Machine Learning Approaches to NLP Part II

Sameer Maskey

Topics for Today

Regression to Classification

Can we build a regression model to model binary classes?

Train Regression and threshold the output

- □ If f(x) >= 0.7 CLASS1
- □ If f(x) < 0.7 CLASS2
- □ f(x) >= 0.5 ?

Linear Discrimination with a Hyperplane

- We looked at cosine similarity for text classification
- Besides cosine similarity there are many other ways for text classification
- Dimensionality reduction is one way of classification
 Fisher's Linear Discriminant
- We can also try to find they discriminating hyperplane by reducing the total error in training
 - Perceptrons is one such algorithm

Half Plane and Half Spaces

- Half plane is a region on one side of an infinite long line, and does not contain any points from other side
- Half space n-dimensional space obtained by removing points on one side of hyperplane (n-1 dimension)
 - What would it look like for a 3 dimensional space

Discriminative Classification

$$f(x) = \mathbf{w}^T x + b$$

Perceptron for Text Classification

We want to find a function that would produce least training error

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n Loss(y_i, f(x_i; w))$$

Minimizing Training Error

Given training data $\langle (x_i, y_i) \rangle$ We want to find w such that $y_i(w.x_i) > 0$ if $y_i > 0$ $y_i(w.x_i) < 0$ if $y_i < 0$

 We can iterate over all points and adjust the parameters

$$w \leftarrow w + y_i x_i$$

if $y \neq f(x_i; w)$

 Parameters are updated only if the classifier makes a mistake Perceptron Algorithm

We are given (x_i, y_i) Initialize wDo until converged if $\operatorname{error}((y_i, f(x_i, w)) == TRUE)$ $w \leftarrow w + y_i x_i$ end if End do

Text Classification with Perceptron

- Perceptron may not always converge
- Ok for two classes, not trivial to extend it to multiple classes
- Not the optimal hyperplane
 - Many hyperplanes that separates the class
 - Depends on random initialization

Generative vs. Discriminative

Generative Classifier

- Model joint probability p(x,y) where x are inputs and y are labels
- Make prediction using Bayes rule to compute p(y|x)
- Discriminative Classifier
 - Try to predict output directly
 - Model p(y|x) directly

Generative Classifier

- We can model class conditional densities using Gaussian distributions
- If we know class conditional densities
 - □ p(x| y=C1)
 - □ p(x|y=C2)
- We can find a decision to classify the unseen example

Bayes Rule

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

→So how would this rule help in classifying text in two different categories; Diabetes vs Hepatitis

→Think about distribution of count of the word diabetes for example

Generative Classifier

- If we have two classes C1 and C2
- We can estimate Gaussian distribution of the features for both classes
 - Let's say we have a feature x
 - x = length of a document
 - And class label (y)
 - y = 1 diabetes or 2 hepatitis

Find out μ_i and \sum_i from data for both classes

Gaussian Distribution
$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Generative Classifier

- Given a new data point find out posterior probability from each class and take a log ratio
- If higher posterior probability for C1, it means new x better explained by the Gaussian distribution of C1

Naïve Bayes Classifier

- Naïve Bayes Classifier a type of Generative classifier
 - Compute class-conditional distribution but with conditional independence assumption
- Shown to be very useful for text categorization

Conditional Independence

 Given random variables X, Y,Z, X is conditionally independent of Y given Z if and only if

$$P(X|Y,Z) = p(X|Z)$$

$$P(X|Y) = P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y) = P(X_1|Y)P(X_2|Y)$$

Conditional Independence

For a feature vector with 'n' features we get

$$P(X_1, X_2, ..., X_N | Y) = \prod_{i=1}^N P(X_i | Y)$$

N features are conditionally independent of one another given Y

Why would this assumption help?

Naïve Bayes Classifier for Text

Here N is the number of words, not to confuse with the total vocabulary size

Naïve Bayes Classifier for Text

$$P(Y = y_k | X_1, X_2, ..., X_N) = \frac{P(Y = y_k) P(X_1, X_2, ..., X_N | Y = y_k)}{\sum_j P(Y = y_j) P(X_1, X_2, ..., X_N | Y = y_j)}$$
$$= \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

$$Y \leftarrow argmax_{y_k} P(Y = y_k) \Pi_i P(X_i | Y = y_k)$$

Naïve Bayes Classifier for Text

Given the training data what are the parameters to be estimated?

