
CLASS-BASED NAMED ENTITY TRANSLATION IN A SPEECH TO SPEECH
TRANSLATION SYSTEM

Sameer R. Maskey, Martin Čmejrek, Bowen Zhou, Yuqing Gao

smaskey@us.ibm.com, cmejrek@us.ibm.com
IBM T.J. Watson Research Center, Yorktown Heights, New York

ABSTRACT

Named Entity (NE) Translation is a challenging problem
in Machine Translation (MT). Most of the training bi-text
corpora for MT lack enough samples of NEs to cover the
wide variety of contexts NEs can appear in. In this paper,
we present a technique to translate NEs based on their NE
types in addition to a phrase-based translation model. Our NE
translation model is based on a syntax-based system similar
to [1]; but we produce syntax-based rules with non-terminals
as NE types instead of general non-terminals. Such class-
based rules allow us to better generalize the context NEs. We
show that our proposed method obtains a relative improve-
ment of 1.41% in BLEU score over the baseline of phrase-
based model in NE test set.

Index Terms— Named Entities, Machine Translation,
Class-based Models

1. INTRODUCTION

The current data-driven statistical methods of MT such as
IBM Models [2], phrase-based models [3], and syntax-based
system [1] all require significant amount of data. The prob-
ability estimates for the translation get more robust as the
counts of samples for each parameter increase. These pa-
rameters may model fertility, alignment, phrase segmentation,
and other features of MT engine. The problem arises when
there is not enough data to estimate the distribution of some
of the parameters, particularly when we are trying to trans-
late NEs. Let us describe a few problems that make the NE
translation task difficult.

First, there are not enough instances of NE in the training
data to cover the variety of contexts NE can appear in. A NE
such as “John” can appear in many different contexts such as
“I am John. John went home. She will call John. John and
I are friends.” MT model will have higher chances of error
if the NE appears in context that has not been seen in the
training data.

Second, it is never possible to cover all possible NEs that
would exist in any unseen data set, so the out-of-vocabulary
(OOV) rate is much higher for NEs than for any other class
of words. OOV words are problematic for speech-to-speech
translation system because ASR engine would not be able

to recognize the words and MT engine would not be able to
translate them. We have also seen in literature that OOVs am-
plify the word error rate by mis-recognizing the surrounding
words as well.

In this paper, we try to address the first of the problems
mentioned above, the problem of not having enough instances
of NE appearing in various contexts. We propose a method
based on classing of NEs that is similar to the class based lan-
guage model concept, but we apply it the translation frame-
work. We identify the NE types (PERSON or PLACE) and
use them to produce syntax based rules. The rules contain
non-terminals representing NE classes instead of undefined
non-terminals as in [1].

We describe our syntax based NE translation system in
Section 2. We then describe our two step process of automat-
ically producing a new set of rules for NEs in Section 3. We
present of results in Section 5 and conclusion in Section 6.

2. SYNXLATOR: AN ENGINE FOR NE
TRANSLATION

In order to be able to better translate NEs, we built a trans-
lation engine, synXlator, which can better take account of
contextual information of NEs. The synXlator is a hierarchi-
cal phrase-based machine translation model with a support
for multiple classes, and with a decoder extended from a for-
mally syntax-based SMT [4]. The extension that are made
on a formally syntax-based SMT decoder like [1] are as fol-
lows: We allow a general non-terminal to be rewritten with
recursive synchronous context-free grammar (SCFG). In ad-
dition, a number of class-specific non-terminals Y1, Y2, . . . Yn

are defined in the rules, with each representing one NE class.
Similar to non-terminal X in [1], there must be a one-to-one
mapping of Y in the source and target language part of the
rule. However, these non-terminals are only required to be
replaced once, i.e., no recursion is needed for them.

The extensions on decoder we described above allow us to
generalize the context of NEs better. Let us look at an exam-
ple of some rules that can be used in decoding of a sentence.
@NAME @NAME mdyr bw mdrsp bw ||@1 @2 is a school prin-
cipal || 0 0 0 0
@NAME @NAME mdrs bw fyzyAU bw || @1 @2 is a physics

teacher || 0 0 0 0
@NAME @NAME mdrs bw ||@1 @2 is a teacher || 0 0 0 0

In a standard phrase-based system like [3] the phrase pairs
would contain phrases like “John Smith is a school principal”
and a test sentence with a similar n-gram will get higher trans-
lation score. If “Benjamin Cole” appears instead of “John
Smith” it may get a lower translation score since the trans-
lation engine has never seen such phrase pair. But our rules
above generalize the context of “is a school principal” such
that any name can appear to replace the non-terminal @1 and
@2. The synXlator exploits this advantage by being able to
take account of such generalization in a standard syntax-based
decoding framework. We hope that our framework general-
izes this small set to a much larger number of other appropri-
ate NE entries that are suitable for the similar contexts. Fur-
thermore, we note that we only need a small number of classes
to represent different types of NE entries (e.g., PERSON and
PLACE). Next, in the following section, we describe our two
steps process to automatically produce these rules.

