Sukthankar, R. (2000). Applying

machine learning for high-performance named-entity extraction. Computational

Intelligence, 16(4):586–596.

[Banerjee and Rudnicky, 2006] Banerjee, S. and Rudnicky, A. I. (2006). Smartnotes:

Implicit labeling of meeting data through user note-taking and browsing. In Pro-

ceedings of the Human Language Technology Conference of the NAACL, Compan-

ion Volume: Demonstrations, pages 261–264, New York City, USA. Association for

Computational Linguistics.

[Barzilay et al., 2000] Barzilay, R., Collins, M., Hirschberg, J., and Whittaker, S.

(2000). The rules behind roles: Identifying speaker role in radio broadcasts. In

Proc. the American Association for Artificial Intelligence conference (AAAI).

152



BIBLIOGRAPHY 153

[Barzilay and Elhadad, 1997] Barzilay, R. and Elhadad, M. (1997). Using lexical

chains for text summarization. In Proceedings of the Intelligent Scalable Text Sum-

marization Workshop (ISTS’97), Madrid, Spain.

[Boersma, 2001] Boersma, P. (2001). Praat, a system for doing phonetics by com-

puter. Glot International.

[Bolinger, 1982] Bolinger, D. (1982). The network tone of voice. Journal of Broad-

casting, 26:725–728.

[Brown et al., 1993] Brown, P., Della Pietra, S., Della Pietra, V., and Mercer, R.

(1993). The mathematics of statistical machine translation: Parameter estimation.

Computational Linguistics, 19(2):263–311.

[Carbonell and Goldstein, 1998] Carbonell, J. and Goldstein, J. (1998). The use

of mmr, diversity-based reranking for reordering documents and producing sum-

maries. In Proceedings of the 21st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, Melbourne, Australia.

[Christensen et al., 2004] Christensen, H., Kolluru, B., Gotoh, Y., and S., R. (2004).

From text summarisation to style-specific summarisation for broadcast news. In

Proceedings of ECIR.

[Culotta et al., 2004] Culotta, A., Bekkerman, R., and McCallum, A. (2004). Ex-

tracting social networks and contact information from email and the web.



BIBLIOGRAPHY 154

[Dakka and Cucerzan, 2008] Dakka, W. and Cucerzan, S. (2008). Augmenting

wikipedia with named entity tags. In The Third International Joint Conference on

Natural Language Processing (IJCNLP).

[Eisner, 2002] Eisner, J. (2002). Parameter estimation for probabilistic finite-state

transducers. In Proceedings of the 40th Meeting of the Association for Computa-

tional Linguistics.

[Galley et al., 2004] Galley, M., McKeown, K., Hirschberg, J., and Shriberg, E.

(2004). Identifying agreement and disagreement in conversational speech: Use

of bayesian networks to model pragmatic dependencies. In Proceedings of the 42nd

Meeting of the Association for Computational Linguistics (ACL–04), pages 669–

676, Barcelona, Spain.

[Galley et al., 2003] Galley, M., McKeown, K. R., Fosler-Lussier, E., and Jing, H.

(2003). Discourse segmentation of multi-party conversation. In Hinrichs, E. and

Roth, D., editors, Proceedings of the 41st Annual Meeting of the Association for

Computational Linguistics (ACL–03), pages 562–569, Sapporo, Japan.

[He et al., 1999] He, L., Sanocki, E., Gupta, A., and Grudin, J. (1999). Auto-

summarization of audio-video presentations. In ACM Multimedia (1), pages 489–

498.

[Heckerman, 1995] Heckerman, D. (1995). A tutorial on learning with bayesian net-

works. Technical Report MSR-TR-95-06, Microsoft Research, Redmond, WA.



BIBLIOGRAPHY 155

[Heeman et al., 1996] Heeman, P., ho Loken-Kim, K., and Allen, J. F. (1996). Com-

bining the detection and correction of speech repairs. In Proceedings of ICSLP,

pages 363–365.

[Hirschberg, 2002] Hirschberg, J. (2002). Communication and prosody: functional

aspects of prosody. Speech Commun., 36(1-2):31–43.

[Hirschberg and Nakatani, 1996] Hirschberg, J. and Nakatani, C. (1996). A prosodic

analysis of discourse segments in direction-given monologues. In Proceedings of the

34th Annual Meeting of the Association for Computational Linguistics (ACL–96),

pages 286–293, Santa Cruz, California.

[Hirschberg and Nakatani, 1998] Hirschberg, J. and Nakatani, C. (1998). Acoustic

indicators of topic segmentation. In Proc. of ICSLP.

[Honal and Schultz, 2003] Honal, M. and Schultz, T. (2003). Correction of disfluen-

cies in spontaneous speech using a noisy channel approach. In Eurospeech 2003.

