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Abstract

Alignment combination methods that try
to find the best alignment set by com-
bining alignments in two directions are
mostly based on heuristics (Och and Ney,
2003), (Koehn et al., 2003). In this pa-
per, we propose a novel mathematical for-
mulation for combining an arbitrary num-
ber of alignment tables using their power
mean. The method frames the combi-
nation task as an optimization problem,
and finds the optimal alignment lying be-
tween the intersection and union of multi-
ple alignment tables by optimizing the pa-
rameter p: the affinely extended real num-
ber defining the order of the power mean
function. The combination approach pro-
duces better alignment tables in terms of
both F-measure and BLEU scores.

1 Introduction

Machine Translation (MT) systems are trained on
bi-text parallel corpora. One of the first steps
involved in training a MT system is obtaining
alignments between words of source and target
languages. This is typically done using some
form of Expectation Maximization (EM) algo-
rithm (Brown et al., 1993), (Och and Ney, 2003),
(Vogel et al., 1996). These unsupervised algo-
rithms provide alignment links between english
words ei and the foreign words fj for a given e−f
sentence pair. The alignment pairs are then used
to extract phrases tables (Koehn et al., 2003), hi-
erarchical rules (Chiang, 2005), or tree-to-string
mappings (Yamada and Knight, 2001). Thus, the

accuracy of these alignment links has a significant
impact in overall MT accuracy.

One of the commonly used techniques to im-
prove the alignment accuracy is combining align-
ment tables obtained for source to target (e2f ) and
target to source (f2e) directions (Och and Ney,
2003). This combining technique involves obtain-
ing two sets of alignment tables A1 and A2 for
the same sentence pair e− f and producing a new
set based on union A∪ = A1 ∪ A2 or intersec-
tion A∩ = A1 ∩A2 or some optimal combination
Ao such that it is subset of A1 ∪ A2 but a super-
set of A1 ∩ A2. How to find this optimal Ao is a
key question. A∪ has high precision but low re-
call producing fewer alignments and A∩ has high
recall but low precision.

2 Related Work

Most existing methods for alignment combina-
tion (symmetrization) rely on heuristics to iden-
tify reliable links (Och and Ney, 2003), (Koehn
et al., 2003). The method proposed in (Och and
Ney, 2003), for example, interpolates the intersec-
tion and union of two asymmetric alignment ta-
bles by adding links that are adjacent to intersec-
tion links, and connect at least one previously un-
aligned word. Another example is the method in
(Koehn et al., 2003), which adds links to the inter-
section of two alignment tables that are the diago-
nal neighbors of existing links, optionally requir-
ing that any added links connect two previously
unaligned words.

Other methods try to combine the tables dur-
ing alignment training. In (Liang et al., 2006),
asymmetric models are jointly trained to maxi-
mize the similarity of their alignments, by opti-



mizing an EM-like objective function based on
agreement heuristics. In (Ayan et al., 2004), the
authors present a technique for combining align-
ments based on various linguistic resources such
as parts of speech, dependency parses, or bilingual
dictionaries, and use machine learning techniques
to do alignment combination. One of the main dis-
advantages of (Ayan et al., 2004)’s method, how-
ever, is that the algorithm is a supervised learning
method, and so requires human-annotated data.
Recently, (Xiang et al., 2010) proposed a method
that can handle multiple alignments with soft links
which are defined by confidence scores of align-
ment links. (Matusov et al., 2004) on the other
hand frame symmetrization as finding a set with
minimal cost using use a graph based algorithm
where costs are associated with local alignment
probabilities.

In summary, most existing alignment combina-
tion methods try to find an optimal alignment set
Ao that lies between A∩ and A∪ using heuristics.
The main problems with methods based on heuris-
tics are:

1. they may not generalize well across language
pairs

2. they typically do not have any parameters to
optimize

3. most methods can combine only 2 align-
ments at a time

4. most approaches are ad-hoc and are not
mathematically well defined

In this paper we address these issues by propos-
ing a novel mathematical formulation for com-
bining an arbitrary number of alignment tables.
The method frames the combination task as an op-
timization problem, and finds the optimal align-
ment lying between the intersection and union of
multiple alignment tables by optimizing the pa-
rameter p of the power mean function.

