Announcements

‣ Friday Open Office hours + Co-work with teams
 ‣ Come and work together
 ‣ Ask questions
 ‣ Dates:
 ‣ April 19 - 4:30 - 6:30 pm
 ‣ April 26 - 4:30 - 6:30 pm
 ‣ May 3 - 4:30 - 6:30 pm
 ‣ Location
 ‣ CS conference room
Announcements

- Final Pitch/Demo Guidelines
 - 4 min long
 - Judges will provide feedback in judging time
 - 12 concurrent demos
 - 2 laptops
 - 1 for slides
 - 1 for demo
Announcements

- Final Pitch/Demo Guidelines
 - Executive Summary
 - 1-3 page executive summary
 - Make 15+ copies that judges can take home
Please write a 1-3 page Executive Summary. You can use parts of your Final Report and Business Canvas for the executive summary. You can use either of the following template: http://www.entrepreneur.com/formnet/form/653 OR http://www.entrepreneur.com/formnet/form/459
Announcements

- Final DSTE Survey
 - 10 Questions
 - Provide feedback so that I can improve the course for Spring 2014
Announcements

- Assignment 4 is out
- Due May 5th Sunday @6pm
- 4 parts
 - Part 1 - Final Report
 - I have written down 16 points or so that should guide you on how to write the Final Report
 - (Important) – Please provide the final business model canvas.
 - Write a paragraph on individual role and contribution of each team member to the business.
Announcements

Assignment 4

Part II - Final Technical Report

- System Architecture Diagram
- Overall choices you made

Part III - MVP

- Last iteration of your MVP
- Please write about the changes you have made from the last MVP

Part IV - MVP Field Test

- Similar to last homeworks - customer validation of your MVP with at least 5 customers
Announcements

Final Presentation

- Date: May 7th (Tuesday)
 - Yes it’s on Tuesday
 - First day of reading week

Location - Uris 142

Schedule

- 12:45 - 1:00 pm - Registration
- 1:00 - 1:15 - Overview of the class and projects
- 1:15 - 1:30 - Mentors/Advisors Introductions
- 1:30 - 2:30 - Student Presentation (4 min each)
- 2:30 - 3:15 - Coffee and Sandwiches
- 3:15 - 4:15 - 12 concurrent Student Demos (judges score the demos)
- 4:15 - 4:30 - Winners announcement
Topics for Today

- Course Recap
- Survey
- Analyzing team effort
Imagine a company is willing to buy you for $100,000. Split the money and give it to individual members. Each person should send me what they believe is the right split.
Customer/Market Risk vs Invention Risk

Where does your startup fall?

<table>
<thead>
<tr>
<th>Web 2.0</th>
<th>Enterprise Software</th>
<th>Enterprise Hardware</th>
<th>Comm Hardware</th>
<th>Comm Software</th>
<th>Consumer Electronics</th>
<th>Game Software</th>
<th>Semicon</th>
<th>Electronic Design Automation</th>
<th>Cleantech</th>
<th>Med Dev / Health Care</th>
<th>Life Science Biotech</th>
</tr>
</thead>
</table>

Source: Steve Blank
Lean Canvas [Maurya, A]

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SOLUTION</th>
<th>UNIQUE VALUE PROPOSITION</th>
<th>UNFAIR ADVANTAGE</th>
<th>CUSTOMER SEGMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 3 problems</td>
<td>Top 3 features</td>
<td>Single, clear, compelling message that states why you are different and worth buying</td>
<td>Can’t be easily copied or bought</td>
<td>Target customers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEY METRICS</th>
<th>CHANNELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key activities you measure</td>
<td>Path to customers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COST STRUCTURE</th>
<th>REVENUE STREAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Acquisition Costs</td>
<td>Revenue Model</td>
</tr>
<tr>
<td>Distributing Costs</td>
<td>Lifetime Value</td>
</tr>
<tr>
<td>Hosting</td>
<td>Revenue</td>
</tr>
<tr>
<td>People, etc.</td>
<td>Gross Margin</td>
</tr>
</tbody>
</table>