[Honal and Schultz, 2005] Honal, M. and Schultz, T. (2005). Automatic disfluency

removal on recognized spontaneous speech rapid adaptation to speaker dependent

disfluencies. In ICASSP 2005.

[Hori, 2002] Hori, C. (2002). A Study on Statistical Methods for Automatic Speech

Summarization. PhD thesis, Tokyo Institute of Technology.

[Hori et al., 2002] Hori, C., Furui, S., Malkin, R., Yu, H., and Waibel, A. (2002).

Automatic summarization of english broadcast news speech. In Proc. of the Human

Technology Conference (HLT–02), San Diego.



BIBLIOGRAPHY 156

[Hori et al., 2003] Hori, T., Hori, C., and Minami, Y. (2003). Speech summarization

using weighted finite-state transducers. In Proceedings of Eurospeech, pages 2817–

2820.

[Hovy and Lin, 1997] Hovy, E. and Lin, C. (1997). Automated text summarization

in SUMMARIST. In Proceedings of the ACL’97/EACL’97 Workshop on Intelligent

Scalable Text Summarization, pages 18–24, Madrid, Spain.

[Inoue et al., 2004] Inoue, A., Mikami, T., and Yamashita, Y. (2004). Improvement

of speech summarization using prosodic information. In Proc. of Speech Prosody.

[Johnson and Charniak, 2004] Johnson, M. and Charniak, E. (2004). A tag-based

noisy channel model of speech repairs. In Proc. of the 42nd Annual Meeting of the

Association for Computational Linguistics (ACL-04).

[Johnson et al., 2004] Johnson, M., Charniak, E., and Lease, M. (2004). An improved

model for recognizing disfluencies in conversational speech. In RT04.

[Kim et al., 2004] Kim, J., Schwarm, S. E., and Ostendorf, M. (2004). Detecting

structural metadata with decision trees and transformation-based learning. In

Proceedings of HLT/NAACL.

[Koumpis and Renals, 2000] Koumpis, K. and Renals, S. (2000). Transcription and

summarization of voicemail speech. In Proc. of the International Conference on

Spoken Language Processing (ICSLP), Beijing.



BIBLIOGRAPHY 157

[Kupiec et al., 1995] Kupiec, J., Pedersoen, J., and Chen, F. (1995). A trainable

document summarizer. In Proceedings of the 18th ACM-SIGIR Conference, pages

68–73.

[LDC, 2002] LDC (2002). Topic detection and tracking corpus, tdt2.

[LDC, 2006] LDC (2006). Language data consortium.

[Lin, 2004] Lin, C.-Y. (2004). ROUGE: a package for automatic evaluation of sum-

maries. In Proc. of workshop on text summarization, ACL-04.

[Liu, 2006] Liu, Y. (2006). Initial study on automatic identification of speaker role

in broadcast news speech. In Proceedings of the Human Language Technology Con-

ference of the NAACL, Companion Volume: Short Papers, pages 81–84, New York

City, USA. Association for Computational Linguistics.

[Liu et al., 2003] Liu, Y., Shriberg, E., and Stolcke, A. (2003). Automatic disflu-

ency identification in conversational speech using multiple knowledge sources. In

EuroSpeech 2003.

[Liu et al., 2006] Liu, Y., Shriberg, E., Stolcke, A., Hillard, D., Ostendorf, M., and

Harper, M. (2006). Enriching speech recognition with automatic detection of sen-

tence boundaries and disfluencies. IEEE Transactions on Audio, Speech, and Lan-

guage Processing, 14(5):1526–1540.

[Marcu, 1997a] Marcu, D. (1997a). From discourse structures to text summaries. In

Proceedings of the ACL’97/EACL’97 Workshop on Intelligent Scalable Text Sum-

marization, pages 82–88, Madrid, Spain.



BIBLIOGRAPHY 158

[Marcu, 1997b] Marcu, D. (1997b). From discourse structures to text summaries. In

Proceedings of the ACL’97/EACL’97 Workshop on Intelligent Scalable Text Sum-

marization, pages 82–88, Madrid, Spain.

[Marton and Radul, 2006] Marton, G. and Radul, A. (2006). Nuggeteer: Automatic

nugget-based evaluation using descriptions and judgements. In Proceedings of

NAACL/HLT.

[Maskey and Hirschberg, 2003] Maskey, S. and Hirschberg, J. (2003). Automatic

summarization of broadcastnews using structural features. In In Proceedings of

Eurospeech 2003.

[Maskey and Hirschberg, 2005] Maskey, S. and Hirschberg, J. (2005). Comparing lex-

ial, acoustic/prosodic, discourse and structural features for speech summarization.

In Proc. of Eurospeech.