3 Alignment combination using the
power mean

Given an english-foreign sentence pair (eI1, f
J
1 )

the alignment problem is to determine the pres-
ence of absence of alignment links aij between

the words ei and fj , where i ≤ I and j ≤ J . In
this paper we will use the convention that when
aij = 1, words ei and fj are linked, otherwise
aij = 0. Let us define the alignment tables we ob-
tain for two translation directions as A1 and A2,
respectively. The union of these two alignment
tables A∪ contain all of the links in A1 and A2,
and the intersection A∩ contain only the common
links. Definitions 1 and 2 below define A∪ and
A∩ more formally. Our goal is to find an align-
ment set Ao such that |A∩| ≤ |Ao| ≤ |A∪| that
maximizes some objective function. We now de-
scribe the power mean (PM) and show how the
PM can represent both the union and intersection
of alignment tables using the same formula.

The power mean:
The power mean is defined by equation 1 below,
where p is a real number in (−∞,∞) and an is a
positive real number.

Sp(a1, a2, ..., an) = (
1

n

n∑
k=1

apk)
1
p (1)

The power mean, also known as the generalized
mean, has several interesting properties that are
relevant to our alignment combination problem.
In particular, the power mean is equivalent to the
geometric mean G when p→ 0 as shown in equa-
tion 2 below:

G(a1, a2, ..., an) = (
n∏

i=1

ai)
1
n

= lim
p→0

(
1

n

n∑
k=1

apk)
1
p (2)

The power mean, furthermore, is equivalent to the
maximum function M when p→∞:

M(a1, a2, ..., an) = max(a1, a2, ..., an)

= lim
p→∞

(
1

n

n∑
k=1

apk)
1
p (3)

Importantly, the PM Sp is a non-decreasing
function of p. This means that Sp is lower
bounded by G and upper-bounded by M for p ∈
[0, ∞]:

G < Sp < M, 0 < p <∞. (4)



Figure 1: The power-mean is a principled way to interpolate between the extremes of union and inter-
section when combining multiple alignment tables.

They key insight underpinning our mathematical
formulation of alignment combination problem is
that geometric mean of multiple alignment tables
is equivalent to their logical intersection, while the
maximum of multiple alignment tables is equiv-
alent to their logical union. More formally, the
union and intersection of two alignment tables is
defined as follows.

Definition 1: The union of alignments
A1, A2, ..., An is a set A∪ that contains aqij if
aqij = 1 for any q.

Definition 2: The intersection of alignments
A1, A2, ..., An is a set A∩ that contains aqij if
aqij = 1 for all q.

Figure 1 depicts a simple example of the align-
ment combination problem for the common case
of alignment symmetrization. Two alignments ta-
bles, Ae→f and Af→e (one-to-many alignments),
need to be combined. The results of taking the
union A∪ and intersection A∩ of the tables is
shown. A∪ can be computed by taking the ele-
ment wise maximum of Ae→f and Af→e, which
in turn is equal to the power mean Ap of the ele-
ments of these tables in the limit as p → ∞. The
intersection of the two tables, A∩, can similarly
be computed by taking the geometric mean of the
elements of Ae→f and Af→e, which is equal to
the power mean Ap of the elements of these tables

in the limit as p → 0. For p ∈ (0,∞), equation 4
implies that Ap has elements with values between
A∩ and A∪. We now provide formal proofs for
these results when combining an arbitrary number
of alignment tables.

3.1 The intersection of alignment tables
A1..An is equivalent to their element wise
geometric mean G(A1, A2, ..., An), as
defined in (2).

Proof : Let Aq be any alignment. Let the ele-
ments of the Aq be aqij such that aqij = 1 if ∃ align-
ment between the words ei and fj and aqij = 0
otherwise. Let A∩ be the intersection of the sets
Aq where q ∈ {1, 2, .., n}. As per our definition of
intersection ∩ between alignment tables A∩ con-
tains links where aqij = 1 ∀ q.