3. BUILDING NE CLASS-BASED TRANSLATION
RULES

3.1. Step One
In the first step we extract rules from an English-Arabic par-
allel corpus with human annotated NEs. This corpus was pro-
vided as a part of TransTac June 2008 Evaluation. We make
use of lists of NE pairs (Arabic name and its English transla-
tion/transliteration) for the following categories: MALE, FE-
MALE, PLACE, STREET, SURNAME, and TRIBE. From
each sentence pair we want to extract rules by replacing some
occurrences of NE pairs by appropriate non-terminals identi-
fying the original NE category. The number of possible rules
can be potentially huge, since a single NE pair may belong
to multiple categories, a NE can span one or more words, as
well as the number of replaced NE pairs in the sentence can
vary from one to all.

In order to produce these rules efficiently, we built an al-
gorithm, which we describe in Figure 1. Let Ck be a list
of NE translation pairs for category ck for k = 0, . . . ,K.
Each NE consists of 1 or more words. We start from an ini-
tial hypothesis 〈e, f , E, F, k = 0〉, where e = e1, . . . , em

and f = f1, . . . , fn are the English-Arabic sentence pair,
E : E ⊆ {1, . . . ,m} and F : F ⊆ {1, . . . , n} are sets storing
indices of English and Arabic words marked as proper names,
and finally, k is the maximum index of replaced category ck

for k = 1, . . . ,K. When extending a hypothesis, we try to re-
place one NE pair by appropriate non-terminal. In Step 5, we
only iterate categories that have higher index than h.k to ex-
clude repetitions. Similarly, the first two conditions in Step 6
prevent from replacing NE occurrences on positions that were
once skipped.

Since our training data is not perfect, incomplete transla-
tions are relatively frequent. To fix the most harmful errors,

1. initialize stack S
2. S.push(〈e, f , E, F, 0〉)
3. while not emty(S)
4. let h = S.pop()
5. for each k ∈ {h.k, . . . , K}
6. for each 〈i, i′, j, j′〉 such that

∀i∗, i′ < i∗ ≤ m⇒ h.ei∗ 6= @Ck

∀j∗, j′ < j∗ ≤ n⇒ h.fj∗ 6= @Ck

i ∈ h.E and j ∈ h.F
and 〈h.ei . . . h.ei′ , h.fj . . . h.fj′〉 ∈ Ck

7. let h′ = copy(h)
8. replace h′.ei . . . h.ei′ by @Ck

9. replace h′.fj . . . h.fj′ by @Ck

10. let h′.E = h.E \ i
11. let h′.F = h.F \ j
12. output rule(〈h′.e, h′.f〉)
13. S.push(h′)

Fig. 1. Algorithm generating NE translation rules

corpus name #pairs
1 standard training set 1,097,783
2 names long 33,208
3 names male 2,316
4 names places 1,408
5 names tribes 1,260
6 names female 1,153
7 names streets 664
8 names surnames 848
9 dev set 1,979

10 names test set 3,023

Table 1. Data sizes

we allow only such rules that have at least one terminal on
both sides. Some of the rules generated by these steps are
shown in Section 2. We can see from the rules that our non-
terminals @NAME can take any name, hence each context
NE appears in our training data has a growth factor of N where
N is total NEs of a given class in the training data. Essentially,
we allow any name in the given class to appear in the context
provided by each rule.

3.2. Step Two
We extracted rules in Step One from sentences that contain
NEs. In order to add more rules that will increase the con-
text of words NEs appear in, we want to extract rules from
phrase pairs as well. Obtaining rules from phrase pairs has
two problems though, first, we need to identify the phrases to
be used to extract the rules, and second, we need to know
which phrase pairs to trust. Unlike sentence pairs, phrase
pairs are generated with automatic phrase segmentation and
alignment, hence the data is noisy. We need to exclude phrase
pairs that may potentially generate rules with incorrect trans-
lations.

