
Using Web
Frameworks

An introduction to Rails

Lecture Goals

● Understand what frameworks are used for.

● Know how to design an application with a web
framework in mind.

● Have a vocabulary to talk about different parts of
web frameworks.

● Understand some of the fundamental design
patterns used by frameworks.

● Know how to navigate a Rails project.

Web Requests

When you type a URL into your
browser, a client, your computer
issues a web request.

A server on the other side
handles processing your request
and builds a response.

Web Requests

Client
(your computer)

Web Server
(their computer)

Request

Response

● HyperText Transfer Protocol (HTTP) is the
language used to issue and respond to web
requests.

HyperText Transfer Protocol (HTTP)

HTTP contains verbs for distinguishing between different
types of requests:

● GET - request a web page
e.g. GET http://www.reddit.com/r/todayilearned

● POST - send some resource data to a website
e.g. make a new post on reddit

● PUT - update a resource on a website
e.g. make an edit to a post

● DELETE - remove a resource from a website
e.g. delete a post

State and HTTP

Imagine having a conversation
with someone who never
remembers anything you've
already said.

This communication is stateless,
i.e., no context is remembered.

Need a way to remind people of
what was spoken before.

State and HTTP

HTTP is a stateless protocol. We use
cookies, URL variables, as well as other
methods to save state.

State is any stored information that may
change over time.

http://www.google.com/search?q=reddit;

Databases

Application servers keep track of state (e.g. note accounts,
forum posts, likes) by Creating, Reading, Updating and
Deleting (CRUD) data stored as records in a database.

Stored information enables websites like Amazon.com to
remember what you've previously bought.

Client
(your computer) Web Server

Request

Response Database

Generic Web Framework Pattern

notes issue web requests to a server, and that
server in turn looks up and (maybe) changes
data stored in the database.

The server then sends a response to the client,
possibly displaying the new data.

Client
(your computer) Web Server

Request

Response Database

1 2 3

456

Responding to Web Requests

A Restful API (a design pattern) is a way to
design your URLs to give web requests a
standardized form.

Restful APIs create a mapping between HTTP
Verbs, Universal Resource Identifiers (URIs),
and actions taken by the web server to satisfy
requests.

API = Application Programmer's Interface

Restful URLs (API)

HTTP Verb URI Action Purpose
GET /notes index List all notes on

website

GET /notes/1 show Display details
about note 1

POST /notes create Create a new note

PUT /notes/1 update Update note 1

DELETE /notes/1 destroy Delete note 1

Example:

Responding to Web Requests

Client
(your computer) Web Server

Request

Response Database

Router

Web requests are differentiated by which HTTP verb
and which URL was used.

Web servers use a router to decide what action to
take in response to a particular request.

Building Responses

Response
Generator

Client
(your computer) Web Server

Request

Response Database

Router

The last step in handling a request is building a
response.

Responses

Responses come in many forms:

● Web Page (HTML/CSS)
● Dynamic Content (JS/PHP)
● Data (JSON/XML)

HTML/CSS Responses

● Often, responses will be
partly note-specific, partly
static.

● Templates allow us to write
the static parts of web pages
once, and fill in the note-
specific parts later.

HTML Templates

<html>

<body>

 <h1>Welcome! <%= note.name %></h1>

 <p>Our site allows you to....</p>

</body>

</html>

Putting it all together...

Response
Generator

Client
(your computer) Web Server

Request

Response Database

Router
1

2
3 4

5

6

78

Putting it all together...

The common name for this pattern is Model,
View, Controller.

Response
Generator

Web Server Database

Router

Controller
Model

View

MVC in Rails

app/views/*

Client
(your computer)

app/controllers/*

Request

Response

app/models/*

Router

(config/routes.rb)

MVC in Rails

rails start sample_app

$ rails start <app_name>

Creates a directory <app_name>, with several
folders beneath to help you organize all of your
code.

Note: '$' means a command prompt.

rails start sample_app

$ ls sample_app
Gemfile Rakefile config.ru lib script

Gemfile.lock app db log test

README.rdoc config doc public tmp

$ ls sample_app/app
assets controllers helpers mailers models
views

Starting the Server
$ rails s[erver]

More information:

$ rails server --help

Note: [] = optional text

Static Pages

Type localhost:3000 into your browser.
Currently, this shows the file public/index.html

Create the page public/hello.html:
<html>

 <body>

 <h1>Hello World!</h1>

 </body>

</body>

Can be viewed at localhost:3000/hello.html

Static Pages

Limitations:

● No templating
● Truly static (can't have any note-specific

content).

A Static Pages Controller

$ rails g[enerate] controller StaticPages home about

 create app/controllers/static_pages_controller.rb

 route get "static_pages/about"

 route get "static_pages/home"

 invoke erb

 create app/views/static_pages

 create app/views/static_pages/home.html.erb

 create app/views/static_pages/about.html.erb

 ...

This creates our first controller. This will enable us to make use of
templates, which will make it much easier to add site-wide content to our
site (e.g. a navigation bar).

Static Pages

File: app/views/static_pages/about.html.erb

.erb stands for embedded ruby. It enables us
to write ruby code inside out HTML pages,
which allows us to add dynamic content (more
on this later).