 $y \leftarrow argmax_{y_k} P(y = y_k) \Pi_i P(X_i | y = y_k)$

Estimating Parameters

Maximum Likelihood Estimates

- Relative Frequency Counts
- For a new document
 - □ Find which one gives higher posterior probability
 - Log ratio
 - Thresholding
- Classify accordingly

Smoothing

MLE for Naïve Bayes (relative frequency counts) may not generalize well Zero counts

Smoothing

- With less evidence, believe in prior more
- With more evidence, believe in data more

Laplace Smoothing

- Assume we have one more count for each element
- Zero counts become 1

$$P_{smooth}(w) = \frac{c_w + 1}{\sum_w \{c(w) + 1\}}$$

$$P_{smooth}(w) = \frac{c_w + 1}{N + V}$$
Vocab Size

Weka

- Publicly available free software that includes many common ML algorithms that are used in Natural Language Processing
- GUI and Commandline Interface
- Feature Selection, ML algorithms, Data filtering, Visualization

Weka Download and Setup

- http://sourceforge.net/projects/weka/files/weka/a-3-4/3.4.17/weka-3-4-17.zip/download
- > unzip weka-3-4-17.zip
- > java -jar weka-3-4-17/weka.jar
- >> Click on Explorer

<u></u>			Weka	Exp	lorer				
Preprocess	Classify C	luster As	sociate Selec			7	1		
							/		
Open fil	le Ot	en URL	Open DB		Undo		Edit		Save
Filter						/			
Choose	None					/			Apply
									Арріу
Current rela					Selected attribu			Terre	bl
Relation: Instances:	broadcastNews 3535		ites: 30		Name: MINP Missing: 0 (0%		nct: 3338		e: Numeric e: 3325 (94%)
Attributes					Stati				llue
					Minimum		0.53		
All		None	Invert		Maximum Mean		3.034		
No.		Name			StdDev		0.257		
17		Name		-			1		
	SEGNUMS								
	SPEAKTYPES								
				<u> </u>					
				Class: INSUMMA	RY (Nom)		-	Visualize All	
	SENTNUMS				1				
					/				
	PREVSENTLENS			l l					
				-					
	F	lemove							
					0.53		1.78		3.03
Status									

<u></u>	Weka Explorer	
Preprocess Classify Cluster Asso	ciate Select attributes Visualize	
Classifier Choose LinearRegression -S 0 -R 1)E-8	
Test options	lassifier output	
○ Use training set	THE CURCE CO DUTTO HOULT. V.20 DECON	a5
-	== Stratified cross-validation ===	
O Supplied test set Set	=== Summary ===	
O Cross-validation Folds 10	Correctly Classified Instances	2608 73.7765
Percentage split % 66	Incorrectly Classified Instances	927 26.2235
More options	Cappa statistic	0.3668
	lean absolute error Root mean squared error	0.2825 0.4569
(Num) MEDIANPITCHA	Relative absolute error	74.0931 %
	Coot relative squared error Total Number of Instances	104.644 % 3535
Start Stop	Sear Admocr of Installes	
Result list (right-click for options)	=== Detailed Accuracy By Class ===	
21:29:11 - bayes RavesNet	n Poto CD Pote Precision Recal	1 F-Measure Class
21:35:01 - functi View in main window	0.856 0.77	
21:37:16 - functi View in separate wind	w 2 0.491 0.62	0.548 1
Save result buffer	trix ===	
Load model	classified as	
Save model	2 - 0	
Re-evaluate model on	b = 1	
Visualize classifier err	rs	
Visualize graph Visualize margin curvi		
Nieur lies abus held au		
Status Viewsline cost surve		Log
OK VISUAIIZE COST CUIVE		Log

10-fold Cross Validation

10 fold cross validation

. . .

- Assuming we have 100K data points
 - Train on 90K (1 to 90,000)
 - Test on 10K (90,001 to 100,000)
- But we can do this 10 times if we select different 10K of test data point each time

- 10 experiments, build model and test times with 10 different sets of training and test data
- Average the accuracy across 10 experiments
- We can do any N-fold cross validation to test our model

Interpreting Weka Results

Precision, Recall, F-Measure

- Precision TP/(TP+FP)
- Recall TP/(TP+FN)
- F-Measure (1+beta²) * Precision * Recall (beta²*Precision + Recall)
- Accuracy (TP+TN)/(TP+TN+FP+FN)

Confusion Matrix

- Assume we are classifying text into two categories Hepatitis (H) and Others (B)
- Let's assume we had 1000 documents such that 500 are H and 500 are B
- Assume we got given predictions

		Н	В	
Predicted	Н	400	200	
	В	100	300	

Actual

Precision	0.6667
Recall	0.8000
F-measure	0.7273
Accuracy	0.7000

Commandline for Weka

- Make sure CLASSPATH variable is setup; can also give the path explicitly using –cp parameter
 - >> export CLASSPATH=\$CLASSPATH:/home/smaskey/soft/weka-3-4-17/weka.jar
- Try to see if java can access the classes for classifiers
 >> java weka.classifiers.bayes.NaiveBayes
- Try to build a model from commandline
 - >java weka.classifiers.trees.J48 -i -t data/weather.arff
- Try other examples from Weka wiki
 - >java weka.classifiers.bayes.NaiveBayes -K -t soybeantrain.arff -T soybean-test.arff -p 0

Weka Demo

Text Classification with Weka

- Classify documents into Hockey or Baseball
- 20 Newsgroup corpus
- Code and data will be available from the course website