Let Ag be the set that contain the elements of
G(A1, A2, ..., An). Let agij be the geometric mean
of the elements aqij where q ∈ {1, 2, .., n}, as de-

fined in equation 2, that is, agij = (
∏n

q=1 a
g
ij)

1
n .

This product is equal to 1 iff aqij = 1 ∀q and zero
otherwise, since aqij ∈ 0, 1∀ q. Hence Ag = A∩.
Q.E.D.



3.2 The union of alignment tables A1..An is
equivalent to their element wise
maximum M(A1, A2, ..., An), as defined
in (3).

Proof : Let aqij be an alignment member of Aq

and A∪ be the union of all Aq for q ∈ {1, 2, .., n}.
As per our definition of the union between align-
ments A∪ only contains aqij where aqij = 1 for
some q.

Let Am be the set that contain the elements of
M(A1, A2, ..., An). Let amij be the maximum of
the elements aqij where q = 1..n, as defined in
equation (3). The max function is equal to 1 if
aqij = 1 for any q and zero otherwise, since aqij ∈
{0, 1}∀q. Hence Am = A∪. Q.E.D.

3.3 The element wise power mean
Sp(A1, A2, ..., An) of alignment tables
A1..An has entries that are
lower-bounded by the intersection of
these tables, and upper-bounded by their
union for p ∈ [0, ∞].

Proof : We have already shown that the union
and intersection of a set of alignment tables are
equivalent to the maximum and geometric mean
of these tables, respectively. Therefore given that
the result in equation 4 is true (we will not prove it
here), the relation holds. In this sense, the power
mean generalizes the notion of set combination
for logical events (and their probabilistic counter-
parts). Q.E.D.

4 Data

We used the standard English-Pashto data set that
was provided to the competing teams of the Darpa
Transtac evaluation for all of our experiments.
The training data for this task consists of slightly
more than 100K parallel sentences. The Transtac
task was designed to evaluate speech-to-speech
translation systems, so all training sentences are
conversational in nature. The sentence length of
these utterances varies greatly, ranging from a sin-
gle word to more than 50 words. 2026 sentences
were randomly sampled from this training data
to prepare held out development set. The held
out Transtac test set consists of 1019 parallel sen-
tences.

5 Experiments and Discussion

We have shown in the previous sections that
union and intersection of alignments can be
mathematically formulated using the power
mean. Since both combination operations can
be represented with the same mathematical
expression (as a power mean), we can search the
combination space “between” the intersection
and union of alignment tables by optimizing
p w.r.t. any chosen objective function. In the
experiments presented here in we define the
alignment to be optimal when the function
f(a11, a12, ..., a1n, a21, ..., a2n, an1, ...ann) is
maximized, where the function f is standard
F-measure. Instead of attempting to optimize the
F-measure using heuristics we can now optimize
it by finding the appropriate power order p using
any suitable numerical optimization algorithm.
In our experiments we used the general simplex
algorithm of amoeba search (Nelder and Mead,
1965), which attempts to find the optimal set of
parameters by evolving a simplex of evaluated
points in the direction that the F-measure is
increasing.

In order to test our alignment combination for-
mulation empirically we performed experiments
on English-Pashto language with data described in
Section 4. We first trained two sets of alignments,
the e2f and f2e directions, based on GIZA++
(Och and Ney, 2003) algorithm. We then com-
bined these alignments by performing intersec-
tion (I) and union (U). We obtained F-measure of
0.5979 for intersection (I), 0.6589 for union (U).
For intersection the F-measure is lower presum-
ably because many alignments are not shared by
the input alignment tables so the number of links
is under-estimated. We then also re-produced the
two commonly used combination heuristic meth-
ods that are based on growing the alignment di-
agonally (GDF) (Koehn et al., 2003) and adding
links based on refined heuristics (H) (Och and
Ney, 2003). We obtained F-measure of 0.6891 for
H, and 0.6712 for GDF as shown in Table 1. GDF
corresponds to ’diag-and (grow diagonal final)’ of
(Koehn et al., 2003).