Aside: The Asset Pipeline

html.erb

css.scss

js.coffee

Assets are compiled (e.g. translated into a new form). The
file-types determine which kinds of compilation are
attempted. Files are read from right to left (so .html.erb is
first run through the embedded ruby compiler).

In production, this enables us to do JS + CSS minification,
a process by which files are made smaller so that they take
less time to send to the client.

Routes

File: config/routes.rb
...
root to: 'static_pages#home'

match 'about', to: 'static_pages#about'

...

These lines make localhost:3000 point to
app/views/static_pages/home.html.erb and localhost:
3000/about point to app/views/static_pages/about.
html.erb.

Note: need to delete public/index.html

Adding a new static page

File: app/controllers/static_pages_controller.rb

def time

end

File: config/routes.rb

 match 'time', to: 'static_pages#time'

Adding a new static page

Go to localhost:3000/time, no page yet!
(template is missing).

File: app/views/static_pages/time.html.erb

<h1>The time is now: </h1>

Adding a template

File: app/view/static_pages/time.html.erb

<h1>The time is now: <%= Time.now %></h1>

But, this isn't very pretty... We need a way to
format the time to make it more readable.

Adding dynamic content

$ rails c[onsole]

> Time.now

> Time.now.stftime

Documentation: http://www.ruby-doc.org/core-
2.0/
File: app/views/static_pages/time.html.erb
<h1>The time is now: <%= Time.now.strftime
('%B %d, %Y: %H:%M:%S') %></h1>

http://www.ruby-doc.org/core-2.0/
http://www.ruby-doc.org/core-2.0/
http://www.ruby-doc.org/core-2.0/

Adding dynamic content

File: app/views/static_pages/time.html.erb

<h1>The time is now:</h1>

<h2>

<%= Time.now.strftime('%B %d, %Y: %H:%M:%S')
%>

</h2>

Gemfile

A Gemfile enables you to specify the
dependencies (other software libraries) that
your code uses. In ruby, packages of software
can be installed as gems.

Adding styling with Bootstrap

File: Gemfile

group :assets do

...

gem 'bootstrap-sass', '2.1'

...

end

Adding styling with Bootstrap

Install new gems added to Gemfile:
$ bundle install

File: app/assets/stylesheets/custom.css.scss

@import "bootstrap"

Note: server restart needed

Styling with Bootstrap

File: app/views/static_pages/time.html.erb

<div class="container">

<div class="hero-unit">

<h1>The time now is:</h1>

<h2 class="centered">...</h2>

 </div>

</div>

File: app/assets/stylesheets/custom.css.scss

.centered {

text-align: center;

}

Aside: The Asset Pipeline

For development, we want to make sure that our files are
easy to read in the browser. For production, we want files
to be as small as possible, even if they aren't readable.

$ rails s -e production

$ rake assets:precompile

$ rails s -e production

File: config/environments/production.rb
config.assets.compile = true

Aside: The Asset Pipeline
$ rake assets:precompile

rails s -e production

Now, all of our JS and CSS are compiled into
just two files, that are basically impossible to
read (this has the added benefit of somewhat
protecting intellectual property (IP)).

Partials

File: app/views/layouts/application.html.erb
This file gives us structure for the entire site.
Add this line:

<%= render 'layouts/header %>

File: app/views/layouts/_header.html.erb
<%= render 'layouts/header %>

Header Partial

File: app/views/layouts/_header.html.erb
(see: http://twitter.github.com/bootstrap/examples/starter-template.html)

<div class="navbar navbar-inverse navbar-fixed-top">

<div class="navbar-inner">

<div class="container">

<div class="nav-collapse collapse">

<ul class="nav">

Home

Time

</div>

</div>

</div>

</div>

Cleaning up home

What do we edit to make localhost:3000 look
better?

Where do we add it?

<div class="container">

<div class="hero-unit">

<%= yield %>

</div>

</div>

File: app/views/layouts/application.html.erb

Adding models

We're going to make a simple note taking app.
It allows notes to leave notes on a page.

notes can go look at notes, edit specific ones,
or leave more.

Sketching out Notes

A note has:
a. Title (string)
b. Content (string)
c. Author (string (for now...))

Form: rails g model [model_name] [attr]:
[data_type]
$ rails g model Note title:string content:string author:string

 invoke active_record

 create db/migrate/20130405164422_create_notes.rb

 create app/models/note.rb

 invoke test_unit

 create test/unit/note_test.rb

 create test/fixtures/notes.yml

Migrations
db/migrate/20130405164422_create_notes.rb

Migration files allow us to write ruby code to
manipulate our database. This saves us from
having to learn a specific syntax for a specific
database, and enables us to switch between
different databases easily.

sqlite3 is used in development by default

The Notes Model

File: app/models/note.rb

File: config/routes.rb

resources :notes

The resources line gives us some default URLs for
manipulating notes. Notice we wrote :notes instead of :
note. In general, Ruby allows us to use pluralization where
it is appropriate.

