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Abstract
Sparse representations (SRs) are often used to characterize

a test signal using few support training examples, and allow the
number of supports to be adapted to the specific signal being
categorized. Given the good performance of SRs compared to
other classifiers for both image classification and phonetic clas-
sification, in this paper, we extended the use of SRs for text
classification, a method which has thus far not been explored
for this domain. Specifically, we demonstrate how sparse repre-
sentations can be used for text classification and how their per-
formance varies with the vocabulary size of the documents. In
addition, we also show that this method offers promising results
over the Naive Bayes (NB) classifier, a standard baseline classi-
fier used for text categorization, thus introducing an alternative
class of methods for text categorization.

1. Introduction
Text classification, with a spectrum of applications in Natural
Language Processing, ranging from document categorization to
information retrieval, is the problem of classifying text docu-
ments into topics or pre-defined sets of classes. There has been a
tremendous amount of work done on text categorization, includ-
ing techniques based on decision trees, neural networks, near-
est neighbor methods, Rocchios method, support vector ma-
chines, linear least squares, naive Bayes, rule-based methods
and more. Some of these methods are unsupervised (no labeled
documents) [5] while most of the methods assume a set of doc-
ument or topic labels [1], [4], [7].

In [7], McCallum and Nigam showed that even a simple su-
pervised classifier can produce decent classification accuracy.
They showed that text could be categorized by assuming condi-
tional independence between words given the labels and build-
ing a Naive Bayes (NB) Classifier. The test document can be
classified simply by computing the likelihood of the class label
given the words in the document based on Bayes theorem. Al-
though such a trivial method produced promising results, text
categorization was further improved by [4], which presented
an SVM based classifier to categorize documents. Joachims
showed that using a more sophisticated algorithm via SVMs can
classify documents better than Naive Bayes.

Besides the improvement in the types of classifiers there has
been significant work in feature selection for text categorization.
Some of these feature selection methods are based on informa-
tion gain, odd ratio, F-measure and Chi-Square testing (i.e., [1],
[3], [10]). Although the type of feature selection algorithm may
vary all the authors [1], [3], [10] agree that feature selection is
crucial and improves the performance of text categorizer.

We observe from the aforementioned work that the type of

statistical algorithm to model the data and the type of feature
selection algorithm used, both play important roles in the per-
formance of text categorizer. However, since the goal of this
work is to introduce a novel technique using SRs for text clas-
sification, we do not focus on any feature selection techniques
but instead use the identity of the word for features. Thus in this
paper, we propose a popular technique from signal processing,
namely sparse representations (SRs), for text classification. Our
motivation for using SRs for classification is twofold. First, SRs
have been successfully applied to face recognition [9] and pho-
netic classification [8], where they have been shown to offer
improvements over other well-known classification schemes,
including GMMs, SVMs and kNNs. Second, SRs adaptively
select the relevant support data points from the training data,
allowing us to classify the text document using a few relevant
examples from the training document set. To the best of our
knowledge, no work on using sparse representation methods,
such Approximate Bayesian Compressive Sensing, Elastic Nets
or Lasso, have been published in the literature (i.e. [4], [7]).
This is the first piece of work that explores the use of these SRs
for text classification.

Let us formally describe our SR classifier for text classi-
fication. Mathematically speaking, in a typical SR formula-
tion, a dictionaryH is constructed using individual examples of
training documents, that is H = [h1;h2 . . . ;hn], where each
hi ∈ Rem is a feature vector for a specific training document.
H is an over-complete dictionary such that the number of ex-
amples n is much greater than the dimension of each hi (i.e.
m << N ). To reconstruct a signal y from H , SR solves the
equation y = Hβ. A sparseness condition is enforced on β,
such that it selects a small number of examples from H to de-
scribe y. A classification decision can be made by looking at
the values of β coefficients for each training document in H .

This paper makes the following contributions towards ex-
ploring SRs for text classification. First, we explore seeding the
dictionary H using all training documents. This is in contrast
to [8], where only a subset of training examples was selected to
seed H . We will demonstrate that using all training documents
not only makes the size of H much larger, but also enforces
a stronger need for sparseness on β. Our second contribution
compares three different frameworks of using the SR solution
of β to generate an actual classification decision. Third, we ex-
plore the sensitivity of the SR method to the vocabulary size
of the training documents, which we denote by m. Since SR
methods assume that H is an over-complete dictionary where
m ¡¡ N, we investigate how the accuracy of the SR technique
changes with varied vocabulary size. All experiments are con-
ducted on the 20 Newsgroup Corpus [7]. We will show that our
SR method offers promising results over the NB classifier, thus



introducing an alternative class of methods that work as well as
the standard NB approach often used for text categorization.

