

Data Science and Technology Entrepreneurship

Data Science for Your Startup Classification Algorithms Minimum Viable Product Development

Sameer Maskey Week6

Announcements

- No class for next 2 weeks
 - March II week NO Class MBA students not on campus
 - March 18 week NO Class Spring break
- Extra Lectures
 - This Friday's lecture is cancelled

Topics for Today

- Big Data
- Data Science for your Startup
- Linear Classifiers
 - Naive Bayes
 - Perceptron
- Minimum Viable Product Development

Feedback

http://www.surveymonkey.com/s/BFQJY79

Big Data

30 billion pieces of content shared on Facebook every month

Big Data - Value

\$300 billion potential annual value to US health care – more than

double the total annual health care spending in Spain

€250 billion

potential annual value to Europe's public sector administration – more than GDP of Greece

\$600 billion potential annual consumer surplus from using personal location data globally

60% potential increase in retailers' operating margins possible with big data

Source - McKinsey Report

Big Data in Various Fields

- Healthcare
- Government
- Ecommerce
- Marketing
- Manufacturing
- Retail

Big Data Landscape

Copyright © 2012 Dave Feinleib

dave@vcdave.com

blogs.forbes.com/davefeinleib

Value for Different Fields

Big data can generate significant financial value across sectors

US health care

- \$300 billion value per year
- ~0.7 percent annual productivity growth

Europe public sector administration

- €250 billion value per year
- ~0.5 percent annual productivity growth

Global personal location data

- \$100 billion+ revenue for service providers
- Up to \$700 billion value to end users

US retail

- 60+% increase in net margin possible
- 0.5–1.0 percent annual productivity growth

Manufacturing

- Up to 50 percent decrease in product development, assembly costs
- Up to 7 percent reduction in working capital

1 See appendix for detailed definitions and metrics used for value potential index. SOURCE: US Bureau of Labor Statistics; McKinsey Global Institute analysis

A heat map shows the relative ease of capturing the value potential across sectors

0		ease of			Data-driven	Data	
Cate- gories	Sectors	capture index ¹	Talent	IT intensity	Data-driven mind-set	Data availability	
	Manufacturing						
	Construction						
ø	Natural resources						
Goods	Computer and electronic products						
8	Real estate, rental, and leasing						
	Wholesale trade						
	Information						
	Transportation and warehousing						
	Retail trade						
	Administrative, support, waste management, and remediation services						
s	Accommodation and food services						
Services	Other services (except public administration)						
Š	Arts, entertainment, and recreation						
	Finance and Insurance						
	Professional, scientific, and technical services						
	Management of companies and enterprises						
- 0	Government						
ublic	Educational services						
Regulated and public	Health care and social assistance						
a e	Utilities						

Overall

1 See appendix for detailed definitions and metrics used for each of the criteria.

Source - McKinsey Report

Visualization

Get your own map at Linked . Maps

Republicans Vs. Democrats

- Can we predict which congressman is republican or democrat?
- Can we predict what is the likelihood that a congressman will vote yes in the upcoming vote?

Data

	1. Class Name: 2 (democrat, republican)	
00	<pre>2. handicapped-infants: 2 (y,n)</pre>	
00	<pre>3. water-project-cost-sharing: 2 (y,n)</pre>	
00	4. adoption-of-the-budget-resolution: 2 (y,n)	
010	5. physician-fee-freeze: 2 (y,n)	
010	6. el-salvador-aid: 2 (y,n)	
010	<pre>7. religious-groups-in-schools: 2 (y,n)</pre>	
00	8. anti-satellite-test-ban: 2 (y,n)	
00	9. aid-to-nicaraguan-contras: 2 (y,n)	
8	10. mx-missile: 2 (y,n)	
00	<pre>11. immigration: 2 (y,n)</pre>	
00	<pre>12. synfuels-corporation-cutback: 2 (y,n)</pre>	
00	<pre>13. education-spending: 2 (y,n)</pre>	
00	14. superfund-right-to-sue: 2 (y,n)	
00	15. crime: 2 (y,n)	
00	16. duty-free-exports: 2 (y,n)	
00	17. export-administration-act-south-africa: 2	(y,n)

Predict who is Republican or Democrat?