Lean Canvas is adapted from The Business Model Canvas (http://www.businessmodelgeneration.com) and is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported License.
Common Concept Across Frameworks

- Value Proposition
- Customer Segments
- Key Activities
- Key Resources
- Customer Relationship
- Key Partners
- Problem
- Solution
- Key Metrics
- Channels
- Revenue Streams
- Cost Structure
- Unfair Advantage
- Value for Talent
- Organizational Design
- Value Capture for Profit
Common Concept Across Frameworks

- Value Proposition
- Customer Segments
- Unfair Advantage
- Key Activities
- Key Partners
- Key Resources
- Value for Talent
- Organizational Design
- Value Capture for Profit
- Problem
- Solution
- Key Metrics
- Channels
- Revenue Streams
- Cost Structure
Customer Discovery Process

Source: Startup Owner’s Manual - Steve Blank and Bob Dorf

Can we use data driven methods? What kind of methods?
Data Driven Decision and Startups

Some startups are already data driven

Hypothesis → Design Experiments
Design Experiments → Test
Test → Insight
Insight → Hypothesis

Steve Blank’s Customer Development Insight cycle [Source: The Startup Owner’s Manual]
Value Proposition & Customer Segments

- This is a common theme across all business model frameworks.

- 2 important questions to ask yourself:

 - Who are your customers?
 - What is the value proposition for them?
Customer Discovery with MVP

Phase 1 : Set of Hypotheses about your business
 (Problem?, Solution? Value Proposition?)

Phase 2 : Set of Hypotheses about your business
 (Test your hypotheses by talking to customers)

Phase 3 : Build MVP and test MVP with customers
 (Does your MVP solves the problem customer want?)

Phase 4 : Analyze results of your Phase 3
 (Ready to signup paying customers?)
Multiple MVPs

- Multiple MVPs can be used to test competing hypotheses

- Example:
 - MVP with pay per use model
 - MVP with pay per month model

- If it is not difficult to build multiple MVPs then build them and test them with customers
MVP and Sales

- Value Proposition
- Customer Validation
- Channels
- Revenue Model
Validation Process for Sales

Phase 1
Get ready to sell

Phase 2
Get out of the building and sell

Phase 3
Develop Positioning

Phase 4
Verify metrics that matter

Steve Blanks’ 4 phases
Ask yourself

- Is the business scalable?

- Sales roadmap
 - Is itrepeatable?
 - Is it scalable?

- Sales funnel predictable?
What are your validation checkpoints?

- B2B
 - 3 meetings required for sale
 - 10% responds to email
 - 50% of respondent gives us meeting
 - 50% of meeting result in contract signing meeting
 - 50% of them use prototype
 - 50% of them start paying
 - Number of orders per month?
 - Buys extra features
What are your validation checkpoints?

- B2C
 - 40% response rate to marketing email
 - 20% sign up
 - 30% are repeat visitors?
 - 20% of customer will pay for the service?
 - 10% will pay for more features?
What kind of Data Science Methods can you Use?

- As you run experiments for validation of your hypotheses you start generating data points.
- You also generate a lot of data points from user engagements, sales engagements, etc.
- How can you use some of these data points?
Data to Insights

- Data to Insight
 - Data to Scores
 - example: predict the likelihood of selling a watch
 - Data to Classes
 - example: predict what watches to buy from wholesaler
- Data to Clusters
 - example: cluster customers based on their preferences
Machine Learning and Business

- Methods to analyze data that are all useful in decision making for businesses in general
- Data to Scores
- Data to Classes
 - Discriminative Methods
 - Generative Methods
- Data to Clusters
Use of Data Science Methods in Business

- LinkedIn
 - People You May Knows
 - Identified number of connections it takes for a long-term engagement