The rest of this paper is as follows. Section 2 describes the
theory behind SRs for classification and how it can be adapted
for text classification. Section 3 presents the implementation
of the traditional Naive Bayes classifier which serves as our
baseline. Section 4 describes our experiments while Section
5 provides an analysis when using sparse representations. In
particular, we address the variations in performance for differ-
ent vocabulary sizes and the sparsity structure learned. Finally,
Section 6 summarizes this work where we show that sparse rep-
resentation based techniques are very promising for text classi-
fication and presents directions for future research.

2. Classification via Sparse Representations
In this section we discus how sparse representations can be used
for classification.

2.1. Classification Based on Sparse Representations

The goal of classification is to use training data from k differ-
ent classes to determine the best class to assign to a test doc-
ument vector y. First, let us consider taking all training ex-
amples ni from class i and concatenating them into a matrix
Hi as columns, in other words Hi = [xi,1, xi,2, . . . , xi,ni ] ∈
<m×ni , where x ∈ <m represents the feature vector of a doc-
ument from the training set belonging to class i with dimension
m. For example we can think of each x as as term-frequency
feature, where the dimension m corresponds to the size of the
vocabulary. Given sufficient training examples from class i, [9]
shows that a test sample y from the same class can be repre-
sented as a linear combination of the entries in Hi weighted by
β, that is:

y = βi,1xi,1 + βi,2xi,2 + . . .+ βi,nixi,ni (1)

However, since the class membership of y is un-
known, we define a matrix H to include training examples
from all k classes in the training set, in other words the
columns of H are defined as H = [H1, H2, . . . , Hk] =
[x1,1, x1,2, . . . , x1,n1 , . . . xk,1, xk,2 . . . xk,nk ] ∈ <m×N

where nk is the total number of feature vectors in class k. Here
m is the dimension of each feature vector x and N is the total
number of all training examples from all classes. H can be
thought of as an over-complete dictionary where m << N .
We can then write a test document y as a linear combination
of all training examples, in other words y = Hβ. Ideally
the optimal β should be sparse, and only be non-zero for the
elements in H will belong to the same class as y. Thus ideally
y will assign itself to lie in the linear span of examples from
the training set of the true class it belongs to.

In this work, we solve the problem y = Hβ subject to
a sparseness constraint on β. As [9] discusses, the sparseness
constraint on β acts as a regularization term to prevent overfit-
ting and reduce sensitivity to outliers, and often allows for better
classification performance than without sparseness. This is par-
ticularly important whenm << N , which we will demonstrate
in Section 5.1. Various sparse representation methods can be
used to solve the above problem. In this paper, we solve for β
using the Approximate Bayesian Compressive Sensing (ABCS)
method [8], which imposes a combination of an l1 and l2 norm
on β.

2.2. Classification Rule

Now that we have described our method to solve for β, we now
discuss how to assign y as belonging to a specific class. We
explore various classification rules, which we highlight below.

2.2.1. Maximum Support

Ideally, all nonzero entries of β should correspond to the entries
in H with the same class as y. In this ideal case, y will assign
itself to one training example from H , and we can assign y to
the class which has the largest support in β.

i∗ = max
i

(β) (2)

2.2.2. Maximum l2 Support

However, due to noise and modeling error, β belonging to other
classes could potentially be non-zero. Therefore, we compute
the l2 norm for all β entries within a specific class, and choose
the class with the largest l2 norm support. More specifically, let
us define a selector δi(β) ∈ <N as a vector whose entries are
non-zero except for entries in β corresponding to class i. We
then compute the l2 norm for β for class i as ‖ δi(β) ‖2. The
best class for y will be the class in β with the largest l2 norm.
Mathematically, the best class i∗ is defined as

i∗ = max
i
‖ δi(β) ‖2 (3)

2.2.3. Residual Error

As [9] discusses, a classification decision can also be formu-
lated by measuring how well y assigns itself to different classes
in H . This can be thought of as looking at the residual error be-
tween y and theHβ entries corresponding to a specific class [9].
Let us define a selector δi(β) ∈ <N as a vector whose entries
are non-zero except for entries in β corresponding to class i. We
then compute the residual error for class i as ‖ y −Hδi(β) ‖2.
The best class for y will be the class with the smallest residual
error. Mathematically, the best class i∗ is defined as

i∗ = min
i
‖ y −Hδi(β) ‖2 (4)

3. Naive Bayes
In contrast to the exemplar-based sparse representation method
for classification, in this section we review the naive Bayes (NB)
method for classification.