Data

Generative Classifier

- We can model class conditional densities using Gaussian distributions
- If we know class conditional densities
 - ▶ p(x| y=CI)
 - ▶ p(x|y=C2)
- We can find a decision to classify the unseen example

Bayes Rule

$P(Y|X) = \frac{P(X|Y) P(Y)}{P(X)}$

CI = Buys C2 = Doesn't Buy

Generative Classifier

- Given a new data point find out posterior probability from each class and take a log ratio
- If higher posterior probability for CI, it means new x better explained by the Gaussian distribution of CI

- Naïve Bayes Classifier a type of Generative classifier
- Compute class-conditional distribution but with conditional independence assumption
- Shown to be very useful for many classification tasks

Conditional Independence Assumption

$P(X_1, X_2, ..., X_N | Y) = \prod_{i=1}^N P(X_i | Y)$

$$P(Y = y_k | X_1, X_2, ..., X_N) = \frac{P(Y = y_k) P(X_1, X_2, ..., X_N | Y = y_k)}{\sum_j P(Y = y_j) P(X_1, X_2, ..., X_N | Y = y_j)}$$

$$P(Y = y_k) \Pi_i P(X_i | Y = y_k)$$

$$= \frac{1}{\sum_{j} P(Y = y_j) \prod_{i} P(X_i | Y = y_j)} \prod_{i} P(X_i | Y = y_j)$$

$$Y \leftarrow argmax_{y_k} P(Y = y_k) \Pi_i P(X_i | Y = y_k)$$

Naive Bayes Classifier for Text

Given the training data what are the parameters to be estimated?

Diabetes : 0.8 Hepatitis : 0.2

P(Y)

the: 0.001 diabetic : 0.02 blood : 0.0015 sugar : 0.02 weight : 0.018

. . .

 $P(X|Y_1)$

the: 0.001 diabetic : 0.0001 water : 0.0118 fever : 0.01 weight : 0.008

. . .

 $P(X|Y_2)$

Implementing Naive Bayes

$$\begin{split} P\big(X|Y_1\big) & P(X|Y_1) = \Pi_i P\big(X = x_i|Y = y_1\big) \\ \theta_{i,j,k} \equiv P\big(X_i = x_{ij}|Y = y_k\big) \\ \end{split} \\ \end{split}$$

the: 0.001 diabetic : 0.02 blood : 0.0015 sugar : 0.02 weight : 0.018 LE Estimation of the parameters $\hat{\theta_{i,j,k}} = \hat{P}(X_i = x_{ij} | Y = y_k)$ $= \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$

 $#D{x} = number of elements in the set D that has property x$

Perceptron

- Dimensionality reduction is one way of classification
- We can also try to find they discriminating hyperplane by reducing the total error in training
 - Perceptrons is one such algorithm

Perceptron - Loss Function

We want to find a function that would produce least training error

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n Loss(y_i, f(x_i; w))$$

Training Perceptron

Given training data $\langle (x_i, y_i) \rangle$ We want to find w such that $(w.x_i) > 0$ if $y_i = -1$ misclassified $(w.x_i) < 0$ if $y_i = 1$ is misclassified

 We can iterate over all points and adjust the parameters

$$w \leftarrow w + y_i x_i$$

if $y_i \neq f(x_i; w)$

 Parameters are updated only if the classifier makes a mistake

Training Perceptron

```
We are given (x_i, y_i)
Initialize w
Do until converged
if \operatorname{error}(y_i, sign(w.x_i)) == TRUE
w \leftarrow w + y_i x_i
end if
End do
```