- Netflix
 - Signup process
 - Encourage to add movies to your queue
 - Once you add certain number of movies likelihood of you being a long term customer goes up
Use of Data Science Methods in Business

‣ Zynga
 ▶ Monitors their users constantly
 ▶ Analyze how users interact with games to find out what makes a game successful

‣ Financial Services
 ▶ Fraud detection

‣ OkCupid
 ▶ Marketing Analytics with viral blogs
 ▶ Facial attitude and new contacts blog
Data Science and Technology Startups
Data Science and Technology Startups

- Technology Startups can generate a lot of data
Data Science and Technology Startups

- Technology Startups can generate a lot of data
- For example a web startup with 500K users can generate a lot of data every user action is stored
 - Visits
 - Click through rates
 - Search logs
 - User generated content
 - Time spent on individual pages
 - Mouse movement behavior
 - Many more individual data points
Data Science and Technology Startups

- Technology Startups can generate a lot of data

- For example a web startup with 500K users can generate a lot of data every user action is stored
 - Visits
 - Click through rates
 - Search logs
 - User generated content
 - Time spent on individual pages
 - Mouse movement behavior
 - Many more individual data points

- Mining this large set of data generated every day for identify various types of pattern about users could lead to increased engagement
Data Science and Technology Startups

- Technology Startups can generate a lot of data
- For example a web startup with 500K users can generate a lot of data every user action is stored
 - Visits
 - Click through rates
 - Search logs
 - User generated content
 - Time spent on individual pages
 - Mouse movement behavior
 - Many more individual data points
- Mining this large set of data generated every day for identify various types of pattern about users could lead to increased engagement
Let’s do another hypothetical example

Using data science for a web startup that sells products online

Want to increase the click through rate on related items?

In other words, want to build a very simple minded recommendation engine
Example: User Data and Engagement

Assume you are running a shopping site and you want to produce top 5 items to recommend like Amazon.

Inspired by Your Shopping Trends

- Bluetooth USB 2.0 Micro Adapter Dongle Generic
 - Rating: 4 stars (817)
 - Price: $49.99 $4.49

- RF Wireless Laser Pointer with Page Control Generic
 - Rating: 4 stars (179)
 - Price: $6.87

- Satechi SP400 Smart Pointer 2.4Ghz RF Presentation
 - Rating: 5 stars (359)
 - Price: $49.99 $34.99

- August LP103R Red Laser Pointer Presentation
 - Rating: 4 stars (8)
 - Price: $16.99 $9.95

- Logitech Wireless Presenter R400
 - Rating: 4 stars (216)
 - Price: $49.99 $36.63

View your shopping cart

Data you have

- Click through rates and data item
User Data History

- Data from User’s history

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men’s Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>
User Data History

Can you use this data to build a simple model that can predict the number of clicks for a new product?

Imagine you have such data for millions of users.
<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>
Process Raw Data

Product	Clicks
Stauer Compendium Hybrid Watch | 4
Michael Kors Watches Bradshaw Gold - Michael | 5
Men's Pro Diver Chronograph Black | 2
<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>
Process Raw Data

Product:

(Stauer Compendium Hybrid Watch, 4)
(Michael Kors Watches Bradshaw Gold, 5)
(Men's Pro Diver Chronograph Black, 2)

Count number of word “Watch” in Product Description

Process

Raw Data
Process Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Stauer Compendium Hybrid Watch)</td>
<td>4</td>
</tr>
<tr>
<td>(Michael Kors Watches Bradshaw Gold - Michael)</td>
<td>5</td>
</tr>
<tr>
<td>(Men's Pro Diver Chronograph Black)</td>
<td>2</td>
</tr>
</tbody>
</table>

Process:
- Count number of word “Watch” in Product Description

Raw Data
<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>
Process Raw Data

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men’s Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>

