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� Morphology (including word segmentation) 

� Part of speech tagging 

� Syntax and parsing 

� Grammar Engineering 

� Word sense disambiguation 

� Lexical semantics 

� Mathematical Linguistics 

� Textual entailment and paraphrasing 

� Discourse and pragmatics 

� Knowledge acquisition and representation 

� Noisy data analysis 

� Machine translation 

� Multilingual language processing

� Language generation 

� Summarization 

� Question answering 

� Information retrieval 

� Information extraction 

� Topic classification and information filtering 

� Non-topical classification (sentiment/genre analysis) 

� Topic clustering 

� Text and speech mining 

� Text classification

� Evaluation (e.g., intrinsic, extrinsic, user studies) 

� Development of language resources 

� Rich transcription (automatic annotation)

� …

� Reinforcement Learning

� Online Learning

� Ranking

� Graphs and Embeddding

� Gaussian Processes

� Dynamical Systems

� Kernels

� Codebook and Dictionaries

� Clustering Algorithms

� Structured Learning

� Topic Models

� Transfer Learning

� Weak Supervision

� Learning Structures

� Sequential Stochastic Models

� Active Learning

� Support Vector Machines

� Boosting

� Learning Kernels

� Information Theory and Estimation

� Bayesian Analysis

� Regression Methods

� Inference Algorithms

� Analyzing Networks & Learning with Graphs

� …

NLP ML
Many Topics Related

Tasks �� Potential Solutions



Topics for Next 2 Lectures 

NLP -- ML
� Text Mining

� Text Categorization

Linear Models of Regression

Linear Methods of Classification



Text Mining

� Data Mining: finding nontrivial patterns in databases 
that may be previously unknown and could be useful

� Text Mining: 
� Find interesting patterns/information from unstructured text 

� Discover new knowledge from these patterns/information

� Information Extraction, Summarization, Opinion 
Analysis, etc can be thought as some form of text 
mining

� Let us look at an example



Patterns in Unstructured Text

Patterns may exist 

in unstructured text

Some of these patterns

could be exploited to

discover knowledge

All Amazon reviewers may not

rate the product, may just

write reviews, we may have to 

infer the rating based on text review

Review of a camera in Amazon



Text to Knowledge

� Text

� Words, Reviews, News Stories, Sentences, 
Corpus, Text Databases, Real-time text, Books

� Knowledge

� Ratings, Significance, Patterns, Scores, Relations

Many methods to use

for  discovering 

knowledge from text



Unstructured Text � Score
Facebook’s “Gross National Happiness Index”

� Facebook users update their status

� “…is writing a paper”

� “… has flu �”

� “… is happy, yankees won!”

� Facebook updates are unstructured text

� Scientists collected all updates and analyzed them 
to predict “Gross National Happiness Index”



Facebook’s “Gross National Happiness Index”

How do you think they extracted this SCORE from a 
TEXT collection of status updates?



Facebook Blog Explains

� “The result was an index that measures how happy 
people on Facebook are from day-to-day by looking 
at the number of positive and negative words they're 

using when updating their status. When people in 
their status updates use more positive words - or 

fewer negative words - then that day as a whole is 
counted as happier than usual.”

Looks like they are COUNTING!
+ve and –ve words in status updates



Let’s Build Our ML Model to Predict 

Happiness ☺

� Simple Happiness Score 
� Our simpler version of happiness index compared to 

facebook

� Score ranges from 0 to 10

� There are a few things we need to consider
� We are using status updates 

� We do not know what words are positive and 
negative

� We do not have any training data



Our Prediction Problem  

� Training data
� Assume we have N=100,000 status updates
� Assume we have a simple list of positive and negative words
� Let us also assume we asked a human annotator to read each of 

the 100,000 status update and give a happiness Score (Yi) 
between 0 to 10 
� “…is writing a paper” (Y1 = 4)

� “… has flu �” (Y2 = 1.8)

� .

� .

� .

� “… is happy, game was good!” (Y100,000 = 8.9)

� Test data
� “… likes the weather” (Y100,001 = ? )

Given labeled set of 100K

Status updates, how do we build

Statistical/ML model that

will predict the score for a 

new status update



Features to Represent Text

� “…is writing a paper” (Y1 = 4)

� “… has flu �” (Y2 = 1.8)

� .

� .

� .

� “… is happy, game was good!”
(Y100,000 = 8.9)

Features
ML

Algorithm



� What kind of feature can we come up with that would 
relate well with happiness score

� How about represent status update as
� Count (+ve words in the sentence) (not the ideal 

representation, will talk about better representation later)

� For the 100,000th sentence in our previous example:
� “…is happy, game was good.” Count is 2
� Status Update 100,000th is represented by 

� (X100000 = 2, Y100000 = 8.9) 

Representing Text of Status Updates As a 

Feature Vector

“…is happy, game was good.” Features
ML

Algorithm
X100000 = 2

Y100000 = 8.9)



Modeling Technique 

� We want to predict happiness score (Yi) for a new status 
update

� If we can model our training data with a statistical/ML model, 
we can do such prediction

� (1, 4)

� (0, 1.8)

� .