If predicted class is wrong, subtract or add that point to weight vector

Training Perceptron

Another Version

 $Y_j(t) = f[w(t).x_j]$

Y is prediction based on weights and it's either 0 or 1 in this case

$$w_i(t+1) = w_i(t) + \alpha (d_j - y_j(t)) x_{i,j}$$
From is either 1, 0 or -1

			Inj	out	Initic	al wo	ights				Output		Error	Correction		Final weights	
Ser	isor	r val	lues	Desired output	IIIIIa	ar we	iynts		Per sensor		Sum	Network	LIIO	Conection		r mai weights	
x_0	x	71	x_2	z	w_0	w_1	w_2	c_0	c_1	c_2	s	n	e	d	w_0	w_1	w_2
								$x_0 * w_0$	$x_1 * w_1$	$x_2 * w_2$	$c_0 + c_1 + c_2$	if $s>t$ then 1, else 0	z - n	r * e	$\Delta(x_0 * d)$	$\Delta(x_1 * d)$	$\Delta(x_2 * d)$
1		0	0	1	0.4	0	0.1	0.4	0	0	0.4	0	1	+0.1	0.5	0	0.1
1		0	1	1	0.5	0	0.1	0.5	0	0.1	0.6	1	0	0	0.5	0	0.1
1		1	0	1	0.5	0	0.1	0.5	0	0	0.5	0	1	+0.1	0.6	0.1	0.1
1		1	1	0	0.6	0.1	0.1	0.6	0.1	0.1	0.8	1	-1	-0.1	0.5	0	0

Example from Wikipedia

Weka

- Publicly available free software that includes many common ML algorithms that are used in Natural Language Processing
- GUI and Commandline Interface
- Feature Selection, ML algorithms, Data filtering, Visualization

Weka Download and Setup

- http://sourceforge.net/projects/weka/files/ weka-3-4/3.4.17/weka-3-4-17.zip/download
- >> unzip weka-3-4-17.zip
- >> java -jar weka-3-4-17/weka.jar
- >> Click on Explorer

Preprocess Classify	Cluster Associate	Weka Exp			
riepiocess classify	Cluster Associate				
Open file	Open URL (Open DB	Undo	Edit	Save
Filter					
Choose None					Арр
-Current relation Relation: broadcastNew Instances: 3535	ws Attributes: 30		Selected attribute Name: MINPITCH, Missing: 0 (0%)		Type: Numeric Unique: 3325 (94)
Attributes			Statistic	0.53	Value
All	None	Invert	Minimum Maximum	0.53	
		invert	Mean StdDev	1 0.257	
19 TURNNUMS 20 SPEAKTYPES 21 PREVSPEAKTY 22 NEXTSPEAKTY 23 SENTNUMS 24 SENTLENS 25 PREVSENTLEN 26 NEXTSENTLEN 27 SPEAKCHANGI 28 SENTPOSS 29 ORMSENTPO 30 INSUMMARY	(PES 15 15 ES		Class: INSUMMARY (N	lom)	▼ Visualize
Status	Remove		0.53	1.78	3.0

Building ML Models with Weka

Model Evaluation with Weka

Tasks

Preprocess Classify Cluster As Classifier Cloose LinearRegression -S 0 -R Choose LinearRegression -S 0 -R Set options Output Use training set Supplied test set Supplied test set Set Cross-validation Folds Percentage split %	Classifier output === Stratified cross-validation === === Summary === Correctly Classified Instances 2608 Incorrectly Classified Instances 927 Kappa statistic 0.3668	73.7765 % 26.2235 %
Choose LinearRegression -5 0 -R Fest options O Use training set O Supplied test set Set O Cross-validation Folds 10	Classifier output === Stratified cross-validation === === Summary === Correctly Classified Instances 2608 Incorrectly Classified Instances 927 Kappa statistic 0.3668	
• Use training set • Supplied test set • Cross-validation	Classifier output === Stratified cross-validation === === Summary === Correctly Classified Instances 2608 Incorrectly Classified Instances 927 Kappa statistic 0.3668	
 Use training set Supplied test set Set Cross-validation 	=== Stratified cross-validation === === Summary === Correctly Classified Instances 2608 Incorrectly Classified Instances 927 Kappa statistic 0.3668	
 Supplied test set Set Cross-validation Folds 10 	=== Stratified cross-validation === === Summary === Correctly Classified Instances 2608 Incorrectly Classified Instances 927 Kappa statistic 0.3668	
 Supplied test set Set Cross-validation Folds 10 	=== Summary === Correctly Classified Instances 2608 Incorrectly Classified Instances 927 Kappa statistic 0.3668	
Cross-validation Folds 10	Correctly Classified Instances 2608 Incorrectly Classified Instances 927 Kappa statistic 0.3668	
	Incorrectly Classified Instances 927 Kappa statistic 0.3668	
Percentage split % 66	Kappa statistic 0.3668	26.2235 %
More options	Mean absolute error 0.2825	
	Root mean squared error 0.4569	
Num) MEDIANPITCHA 🛛 🗸	Relative absolute error 74.0931 % Root relative squared error 104.644 %	
-	Total Number of Instances 3535	
Start Stop	Detected Account of the Class	
Result list (right-click for options)	=== Detailed Accuracy By Class ===	
1:29:11 - bayes RavesNet	TD Poto CD Pote Precision Recall F-Measure	Class
21:35:01 - functi View in main windov 21:37:16 - functi View in separate win		0
Save result buffer		-
Load model	trix ===	
Save model	classified as	
Re-evaluate model o	n current test set $a = 0$	
Visualize classifier e	rors b = 1	
Visualize graph		
Visualize margin cui		•
tatus Visualize threshold	urve ·	
DK Visualize cost curve		Log 🛷 🤇
Modal Load/Save		
	Visualize Model	