In order to identify phrase pairs from which we can gen-

C(i,j) C(i) - C(i,j) C(i)
C(j) - C(i,j) N - C(i) - C(j) + C(i,j) N - C(i)

C(j) N - C(j) N

Table 2. Contingency Table to test our Null Hypothesis

erate rules that will potentially improve the system, we start
with Step One rules. We remove all the stop words from the
Step One rules and rank the remaining words according to
its frequency. Then we score the sentences according to the
number of these relevant words occurring in the phrase pair.
We weight the scores according to the positions of the relevant
words in the frequency ranking. We combine this score with a
pattern matching scores where patterns such as “* name is *”
are used. If a sentence contains a matching pattern the score is
incremented by 1. These patterns were generated manually by
looking a the rules from Step One. The final combined score
based on frequency and patterns tells us if we should use the
given phrase pair to extract rules. Next we filter the phrase
pairs by removing phrase pairs that potentially may have in-
correct translations. We do such filtering using a procedure
similar to [5].

The idea behind [5] is that we can throw away many
phrase pairs that do not have sufficient statistics to back up
their pairing. That is if a phrase pair ei, fj occurs only a few
times but ei pairs with other phrase pairs many times such
that probability of ei, fj pairing together is no more than
chance we can throw them away. We take a similar concept
but instead of throwing away phrase pairs that are below the
commonly used significance level of 0.05 we use a much
higher significance level.

Our null hypothesis Ho is that the phrase pair ei, fj should
not be paired together. In order to test our hypothesis for each
phrase pair, we first build a contingency table that counts the
number of times phrase pairs occurred together and the num-
ber of sentences the individual phrases occur. Our contin-
gency table is shown in Table 2.

In the contingency table 2 the last column and the last
row are marginals while N is the grand total, i.e. the count
of all the phrase pairs. C(i, j) is the count of total pair of
sentences that had phrase ei in the source language sentence
and fj in the target language sentence. C(i)− C(i, j) tell us
the number of sentences that had ei in source language but
did not contain fj in the target language sentence. The above
table can be used to compute the statistical significance of the
relationship between them if the table entries represent a ran-
dom sample of distribution used in null hypothesis. We can
use any of significance testing methods such as Pearson’s Chi
Square test, G-test or Fisher’s test. Even though [5] argues
that Fisher’s test is better for random variables representing
counts in phrase pairs, in our experiment Pearson’s test per-
formed reasonably well. Hence, we perform a Pearson’s test
to compute the significance of the relationship between two
variables. The value of degree of freedom for our 2x2 contin-
gency table is 1.

We used a very strict significance level. We rejected the
null hypothesis if the significance level provided by the test
was below 0.0005. We kept all the phrase pairs for which we
rejected the null hypothesis and threw the rest. Hence, after
the significance testing we had phrase pairs for which the as-
sociation between the phrase pairs was very strong according
to their counts in the training data. Hence, the final set of se-
lected phrase pairs had a very high likelihood of containing
NEs, and had a very high probability of being correct transla-
tions.

We had a list of names and their translations from Step
One. We replaced the words in phrase pairs with non-
terminals if they were in our name list obtained from Step
One. We only replaced the names when the matching trans-
lated name also appeared in foreign phrase. After we replaced
the names with the non-terminals we had a final set of phrase
pairs that had non-terminals representing the type of NE it
can be replaced with. And we had a set of possible name
translations for each class. We use this set as a set of rules of
our syntax-based system.

We next describe our experiment with these rules and
compare its performance with a phrase-based translation
model.

4. EXPERIMENTS

We first built our baseline system and computed its perfor-
mance. Second, we added the NE-class-based rule system to
our baseline system and measured its performance. We tested
the performance on a name heavy set and a large general test
sets. These test sets are a subset of standard test sets provided
for TransTac.

Our baseline system is a phrase-based translation model
(PB) similar to [3] with a stack decoder. Our NE-class-based
model is a type of syntax-based model as described in Sec-
tion 2, with two different NE classes: NAME and PLACE.
We want our NE-class-based model to have a very high preci-
sion. If the NE model is not able to translate using the given
set of rules, it outputs an emty string. In such case, the com-
bination system will default to the translation proposed by the
baseline system.

For our baseline system, we trained Iraqi to English model
with a bi-text corpus with approximately 100K training sen-
tences. From this we had a held out test set and dev set for
tuning. We built a tri-gram language model for English and
trained a phrase-based model. We then tuned our model us-
ing the dev set. Then we tested the baseline model with one
reference of a name heavy test set, ArabicNames. The results
are shown in Table 3.