Notes Routes

Shows all URIs your router responds to:
$ rake routes

...
notes GET /notes(.:format) notes#index

 POST /notes(.:format) notes#create

new_note GET /notes/new(.:format) notes#new

edit_note GET /notes/:id/edit(.:format) notes#edit

note GET /notes/:id(.:format) notes#show

 PUT /notes/:id(.:format) notes#update

 DELETE /notes/:id(.:format) notes#destroy

...

Creating Notes

$ rails c[onsole]

> n = Note.new # should cause a DB error

Need to first create Notes table:
$ rake db:migrate

$ rails c

> n = Note.new

> n = Note.new title: "Hello, There", author:
"Samuel Messing", content: "Lorem ipsum
dolor..."

> n.save

Model Validations

File: app/models/note.rb
validates :title, presence :true

before_save do |note|

note.title = note.title.titlecase

end

$ rails c

> n = Note.new title: "MY AWESOMEST NOTE"

> n.save

> n.title

=> "My Awesomest Note"

Notes URLs

HTTP Verb URI Action Purpose
GET /notes index List all notes on

website

GET /notes/1 show Display details
about note 1

POST /notes create Create a new note

PUT /notes/1 update Update note 1

DELETE /notes/1 destroy Delete note 1

Example:

Notes Controller

Why does localhost:3000/notes not
currently work?

No controller! (The part of the server
that actually builds the response).

Form:
rails generate controller <ControllerName>

Notes Controller
rails g controller Notes

 create app/controllers/notes_controller.rb

 invoke erb

 create app/views/notes

 invoke test_unit

 create test/functional/notes_controller_test.rb

 invoke helper

 create app/helpers/notes_helper.rb

 invoke test_unit

 create test/unit/helpers/notes_helper_test.rb

 invoke assets

 invoke coffee

 create app/assets/javascripts/notes.js.coffee

 invoke scss

 create app/assets/stylesheets/notes.css.scss

Notes Controller

Now localhost:3000/notes gives us an action
undefined error. Need to add the action "index"
to the notes controller.

File: app/controllers/notes_controller.rb
def index

end

Notes Index Template

Now localhost:3000/notes gives us a template
not found error. Need to add an index template
to app/views/notes.

File: app/views/notes/index.html.erb

<ul class="notes-list">

<% @notes.each do |note| %>

<h1><%= note.title %></h1>

<h2>By <%= note.author %></h2>

<hr noshade/>

<p><%= note.content %></p>

<% end %>

Passing Notes into the template

Need to define @notes for the template. This is
done in the controller.

File: app/controllers/notes_controller.rb

def index

@notes = Note.all

end

Adding a form for new notes

$ rake routes

Visiting localhost:3000/notes/new gives us
errors.

How do we fix the first error?
Once it's fixed, how do we fix the second?

A form to make new notes
File: app/views/notes/new.html.erb

<%= form_for(@note) do |f| %>

<%= f.label :title %>

<%= f.text_field :title %>

<%= f.label :author %>

<%= f.text_field :author %>

<%= f.label :content %>

<%= f.text_field :content %>

<%= f.submit "Create note", class: "btn btn-large
btn-primary" %>

<% end %>

Controller Updates

File: app/controllers/notes_controller.rb

def create

@note = Note.new(params[:note])

if @note.save

do something...

else

render 'new'

end

end

Adding Error Feedback

$ rails c

> n = Note.new

> n.save

> n.errors

Rails by default adds an errors object to
models that have failed to be saved. This
enables us to give feedback to a user trying to
make a new note.

Adding Error Feedback

File: app/views/shared/_error_messsages.html.erb

<% if @note.errors.any? %>

 <div id="error_explanation">

 <div class="alert alert-error">

 The form contains <%= pluralize(@note.errors.
count, "error") %>.

 </div>

 <% @note.errors.full_messages.each do |msg| %>

 * <%= msg %>

 <% end %>

 </div>

<% end %>

Showing individual notes

We want to go to localhost:3000/notes/<note_id>
(e.g. localhost:3000/notes/3). Right now this doesn't
work.

File: app/controllers/notes_controller.rb

def show

@note = Note.find(params[:id])

end

What have we forgotten to do?

Note template

File: app/views/notes/show.html.erb

<h1><%= @note.title %></h1>

<h2>by <%= @note.author %></h2>

<hr noshade/>

<p><%= @note.content %></p>

MVC in Rails

Deleting Notes

File: app/views/notes/index.html.erb

<%= link_to("Delete", note, method: delete,
class: 'action') %>

Deleting Notes (cont'd)

File: app/controllers/notes_controller.rb

def destroy

@note = Note.find(params[:id])

@note.destroy

@notes = Notes.all

render 'index'

end

Not Covered

● Testing (this is HUGE)
● Security (ditto)
● Adding client-side code (JS)
● Handling data requests (JSON/XML)
● Deployment (AWS, Heroku)
● Version Control (git, subversion, etc.)

Resources

RailsCast
http://ruby.railstutorial.org/

Code from this lecture:
https://github.com/smessing/intro-rails-lecture

https://github.com/smessing/intro-rails-lecture
https://github.com/smessing/intro-rails-lecture