We then used our power mean formulation for
combination to maximize the F-measure function



Method F-measure
I 0.5979
H 0.6891
GDF 0.6712
PM 0.6984
PMn 0.7276
U 0.6589

Table 1: F-measure Based on Various Alignment
Combination Methods

with the aforementioned simplex algorithm for
tuning the power parameter p, where F-measure
is computed with respect to the hand aligned de-
velopment data, which contains 150 sentences.
This hand aligned development set is different
than the development set for training MT models.
While doing so we also optimized table weights
Wq ∈ (0, 1),

∑
q Wq = 1, which were applied to

the alignment tables before combining them using
the PM. The Wq allow the algorithm to weight the
two directions differently. We found that the F-
measure function had many local minima so the
simplex algorithm was initialized at several val-
ues of p and {Wq} to find the globally optimal
F-measure.

After obtaining power mean values for the
alignment entries, they need to be converted
into binary valued alignment links, that is,
Sp(a

1
ij , a

2
ij , ...a

n
ij) needs to be converted into a bi-

nary table. There are many ways to do this con-
version such as simple thresholding or keeping
best N% of the links. In our experiments we used
the following simple selection method, which ap-
pears to perform better than thresholding. First we
sorted links by PM value and then added the links
from the top of the sorted list such that ei and fj
are linked if ei−1 and ei+1 are connected to fj or
fj−1 and fj+1 is linked to ei or both ei and fj are
not connected. After tuning power mean parame-
ter and the alignment weights the best parameter
gave an F-measure of 0.6984 which is higher than
commonly used GDF by 2.272% and H by 0.93%
absolute respectively. We observe in Figure 2 that
even though PM has higher F-measure compared
with GDF it has significantly fewer number of
alignment links suggesting that PM has improved
precision on the finding the alignment links. The

presented PM based alignment combination can
be tuned to optimize any chosen objective, so it is
not surprising that we can improve upon previous
results based on heuristics.

One of the main advantages of the combining
alignment tables using the PM is that our state-
ments are valid for any number of input tables,
whereas most heuristic approaches can only pro-
cess two alignment tables at a time. Trying to
come up with heuristics for combining more than
two tables is error-prone. Heuristics that are de-
signed for N alignment pairs may not be valid for
N+k alignments. The presented power mean al-
gorithm in contrast can be used to combine any
number of alignments in a single step, which, im-
portantly, makes it possible to jointly optimize all
of the parameters of the combination process.

In the second set of experiments the PM ap-
proach, which we call PMn, is applied simultane-
ously to more than two alignments. We obtained
four more sets of alignments from the Berke-
ley aligner (BA) (Liang et al., 2006), the HMM
aligner (HA) (Vogel et al., 1996), the alignment
based on partial words (PA), and alignment based
on dependency based reordering (DA) (Xu et al.,
2009). Alignment I was obtained by using Berke-
ley aligner as an off-the-shelf alignment tool. We
built the HMM aligner based on (Vogel et al.,
1996) and use the HMM aligner for producing
Alignment II. Producing different sets of align-
ments using different algorithms could be useful
because some alignments that are pruned by one
algorithm may be kept by another giving us a big-
ger pool of possible links to chose from.

We produced Alignment III based on partial
words. Pashto is morphologically rich language
with many prefixes and suffixes. In lack of a mor-
phological segmenter it has been suggested that
keeping only first ‘n’ characters of a word can ef-
fectively reduce the vocabulary size and may pro-
duce better alignments. (Chiang et al., 2009) used
partial words for alignment training in english and
urdu. We trained such alignments using using
GIZA++ on parallel data with partial words for
Pashto sentences.