� .

� .

� (2, 8.9)

� What modeling technique can we use?

� Linear Regression is one choice

Xi Yi,



Linear Regression

�We want to find a function that given our x it would 
map it to y

�One such function :

�Different values of thetas give different functions
�What is the best theta such that we have a 

function that makes least error on predictions when 

compared with y



Predicted vs. True 



Sum of Squared Errors

� Plugging in f(x) and averaging the error across all training 
data points we get the empirical loss

f(xi)

yi

xi x

y



Finding the Minimum 

�We can (but not always) find a minimum of a 
function by setting the derivative or partial derivatives 

to zero

�Here we can take partials on thetas and set them to 
zero



Solving for Weights



Empirical Loss is Minimized With Given 

Values for the Parameters
�Solving the previous equations we get following values 
for the thetas



Implementing Simple Linear Regression

� Given our training data on status update with happiness score

� (1, 4)

� (0, 1.8)

� .

� .

� .

� (2, 8.9)
Xi Yi,

Training Our Regression Model:
Just need to implement for loop

that computes numerators and 

denominators in equations here. 

And we get optimal thetas

For Prediction/Testing:

Given optimal thetas, plug in the 

x value in our equation to get y



Simple Happiness Scoring Model too 

Simple?

� So far we have a regression model that was 
trained on a training data of facebook status 
updates (text) and labeled happiness score

� Status updates words were mapped to one 
feature
� Feature counted number of +ve words

� Maybe too simple?
� How can we improve the model?

� Can we add more features?
� How about count of –ve words as well



Let Us Add One More Feature

� Adding one more feature Zi representing count of –ve words, now 
training data will look like the following

� (1, 3, 4)

� (0, 6,1.8)

� .

� .

� .

� (2, 0, 8.9)

� What would our linear regression 

function would look like

Xi Zi, Yi,

Estimation of y i.e. f(x,z) is now a plane instead of a line

[3]



Empirical Loss with K Features and N 

Data Points in Matrix Representation

� Representing empirical loss in Matrix form

Y X θ



Solve by Setting Partial Derivatives to 

Zero
� Remember, to find the minimum empirical loss we set the 

partial derivatives to zero

� We can still do the same in matrix form, we have to set the 

derivatives to zero

� Solving the above equation we get our best set of parameters



Implementation of Multiple Linear 

Regression

� Given out N training data points we can build X and Y matrix 
and perform the matrix operations

� Can use MATLAB

� Or write your own, Matrix multiplication implementation

� Get the theta matrix

� For any new test data plug in the x values (features) in our 
regression function with the best theta values we have



More Features? Feature Engineering

� So far we have only two features, is it good enough?

� Should we add more features?

� What kind of features can we add?

� Ratio of +ve/-ve words

� Normalized count of +ve words

� Is there a verb in the sentence?

� We need to think what are the kinds of information that may 

better estimate the Y values

� If we add above 3 features, what is the value of K?



Testing Our Model

� Our goal was to build the best statistical model that 
would automate the process of scoring a chunk of 
text (Happiness Score)

� How can we tell how good is our model?

� Remember previously we said let us assume we 
have 100,000 status updates

� Instead of using all 100K sentences let use the first 
90K to build the model

� Use rest of 10K to test the model



Scores from Text, What Else Can They 

Represent?

� Given a facebook status update we can predict 
happiness score

� But we can use the same modeling technique in 
many other problems
� Summarization: Score may represent importance

� Question Answering: Score may represent relevance

� Information extraction : Score may represent relation

� We need to engineer features according to the 
problem

� Many uses of the statistical technique we learned 
today



Reviews to Automatic Ratings

Model Rating

Features

Scores Y X

Statistical Model

Features X

TRAIN

PREDICT



Unstructured Text to Binary Labels

� Let us change the type of problem a bit

� Instead of a real valued happiness score between 0 and 10, 
let us assume our annotators just provide unhappy (0) or 
happy (1)

� Or it can be Amazon review for a product dislike (0) and like (1)

� Can we and should we still model this kind data with 
regression? 



Text Categorization/Classification

� Given any text (sentence, document, stories, etc), 
we want to classify it into some predefined class set

Model

CLASS1

Features X

PREDICT
CLASS2

� Training Data consists of Y values that are 0 
and 1

� Review is good or bad

� Status update is happy or sad



Predicted Output Are Class Labels

SAD

SAD

HAPPY

DIABETES

HEPATITIS

HEPATITIS

� “…is writing a paper”

� “… has flu �”

� “… is happy, yankees won!”