3.1. Formulation

Given a test document vector y, the a-posterior probability for
class Ci given y is defined as follows:

p(Ci|y) =
p(Ci)p(y|Ci)

p(y)
(5)

Within the NB framework, the best class is defined as the
one which maximizes the posterior probability. In other words

i∗ = max
i
p(Ci|y) (6)

Below we describe how the terms p(Ci) and p(y|Ci) are
estimated.



3.2. Probability Estimates

p(Ci) is the prior probability of classCi. This term is computed
on the training set by counting the number of occurrences of
each class. In other words ifN is the total number of documents
in training andNi is the number of documents from class i, then
P (Ci) =

Ni
N

.
To compute the term p(y|Ci), we assume that document y

is comprised of the following words y = {w1, w2, . . . , wn},
where n is the number of words. A “naive” conditional
independence assumption is made on the term p(y|Ci) =
p(w1, . . . , wn|Ci) and it is expressed as

p(w1, . . . wn|Ci) =

n∏
j=1

P (wj |Ci) (7)

Each term P (wj |Ci) is computed by counting the number
of times word wj appears in the training documents from class
Ci. In order to avoid non-zero probabilities if word wj is not
found in class Ci, we perform add-one smoothing. Thus if we
define Nij as the number of times word wj is found in class
Ci, we define P (wj |Ci) as follows, where m is the size of the
vocabulary.

P (wj |Ci) =
Nij + 1∑
iNij +m

(8)

We can see from the above equations that instead of making
a classification decision on a test document using information
about individual examples in training, the NB method pools all
information about training data to estimate probability models
for P (Ci) and P (wj |Ci).

Given a test document y, we weight each probability
P (wj |Ci) by the term-frequency (TF) occurrence of word wj

in this test document.

4. Experiments and Discussion
We performed our experiments on text categorization using 20
Newsgroup corpus [7], which has been widely used for evalu-
ating text categorization algorithms. The corpus consists of ap-
proximately 18,000 newsgroup documents that are divided into
20 different classes. 40% of the documents are separated as a
held-out test set (roughly 7, 532) while remaining 60% (rough
11,314) are used for training the models. These text documents
are quite noisy with headers containing email addresses and the
text body containing links, addresses.

Various kinds of features have been explored for text cate-
gorization ([10], [3], [1]) with Term Frequency (TF) being one
of them. TF feature can provide important information about
the word distribution relevant for the class label of the docu-
ment. For example, documents that are labeled as ’Hockey’ will
contain words such as ’hockey’ and ’puck’ in higher frequency
than words that are related to other sports. Here TF is defined
by Equation 9 where nd

i is the number of times the ith term oc-
curred in document d, and D is the total number of documents.

TFi =

D∑
d=1

nd
i (9)

Typically TF features are often weighted by Inverse Docu-
ment Frequency (IDF) features, which provide even better dis-
criminating properties among different classes of documents.
However, [6] shows that for the 20 Newsgroup Corpus the
TF.IDF is not necessarily better or worse than TF. Thus, after

extracting only TF features for all the words in a document, we
represent each document with a TF vector of length |m| that
is equal to the vocabulary size of the whole corpus, which is
55, 710.

Since our SR method requires that the number of docu-
ments in H (11,314), be less than the dimension of each TF
feature vector (i.e. |V |), we explore pruning the vocabulary
size of TF vectors. This pruning is accomplished by removing
words from the vocabulary if the total number of occurrences in
training is less than a certain frequency threshold. We analyze
the NB and SR classifiers varying the vocabulary size of the TF
vectors from 1,000 to 10,000 in increments of 1,000.