The fourth type of alignment we produced,
Alignment IV, was motivated by the (Xu et al.,
2009). (Xu et al., 2009) showed that transla-



Figure 2: Number of Alignments Links for Dif-
ferent Combination Types

tion between subject-verb-object (English) and
subject-object-verb (Pashto) languages can be im-
proved by reordering the source side of the par-
allel data. They obtained dependency tree of the
source side and used high level human gener-
ated rules to reorder source side using precedence-
based movement of dependency subtrees. The
rules were particularly useful in reordering of
verbs that moved to the end of the sentence. Mak-
ing the ordering of source and target side more
similar may produce better alignments for lan-
guage pairs which differ in verb ordering, as many
alignment algorithms penalize or fail to consider
alignments that link words that differ greatly in
sentence position. A Pashto language expert was
hired to produce similar precedence-based rules
for the English-Pashto language pair. Using the
rules and algorithm described in (Xu et al., 2009)
we reordered all of the source side and used
GIZA++ to align the sentences.

The four additional alignment sets just de-
scribed, including our baseline alignment, Align-
ment V, were combined using the presented PMn

combination algorithm, where n signifies the
number of tables being combined. We obtained an
F-measure of 0.7276 which is 12.97% better than
intersection and 6.87% better than union. Further-
more PMn, which in these experiments utilizes
5 alignments, is better than PM by 2.92% abso-
lute. This is an encouraging result because this
not only shows that we are finding better align-
ments than intersection and union, but also that
combining more than two alignments is useful.

We note that PMn performed 3.85% better than H
(Och and Ney, 2003), and 5.64% better than GDF
heuristics.

In the above experiments the parameters of
the power mean combination method were tuned
on development data to optimize alignment F-
measure, and the performance of several align-
ment combination techniques were compared in
terms of Fmeasure. It is not known however if the
alignment F-measures correlates well with BLEU
scores as explained in (Fraser and Marcu, 2007).

While there is no mathematical problem with
optimizing the parameters of the presented PM-
based combination algorithm w.r.t. BLEU scores,
computationally it is not practical to do so because
each iteration would require a complete training
phase. To further evaluate the quality of the align-
ments methods being compared in this paper, we
built several MT models based on them and com-
pared the resulting BLEU scores.

E2F Dev Test
I 0.1064 0.0941
H 0.1028 0.0894
GDF 0.1256 0.1091
PM 0.1214 0.1094
PMn 0.1378 0.1209
U 0.1062 0.0897

Table 2: E2F BLEU: PM Alignment Combination
Based MT Model Comparision

We built a standard phrase-based translation
system (Koehn et al., 2003) which utilizes a stack-
based decoder based on an A∗ search. Based on
the combined alignments we extracted phrase ta-
bles of maximum length of 6 on English and 8
on Pashto respectively. We then trained the lex-
icalized reordering model that produced distor-
tion costs based on the number of words that are
skipped on the target side, in a manner similar to
(Al-Onaizan and Papineni, 2006). Our training
sentences are a compilation of sentences from var-
ious domains collected by Darpa, and hence we
were able to build interpolated language model
which weights the domains differently. We built
an interpolated LM for both English and Pashto,
but for English we had a significantly more mono-
lingual sentences (1.4 million in total) compared



to slightly more than 100K sentences for Pashto.
We tuned our MT model using minimum error
rate (Och, 2003) training.

F2E Dev Test
I 0.1145 0.1101
H 0.1262 0.1193
GDF 0.1115 0.1204
PM 0.1201 0.1155
PMn 0.1198 0.1196
U 0.1111 0.1155

Table 3: F2E BLEU : PM Alignment Combina-
tion Based MT Model Comparision

We built five different MT models based on
Intersection (I), Union (U), (Koehn et al., 2003)
Grow Diagonal Final (GDF), (Och and Ney, 2003)
H refined heuristics and Power Mean (PMn) align-
ment sets where n = 5. We obtained BLEU (Pa-
pineni et al., 2002) scores for E2F direction as
shown in Table 2. As expected MT model based
on I alignment has the low BLEU score of 0.1064
on dev set and 0.0941 on the test set on E2F direc-
tion. Intersection, though, has higher precision,
but throws away many alignments, so the over-
all number of alignments is too small to produce
a good phrase translation table. Similarly the U
alignment also has low scores (0.1062 and 0.0897)
on dev and test sets, respectively. The best scores
for E2F direction for both dev and test set is ob-
tained using the model based on PMn algorithm.
We obtained BLEU scores of 0.1378 on dev set
and 0.1209 on the test set which is better than all
heuristic based methods. It is better by 1.22 ab-
solute BLEU score on dev set and 1.18 on a test
compared to commonly used GDF (Koehn et al.,
2003) heuristics. The test set BLEU was com-
puted based on 1 reference. We note that for e2f
direction PM that combines only 2 alignments is
not worse than any of the heuristic based methods.
Also the difference in PM and PMn performance
is large signifying that combining multiple align-
ment helps the power meand based combination
algorithm further.