[Maskey and Hirschberg, 2006a] Maskey, S. R. and Hirschberg, J. (2006a). Soundbite

detection in broadcast news domain. In Proceedings of Interspeech.

[Maskey and Hirschberg, 2006b] Maskey, S. R. and Hirschberg, J. (2006b). Summa-

rizing speech without text using hidden markov models. In Proceedings of HLT-

NAACL.

[Maskey et al., 2006] Maskey, S. R., Zhou, B., and Gao, Y. (2006). A phrase-level

machine translation approach for disfluency detection using weighted finite state

transducers. In Proceedings of Interspeech.



BIBLIOGRAPHY 159

[Matsuo et al., 1999] Matsuo, Y., Mori, J., Hamasaki, M., H.Takeda, NIshimura, T.,

Hasida, K., and Ishizuka, M. (1999). Polyophonet: An advanced social network

extraction system. In Proc of WWW Conference.

[McCallum, 2002] McCallum, A. (2002). MALLET: A machine learning for language

toolkit. http://mallet.cs.umass.edu.

[McKeown et al., 2003] McKeown, K., Barzilay, R., John Chen, D. E., Evans, D.,

Klavans, J., Nenkova, A., Schiffman, B., and Sigelman, S. (2003). Columbia’s

newsblaster: New features and future directions (demo). In Proceedings of NAACL-

HLT.

[McKeown et al., 2001] McKeown, K. R., Barzilay, R., Evans, D. K., Hatzivas-

siloglou, V., Kan, M.-Y., Schiffman, B., and Teufel, S. (2001). Columbia multi-

document summarization: Approach and evaluation. In Proceedings of the Docu-

ment Understanding Workshop (DUC 2001), New Orleans, USA.

[Mikheev et al., 1999] Mikheev, A., Moens, M., and Grover, C. (1999). Named entity

recognition without gazetteers. In A. Mikheev, M. Moens, and C. Grover. 1999.

Named Entity recognition without gazetteers. In Proc. of EACL, Bergen, Norway.

EACL.

[Miller et al., 1999] Miller, D., Schwartz, R., Weischedel, R., and Stone, R. (1999).

Name entity extraction from broadcast news. In Proceedings of DARPA Broadcast

News Workshop.



BIBLIOGRAPHY 160

[Miller et al., 1990] Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and Miller,

K. (1990). Introduction to WordNet: An on-line lexical database. International

Journal of Lexicography (special issue), 3(4):235–245.

[Murray et al., 2005] Murray, G., Renals, S., and Carletta, J. (2005). Extractive

summarization of meeting recordings. In Proc. of Eurospeech.

[Nakatani and Hirschberg, 1994] Nakatani, C. and Hirschberg, J. (1994). A corpus

based study of repair cures on spontaneous speech. In Journal of the Acoustical

Society of America, pages 1603 – 1616.

[Navarro, 2001] Navarro, G. (2001). A guided tour to approximate string matching.

ACM Computing Surveys, 33(1):31–88.

[Prince, 1992] Prince, E. (1992). The zpg letter: subjects, definiteness, and

information-status.

[Radev et al., 2004] Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Celebi,

A., Drabek, E., Lam, W., Liu, D., Otterbacher, J., Qi, H., Saggion, H., Teufel,

S., Topper, M., Winkel, A., and Zhang, Z. (2004). MEAD - A platform for multi-

document multilingual text summarization. In Proceedings of the 4th International

Conference on Language Resources and Evaluation (LREC 2004), Lisbon, Portu-

gal, May 2004.

[Radev et al., 2000] Radev, D., Jing, H., and Budzikowska, M. (2000). Centroid-

based summarization of multiple documents: sentence extraction, utility-based



BIBLIOGRAPHY 161

evaluation, and user studies. In Proceedings of the ANLP/NAACL 2000 Workshop

on Automatic Summarization.

[Radev and McKeown, 1998] Radev, D. and McKeown, K. R. (1998). Generating

natural language summaries from multiple on-line sources. Computational Lin-

guistics, 24(3).

[Ratnaparkhi, 1996] Ratnaparkhi, A. (1996). A maximum entropy part-of-speech

tagger. In Proc. of EMNLP.

[Robertston and Jones, 1976] Robertston, S. and Jones, K. S. (1976). Relevance

weighting of search terms. pages 129–146.

[Rosenberg and Hirschberg, 2006] Rosenberg, A. and Hirschberg, J. (2006). Story

segmentation of broadcast news in english, mandarin and arabic. In Proceedings of

Interspeech.

[Rosenberg and Hirschberg, 2007] Rosenberg, A. and Hirschberg, J. (2007). V-

measure: A conditional entropy-based external cluster evaluation measure.