5. Results
5.1. Sparsity Analysis

We first explore the behavior of the the β coefficients obtained
by solving y = Hβ using ABCS [8]. Figure 1 shows the β co-
efficients for a randomly sampled test document y. The 1, 400
β coefficients, corresponding to 1, 400 training document inH ,
were obtained by picking every 8th β coefficient from the full
set of 11, 314. The figure illustrates that the β entries are quite
sparse, suggesting that the SR technique is using only a few
samples in H are used to characterize y. For example, roughly
only 1% of the absolute value of the β coefficients are 0.035.
As [9] discusses, this sparsity can be thought of as a form of
discrimination, as certain documents are selected as “good” in
H while jointly assigning zero weights “bad” documents in H .

Figure 1: Plot of β Coefficients for 1,400 Training Documents

We can further analyze the effect of sparseness by looking
at the classification accuracy when we enforce a sparseness on
β versus no sparseness. Table 1 compares the results for the
two approaches for a vocabulary size of 6, 215. Note that we
use the classification metric defined by Equation 3. The table
illustrates that enforcing sparseness, and thus utilizing only a
small fraction of examples, provides a small improvement in
accuracy.

Method Accuracy
No Sparseness Constraint 78.6

Sparseness Constraint 78.8

Table 1: Classification Accuracy with and Without Sparseness
Constraint on β

5.2. Classification Metrics

Second, we explore the accuracy with different sparse represen-
tation classification metrics. Table 2 lists these accuracies for a
vocabulary size of 6, 215, and also shows the NB accuracy as a
comparison. First, notice that using the Maximum Support as a
metric is too hard of a decision, as β from other classes is often
non-zero. Therefore, making a softer decision by using the l2
norm of β offers higher accuracy. In addition, notice that using
the residual error offers the lowest accuracy. Because the fea-
tures are so sparse, the residual value of ‖ y−Hδi(β) ‖2 when
δi(β) ≈ 0 will reduce to ‖ y ‖2 which is a very small number
and might not offer good distinguishability from class residuals
in which δi(β) is high. Thus, in the rest of the experiments we
use the l2 norm of β to make classification decisions.



Classification Decision Accuracy
NB 77.9

Maximum Support 77.2
Maximum l2 Support 78.8

Minimum Residual Error 55.5

Table 2: Classification Accuracy for Different Sparse Represen-
tation Decisions

5.3. Classification Across Varied Vocabulary Size

Finally, we explore the behavior of the sparse representation
and NB methods as the vocabulary size is varied from 1,000
to 10,000. Figure 2 shows the accuracies of the two classifiers
for varied vocabulary size. We observe that the accuracy of both
classifiers increases as the the vocabulary size increases, similar
to the results reported in [7]. The larger vocabulary size allow
more features to be used in discriminating the documents across
different classes. Between a vocabulary size of 1,000 and 8,000,
the sparse representation method offers between a 0.3 − 0.8%
absolute improvement compared to NB, and a McNemar’s sig-
nificance test [2] also confirms that this difference is statistically
significant.

When the vocabulary size increases beyond 8,000, the ac-
curacy of the SR method drops and approaches that of the NB
method. This can be attributed to the behavior of the SR tech-
nique, which requires that N , the number of training docu-
ments, is much less than m, the vocabulary size. As m ap-
proaches N , the SR method has less degrees of freedom to
choose β, as there are more systems of equations to solve when
computing y = Hβ. Thus, sparsity becomes less beneficial and
the SR accuracy approaches that of a non-sparse solution, which
we saw from Table 1 was slightly lower than the SR accuracy
when sparsity can be applied.

We did not compare the accuracy of the SR and NB meth-
ods above 10,000 since this would make the SR ineffective since
m > N . However, we should note that [7] observed that the ac-
curacy does not improve significantly when the vocabulary size
is greater than 10,000.

Figure 2: Classification Accuracies for Varied Vocabulary Size

6. Conclusions and Future Work
We presented a technique to perform text classification using
sparse representations. SRs have mostly been used in signal
processing research and we believe we have presented a step
towards using SRs in NLP research tasks such as text catego-
rization. The results show that our SR method offers slight im-
provements over a standard Naive Bayes (NB) classifier across
varying vocabulary sizes. Though our current SR method may
not perform better than state of the art text classification tech-
niques, we have shown with our preliminary results that we can
effectively use SRs for text categorization. In the future, we
would like to explore using SRs for text classification with bet-
ter feature selection techniques, and also compare our results to
SVMs, similar to as we did for phonetic classification in [8].
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