Although we saw significant gains on E2F di-
rection we did not see similar gains on F2E di-
rection unfortunately. Matching our expectation
Intersection (I) produced the worse results with

Type PT Size (100K)
I 182.17
H 30.73

GDF 27.65
PM 60.87

PMn 25.67
U 24.54

Table 4: E2F Phrase Table Size

BLEU scores of 0.1145 and 0.1101 on dev and
test set respectively as shown in Table 3. Our
PMn algorithm obtained BLEU score of 0.1198
on dev set and 0.1196 on test set which is better
by 0.83 absolute in dev set over GDF. On the test
set though performance between PMn and GDF
is only slightly different with 0.1196 for PMn and
0.1204 for GDF. The standard deviation on test
set BLEU scores for F2E direction is only 0.0042
which is one third of the standard deviation in E2F
direction at 0.013 signifying that the alignment
seems to make less difference in F2E direction for
our models. One possible explanation for such re-
sults is that the Pashto LM for the E2F direction is
trained on a small set of sentences available from
training corpus while English LM for F2E direc-
tion was trained on 1.4 million sentences. There-
fore the English LM, which is trained on signifi-
cantly more data, is probably more robust to trans-
lation model errors.

Type PT Size (100K)
I 139.98
H 56.76

GDF 22.96
PM 47.50

PMn 21.24
U 20.33

Table 5: F2E Phrase Table Size

We should note that difference in alignments
also make a difference in Phrase Table (PT) size.
Intersection that has the least number of align-
ments as shown in Figure 2 tend to produce the
largest phrase table because there are less restric-
tion on phrases to be extracted. Union tends
to produce the least number of phrases because
phrase extraction algorithm has more constraints



to satisfy. We observe that PT produced by inter-
section is significantly larger than others as seen in
Tables 4 and 5. The PT size produced by PMn as
shown in Table 4 is between I and U and is sig-
nificantly smaller than the other heuristic based
methods. It is 7.1% smaller than GDF heuristic
based phrase table. Similarly in F2E direction as
well (Table 5) we see the similar trend where PMn

PT size is smaller than GDF by 4.2%. The de-
crease in phrase table size but increase in BLEU
scores for most of the dev and test sets show that
our PM based combined alignments are helping to
produce better MT models.

6 Conclusion and Future Work

We have presented a mathematical formulation for
combining alignment tables based on their power
mean. The presented framework allows us to find
the optimal alignment between intersection and
union by finding the best power mean parameter
between 0 and ∞, which correspond to intersec-
tion and union operations, respectively. We eval-
uated the proposed method empirically by com-
puting BLEU scores in English-Pashto transla-
tion task and also by computing an F-measure
with respect to human alignments. We showed
that the approach is more effective than intersec-
tion, union, the heuristics of (Och and Ney, 2003),
and the grow diagonal final (GDF) algorithm of
(Koehn et al., 2003). We also showed that our al-
gorithm is not limited to two tables, which makes
it possible to jointly optimize the combination of
multiple alignment tables to further increase per-
formance.

In future work we would like to address two
particular issues. First, in this work we converted
power mean values to binary alignment links by
simple selection process. We are currently investi-
gating ways to integrate the binary constraint into
the PM-based optimization algorithm. Second,
we do not have to limit ourselves to alignments ta-
bles that are binary. PM based algorithm can com-
bine alignments that are not binary, which makes
it easier to integrate other sources of information
such as posterior probability of word translation
into the alignment combination framework.
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