Process

- **Count**: number of word “Watch” in Product Description

Raw Data
Process Raw Data

Product	Clicks	Process
Stauer Compendium Hybrid Watch | 4 |
Michael Kors Watches Bradshaw Gold - Michael | 5 |
Men's Pro Diver Chronograph Black | 2 |

Raw Data
Process Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>

Process

Count number of word “Watch” in Product Description

Raw Data
Process Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>

Process Count

number of word “Watch” in Product Description

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Process Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>

Process

Count number of word "Watch" in Product Description

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Process Raw Data

Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>

Process:

1. Count the number of the word "Watch" in Product Description
2. Update the Clicks for each product
Process Raw Data

Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch: $29.00</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold: $250.00</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black: $199.99</td>
<td>2</td>
</tr>
</tbody>
</table>

Process

1. Count the number of the word "Watch" in the Product Description.
2. For each product, add the count of the word "Watch" to the number of clicks.

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch: $29.00 + No Shipping Info STAUFER</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>
Process Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Raw Data

Process

Count number of word “Watch” in Product Description
Process Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Raw Data
Process Raw Data

Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men's Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>

Processed Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Process

Count number of word “Watch” in Product Description
Process Raw Data

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>Processed Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Stauer Compendium Hybrid Watch, 4)</td>
<td>(1, 4)</td>
</tr>
<tr>
<td>(Michael Kors Watches Bradshaw Gold - Michael, 5)</td>
<td>(1, 5)</td>
</tr>
<tr>
<td>(Men's Pro Diver Chronograph Black, 2)</td>
<td>(0, 2)</td>
</tr>
</tbody>
</table>

- **Product**
- **Clicks**

Raw Data
- Process
- Count number of word "Watch" in Product Description
- **Processed Data**
Process Raw Data

Raw Data:

- (Stauer Compendium Hybrid Watch, 4)
- (Michael Kors Watches Bradshaw Gold - Michael, 5)
- (Men's Pro Diver Chronograph Black, 2)

Product Description:

Process

- Count number of word "Watch" in Product Description

Processed Data:

- (1, 4)
- (1, 5)
- (0, 2)
Process Raw Data

Raw Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>4</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>5</td>
</tr>
<tr>
<td>Men’s Pro Diver Chronograph Black</td>
<td>2</td>
</tr>
</tbody>
</table>

Processed Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Clicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Data to Predicted Scores

Raw Data

Process

Count number of word “Watch” in Product Description

Processed Data

\[
f(x) = \theta_0 + \theta_1 x
\]

\[
\theta_0 = 0 \; ; \; \theta_1 = 2
\]

Our Model

2
Sales Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Buy?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stauer Compendium Hybrid Watch</td>
<td>1</td>
</tr>
<tr>
<td>Michael Kors Watches Bradshaw Gold - Michael</td>
<td>1</td>
</tr>
<tr>
<td>Men’s Pro Diver Chronograph Black</td>
<td>0</td>
</tr>
</tbody>
</table>

1 = Bought
0 = Didn’t Buy
Sales Prediction Model

Product	Buy?
Stauer Compendium Hybrid Watch | 1
Michael Kors Watches Bradshaw Gold - Michael | 1
Men's Pro Diver Chronograph Black | 0

Customer Will Buy?

Zoolaster can potentially buy more watches from wholesaler that have higher potential of selling online.
Data to Classification

- Given a set of features

\[X= (x_1, x_2, x_3, \ldots, x_n) \]

- we want to predict \(Y \)

\[Y= \{0,1\} \]

How about \(x \)?
How do we get them?
Data to Classification

- Given a set of features

\[X = (x_1, x_2, x_3, \ldots, x_n) \]

- we want to predict \(Y \)

\[Y = \{0, 1\} \]

How about \(x \)?
How do we get them?

\(\{ \text{will not buy OR will buy} \} \)
Data to Clusters

Supervised Training of Classification Algorithm

Unsupervised Training of Clustering Algorithm