After we tested our baseline model, we tested the same
test set, ArabicNames, with synXlator using the rules gener-
ated in Step One and Two. The synXlator returns empty string
when the sentence cannot be translated using any of the rules.
For such sentences we use the baseline models output. Let
us define the set of sentences translated by the NE model as

Test Set PB PB PB PB
+Step1 +Step1 +Step1

+Step2 +Step2
+merge

TestSet BLEU
ArabicNames 0.4606 0.4659 0.4672 0.4630

Jan07Live 0.5526 0.5523 0.5523 0.5509
Jan07Offline 0.6839 0.6834 0.6824 0.6822

TransTacPhase2 0.3902 0.3900 0.3899 0.3897
TransTacPhase3 34 0.2842 0.2841 0.2834 0.2832

NE freq. range F1-measure on ArabicNames
1–5 0.5154 0.5229 0.5242 0.5134

6–20 0.8856 0.8921 0.8891 0.8838
21–100 0.8966 0.9037 0.9044 0.9032
>100 0.9462 0.9460 0.9464 0.9481

TOTAL 0.8683 0.8718 0.8709 0.8674

Table 3. Results for NE Translation Comparing to baseline
Phrase-Based (PB) model

set A and the ones that could not be translated as B. Sen-
tences of set B are translated by baseline model and final set
of translated sentences is obtained by combining sentences of
sets A and B. We then computed the BLEU [6] scores on this
set of translated sentences. We experimented with NE-based
models based on Step One only and both steps combined.

In order to make sure that our NE model is not harm-
ing the performance of the overall system, we also tested the
class-based model on other general test sets. We tested its per-
formance on the following test sets: Jan07Live, Jan07Offline,
TransTacPhase2Dev, TransTacPhase3 34. These test set are
subset of sentences provided in the standard sets from Darpa
for TransTac 2008 Evaluation.

5. RESULTS AND DISCUSSION

The results in Table 3 show that our class-based NE model
improves the baseline phrase-based approach by 1.41% of rel-
ative improvement in BLEU score, as well as by 0.26% ab-
solute gain in F1-measure for translated NEs (0.75% for the
least frequent ones). We also tested how much the NE-based
model degrades the overall performance on the other diverse
sets. Even though a slight degradation in overall performance
can be seen from Table 3, it is still less than 0.02% in all
test cases, and significantly less than the improvement on the
name set.

We also experimented with merging of PERSON and
PLACE class into one NAME class to see if we can gener-
alize better with merged classes. From the experiments we
see that in all of the test sets merging classes degraded the
performance. This shows that the information retained in
independent classes of PERSON and PLACE is useful for
overall NE translation. Also, this follows the intuition that
many personal names are not used as place names.

Another observation we make from the results is that Step

One rules tend to degrade less in other test sets than using Step
One and Step Two rules combined. We think this is due to the
nature of rules generated in these steps. In Step One, rules are
created only when a sentence pair has NE. Thus the rules are
fired only when exact phrase pair is found in a sentence. On
other hand in Step Two we have rules that may not have NEs
in them but have words that are very closely related with NE
such as “name is” “live in.” Such rules allow the system to
use more combinations of rules during decoding even though
there may not be exact match. The flexibility adds some noise
but improves the coverage.

6. CONCLUSION

We presented a method for improving NE translation by
building a class-based NE translation model. Two classes
were added as non-terminals replacing the names in phrase
pairs, creating a rule set extending a formally syntax-based
system. The NE model worked in combination with phrase-
based model to produce a better NE translation improving
the baseline by relative 1.41% in BLEU score, as well as by
0.26% absolute of F1-measure. Our experiments also showed
that distinguishing between two different NE categories such
as person and place using two different classes produced
slightly better results than if both categories were merged.

7. ACKNOWLEDGMENT

This work is in part supported by the US DARPA under the
TransTac program. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA.

8. REFERENCES

[1] David Chiang, “A hierarchical phrase-based model for
statistical machine translation,” in ACL, 2005, pp. 263–
270.

[2] Peter E Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer, “The mathematics of sta-
tistical machine translation: parameter estimation,” Com-
putational Linguistics, vol. 19, pp. 263–311, 1993.

[3] Franz Josef Och and Daniel Marcu, “Statistical phrase-
based translation,” in HLT, 2003, pp. 127–133.

[4] Bowen Zhou, Bing Xiang, Xiaodan Zhu, and Yuqing
Gao, “Prior derivation models for formally syntax-based
translation using linguistically syntactic parsing and tree
kernels,” in ACL, 2008.

[5] J Howard Johnson and Joel Martin, “Improving transla-
tion quality by discarding most of the phrasetable,” in
EMNLP-CoNLL, 2007.

[6] Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu, “Bleu: A method for automatic evaluation of
machine translation,” in ACL, 2002, pp. 311–318.