10-fold Cross Validation

10 fold cross validation

. . .

- Assuming we have 100K data points
 - Train on 90K (1 to 90,000)
 - Test on 10K (90,001 to 100,000)
- But we can do this 10 times if we select different 10K of test data point each time

| Exp1[| 10k |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Exp2 | 10k |

- 10 experiments, build model and test times with 10 different sets of training and test data
- Average the accuracy across 10 experiments
- We can do any N-fold cross validation to test our model

Interpreting Weka Results

	Actual					
	TP True Positive	FP False Positive				
Predicted	FN False Negative	TN True Negative				

Precision, Recall, F-Measure

Precision TP/(TP+FP)

Recall TP/(TP+FN)

F-Measure (1+beta^2) * Precision * Recall (beta^2*Precision + Recall)

Accuracy (TP+TN)/(TP+TN+FP+FN)

Confusion Matrix

- Assume we are classifying text into two categories Hepatitis (H) and Others (B)
- Let's assume we had 1000 documents such that 500 are H and 500 are B
- Assume we got given predictions

		Н	В
Predicted	Н	400	200
	В	100	300

Actual

Precision	0.6667
Recall	0.8000
F-measure	0.7273
Accuracy	0.7000

Commandline for Weka

- Make sure CLASSPATH variable is setup; can also give the path explicitly using –cp parameter
 - >> export CLASSPATH=\$CLASSPATH:/home/smaskey/soft/ weka-3-4-17/weka.jar
- Try to see if java can access the classes for classifiers
 - > java weka.classifiers.bayes.NaiveBayes
- Try to build a model from commandline
 - >java weka.classifiers.trees.J48 -i -t data/weather.arff
- Try other examples from Weka wiki
 - >java weka.classifiers.bayes.NaiveBayes -K -t soybeantrain.arff -T soybean-test.arff -p 0

Data Science for Your Startup

PerFit **FlyJets** GymLogger **PsychSymptoms** NomadTravel **BuzztheBar** Pitch Perfect Karmmunity Sochna Intellidata SourceBase SoldThru

Minimum Viable Product Development

- Build MVP with minimum number of feature sets that allows you to do test your customer
- All MVPs are not the same
 - Physical product MVP
 - Web Application can be tested faster

Goal of MVP is to have a prototype that allows you to figure out if you understand the customer problem and if your product potentially solves it

Customer Discovery with MVP

Phase I : Set of Hypotheses about your business (Problem?, Solution? Value Proposition?)

Phase 2 : Set of Hypotheses about your business (Test your hypotheses by talking to customers)

Phase 3 : Build MVP and test MVP with customers (Does your MVP solves the problem customer want?)

Phase 4 : Analyze results of your Phase 3 (Ready to signup paying customers?)

Multiple MVPs

- Multiple MVPs can be used to test competing hypotheses
- Example :
 - MVP with pay per use model
 - MVP with pay per month model
- If it is not difficult to build multiple MVPs then build them and test them with customers