Class Prediction from Text

� If ‘y’ outputs are binary classes we may want 

to use a different modeling technique

� Binary classifiers could model such data 

� We need to chose our models according to 

the problem we are handling

� We probably need better representation of 

text as well



Text Classification

?

Diabetes

Journal

Hepatitis

Journal



Text Similarity

� To classify a new journal paper into either diabetes group of 

hepatitis group we could probably  compute similarity of this 

document with the two groups

� How do we compute similarity between text or group of 

documents?

� First, we need representation of text that takes account of all the 

information in it?

� Count of +ve words may not be enough



Text/Document Feature Vectors

� Document Vectors

� Documents can be represented in different types of vectors: 
binary vector, multinomial vector, feature vector

� Binary Vector: For each dimension, 1 if the word type is in the 

document and 0 otherwise

� Multinomial Vector: For each dimension, count # of times word 

type appears in the document

� Feature Vector: Extract various features from the document and 

represent them in a vector. Dimension equals the number of 

features



Example of a Multinomial Document 

Vector

Screening of the critically acclaimed film NumaFung Reserved 
tickets can be picked up on the day of the show at the box office at 
Arledge Cinema. Tickets will not be reserved if not paid for in 
advance. 

4 THE 

2 TICKETS 

2 RESERVED 

2 OF 

2 NOT 

2 BE 

2 AT 

1 WILL 

1 UP 

1 SHOW 

1 SCREENING 

1 PICKED 

1 PAID 

1 ON 

1 OFFICE 

1 NUMAFUNG 

1 IN 

1 IF 

1 FOR 

1 FILM 

1 DAY 

1 CRITICALLY 

1 CINEMA 

1 CAN 

1 BOX 

1 ARLEDGE 

1 ADVANCE 

1 ACCLAIMED

4 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1



Example of a Multinomial Document 

Vector

4 THE 

2 SEATS 

2 RESERVED 

2 OF 

2 NOT 

2 BE 

2 AT 

1 WILL 

1 UP 

1 SHOW 

1 SHOWING

1 PICKED 

1 PAID 

1 ON 

1 OFFICE 

1 VOLCANO 

1 IN 

1 IF 

1 FOR 

1 FILM 

1 DAY 

1 CRITICALLY 

1 CINEMA 

1 CAN 

4 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1

Find out how similar two text 
vectors are to find document 
similarity?



Text Similarity : Cosine of Text Vectors

� Given a set of vectors we can find the cosine 
similarity between them

� Cos 90 = 0, vectors are not similar

� Higher cosine value = higher similarity

Cosθ =
v1.v2

‖v1‖‖v2‖



Feature Vectors

� Instead of just using words to represent documents, we can also 
extract features and use them to represent the document

� We can extract features like document length (LN), number of 
nouns (NN), number of verbs (VB), number of person names 
(PN), number of place  (CN) names, number of organization 
names (ON), number of sentences (NS), number of pronouns 
(PNN)



Feature Vectors

� Extracting such features you get a feature vector of length ‘K’ where 
‘K’ is the number of dimensions (features) for each document 

Length
Noun Count
Verb Count
# Person 

# Place Name
# Orgzn
Count of 
Sugar

.

.

.

Diabetes

2000
25
85
9
15
20
45 

.

.

.



Text Classification with Cosine Similarity 

on Feature Vectors

Diabetes

Diabetes

Journal

Hepatitis

Journal

1802.1
40.3
90.4
4

10.0
4.2
1.3

1905.5
26
78.9
9.9
12.3
16.8
47.6

.

.

.

2000
25
85
9
15
20
45 

.

.

.



Cosine Similarity Based Text Classifier

� Build multinomial vectors or feature vectors for each 
document in the given class

� Each dimension represent count of the given word or 
feature 

� Can take average of the vectors to represent a corpus

� ‘N’ averaged vectors would be the model for ‘N’

classes of the documents

� For any new document compute similarity of its 

multinomial vector to the ‘N’ class vectors

� Highest Cosine Similarity represents the class 



Summary

� Text Mining and Linear Regression Model

� Linear regression can be used to predict scores for 

unstructured text

� Extract features from text : (example : count of +ve words)

� Given the scores and features build regression model by 

minimizing total loss 

� Text Categorization and Linear Classifiers

� Represent text with binary, multinomial, feature vectors

� Compute cosine similarity to documents of different classes

� Many other linear classifiers for text categorization : 

perceptron is one of them



References

� [1] Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2006

� [2] Hastie, Tibshirani and Friedman, Elements of Statistical Learning, 2001