[Salzberg, 1994] Salzberg, S. L. (1994). Book review: C4.5: Programs for Machine

Learning by J. ross quinlan. morgan kaufmann publishers, inc., 1993. Machine

Learning, 16(3):235–240.

[Santen, 1992] Santen, J. P. H. (1992). Contextual effects on vowel duration. Speech

Commun., 11(6):513–546.

[Schiffman et al., 2002] Schiffman, B., Nenkova, A., and McKeown, K. (2002). Ex-

periments in multi-document summarization. In In HLT 2002.



BIBLIOGRAPHY 162

[Shriberg et al., 1997] Shriberg, E., Stolcke, A., and Bates, R. (1997). A prosody

only decision tree model for disfluency detection. In Proceedings of Eurospeech.

[Shriberg et al., 2000] Shriberg, E., Stolcke, A., Tur, D., and Tur, G. (2000). Prosody-

based automatic segmentation of speech into sentences and topics. In Speech Com-

munication, Vol. 32, pages 127–154.

[Snover et al., 2004a] Snover, M., Dorr, B., and Schwartz, R. (2004a). A lexically-

driven algorithm for disfluency detection. In Short Paper Proceedings of North

American Association for Computational Linguistics (NAACL) and Human Lan-

guage Technology (HLT) Conference.

[Snover et al., 2004b] Snover, M., Dorr, B., and Schwartz, R. (2004b). A lexically

driven algorithm for disfluency detection. In Short Paper Proceedings of HLT-

NAACL 2004.

[Spiker et al., 2000] Spiker, J., Klarner, M., and Gorz, G. (2000). Processing self

corrections in a speech to speech system. In Proceedings of 18th Conference in

Computational Linguistics.

[Stolcke and Shriberg, 1996] Stolcke, A. and Shriberg, E. (1996). Statistical language

modeling for speech disfluencies. In Proc. IEEE Intl. Conf. on Acoustics, Speech

and Signal Processing, vol. 1, pages 405–409.

[Stolcke et al., 1998] Stolcke, A., Shriberg, E., Bates, R., Ostendorf, M., Hakkani,

D., Plauche, M., Tur, G., and Lu, Y. (1998). Automatic detection of sentence



BIBLIOGRAPHY 163

boundaries and disfluencies based on recognized words. In Proceedings of ICSLP,

pages 2247–2250.

[Strohman et al., 2005] Strohman, T., Metzler, D., Turtle, H., and Croft, W. B.

(2005). Indri: A language-model based search engine for complex queries extended

version.

[Suchanek et al., 2007] Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago:

A Core of Semantic Knowledge. In 16th international World Wide Web conference

(WWW 2007), New York, NY, USA. ACM Press.

[Tweed et al., 2005] Tweed, D., Fisher, R., Bins, J., and List, T. (2005). Efficient

hidden semi-markov model inference for structured video sequences. In ICCCN ’05:

Proceedings of the 14th International Conference on Computer Communications

and Networks, pages 247–254, Washington, DC, USA. IEEE Computer Society.

[Witbrock and Mittal, 1999] Witbrock, M. and Mittal, V. (1999). Ultra-

summarization: A statistical approach to generating highly condensed non-

extractive summaries. In Proceedings of the 22nd International Conference on

Research and Development in Information Retrieval (SIGIR–99), Poster Session,

pages 315–316, Berkeley, CA.

[Witten and Frank, 2000] Witten, I. H. and Frank, E. (2000). Data Mining: prac-

tical machine learning tools and techniques with java implementations. Morgan

Kaufmann.



BIBLIOGRAPHY 164

[Xu and Croft, 1996] Xu, J. and Croft, W. B. (1996). Query expansion using local

and global document analysis. In SIGIR ’96: Proceedings of the 19th annual in-

ternational ACM SIGIR conference on Research and development in information

retrieval, pages 4–11, New York, NY, USA. ACM.

[Zechner and Waibel, 2000] Zechner, K. and Waibel, A. (2000). Diasumm: Flexible

summarization of spontaneous dialogues in unrestricted domains. In Proceedings

of COLING-2000, Saarbruecken, Germany, pages 968–974.

[Zheng et al., 2007] Zheng, J., Cetin, O., Hwang, M.-Y., Lei, X., Stolcke, A., and

Morgan, N. (2007). Combining discriminative feature, transform, and model train-

ing for large vocabulary speech recognition. In Acoustics, Speech and Signal Pro-

cessing, 2007. ICASSP 2007. IEEE International Conference on Speech and Signal

Processing.

[Zhou et al., 2005] Zhou, B., Chan, S., and Gao, Y. (2005). Constrained phrases-

based translation using weighted finite state transducer. In ICASSP 2005.

[Zhou and Gao, 2006] Zhou, B. and Gao, Y. (2006). Fast phrase-based statistical

translation using fst’s. In ACL.


