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Topics for Today

� Document, Topic Clustering

� K-Means

� Mixture Models

� Expectation Maximization
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Document Clustering

� Previously we classified Documents into Two Classes

� Hockey (Class1) and Baseball (Class2)

� We had human labeled data

� Supervised learning

� What if we do not have manually tagged documents

� Can we still classify documents?

� Document clustering

� Unsupervised Learning
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Classification vs. Clustering

Supervised Training

of Classification Algorithm

Unsupervised Training 

of Clustering Algorithm
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Clusters for Classification

Automatically Found Clusters

can be used for Classification
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Document Clustering

?Baseball Docs

Hockey Docs

Which cluster does the new document

belong to? 
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Document Clustering

� Cluster the documents in ‘N’ clusters/categories

� For classification we were able to estimate parameters using 
labeled data

� Perceptrons – find the parameters that decide the separating 
hyperplane

� Naïve Bayes – count the number of times word occurs in the 
given class and normalize

� Not evident on how to find separating hyperplane when no 
labeled data available

� Not evident how many classes we have for data when we do 
not have labels
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Document Clustering Application
� Even though we do not know human labels automatically 

induced clusters could be useful
News Clusters
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Document Clustering Application

A Map of Yahoo!, Mappa.Mundi

Magazine, February 2000.

Map of the Market with Headlines

Smartmoney [2]



10

How to Cluster Documents with No 

Labeled Data?

� Treat cluster IDs or class labels as hidden variables

� Maximize the likelihood of the unlabeled data

� Cannot simply count for MLE as we do not know 

which point belongs to which class

� User Iterative Algorithm such as K-Means, EM
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K-Means in Words

� Parameters to estimate for K classes

� Let us assume we can model this data

� with mixture of two Gaussians

� Start with 2 Gaussians (initialize mu values)

� Compute distance of each point to the mu of 2 Gaussians and 
assign it to the closest Gaussian (class label (Ck))

� Use the assigned points to recompute mu for 2 Gaussians

Hockey

Baseball
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K-Means Clustering

Let us define Dataset in D dimension{x1, x2, ..., xN}

We want to cluster the data in Kclusters

Let us define rnk for each xn such that
rnk ∈ {0, 1} where k = 1, ...,K and
rnk = 1 if xn is assigned to cluster k

Let µk be D dimension vector representing clusterK
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Distortion Measure

J =
N∑

n=1

K∑

k=1

rnk||xn − µk||
2

Represents sum of squares of distances to mu_k from each data point

We want to minimize J
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Estimating Parameters

� We can estimate parameters by doing 2 step 

iterative process

� Minimize J with respect to

� Keep          fixed

� Minimize J with respect to 

� Keep           fixed

rnk
µk

µk
rnk

Step 1

Step 2
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� Optimize for each n separately by choosing          for k that 

gives minimum 

� Assign each data point to the cluster that is the closest

� Hard decision to cluster assignment

rnk

||xn − rnk||2

rnk = 1 if k = argminj ||xn − µj ||2

= 0 otherwise

rnk
µk

Step 1
� Minimize J with respect to

� Keep          fixed
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� J is quadratic in       . Minimize by setting derivative w.rt.  to 

zero 

� Take all the points assigned to cluster K and re-estimate the 

mean for cluster K

� Minimize J with respect to

� Keep           fixedrnk

µk
Step 2

µk µk

µk =

∑
n rnkxn∑
n rnk
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Document Clustering with K-means

� Assuming we have data from Homework 1 but with no labels 
for Hockey and Baseball data

� We want to be able to categorize a new document into one of 
the 2 classes (K=2)

� We can extract represent document as feature vectors

� Features can be word id or other NLP features such as POS 
tags, word context etc (D=total dimension of Feature vectors)

� N documents are available

� Randomly initialize 2 class means

� Compute square distance of each point (xn)(D dimension) to 
class means (µk)

� Assign the point to K for which µk is lowest

� Re-compute µk and re-iterate
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K-Means Example

K-means algorithm Illustration [1]
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Clusters
Number of documents

clustered together
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Mixture Models

� 1 Gaussian may not fit the data

� 2 Gaussians may fit the data better

� Each Gaussian can be a class category

� When labeled data not available we can treat class category 

as hidden variable

Mixture of Gaussians [1]
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Mixture Model Classifier

� Given a new data point find out posterior probability from each class

p(y|x) = p(x|y)p(y)
p(x)

p(y = 1|x) ∝ N (x|µ1,
∑

1)p(y = 1)
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Cluster ID/Class Label as Hidden 

Variables

� We can treat class category as hidden variable z

� Z is K-dimensional binary random variable in which zk = 1 and 0 for 

other elements

� Also, sum of priors sum to 1

� Conditional distribution of x given a particular z can be written as

p(x) =
∑
z p(x, z) =

∑
z p(z)p(x|z)

z = [00100...]

∑K
k=1 πk = 1

∑K
i=1 z

i = 1

P (x|z) =
∏K
k=1N (x|µk,

∑
k)

zk
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Mixture of Gaussians with Hidden Variables

p(x) =
K∑

k=1

πkN (x|µk,
∑

k)

Component of

Mixture

Mean CovarianceMixing

Component

• Mixture models can be linear combinations of other distributions as well

• Mixture of binomial distribution for example

p(x) =
∑K
k=1 πk

1

(2π)D/2
√
(|
∑
k |
exp(− 1

2
(x−µk)T

∑−1
k
(x−µk))

p(x) =
∑
z p(x, z) =

∑
z p(z)p(x|z)
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Conditional Probability of Label Given 

Data

� Mixture model with parameters mu, sigma and prior can 

represent the parameter

� We can maximize the data given the model parameters to find 

the best parameters

� If we know the best parameters we can estimate

p(zk = 1|x) = p(zk=1)p(x|zk=1)∑
K
j=1 p(zj=1)p(x|zj=1)

This essentially gives us probability of class given the data

i.e label for the given data point

=
πkN (x|µk ,

∑
k)∑

K
j=1 πjN (x|µj ,

∑
j)
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Maximizing Likelihood

� If we had labeled data we could maximize likelihood simply by 

counting and normalizing to get mean and variance of 

Gaussians for the given classes

� If we have two classes C1 and C2

� Let’s say we have a feature x

� x = number of words ‘field’

� And class label (y)

� y = 1 hockey or 2 baseball documents N(µ1,
∑

1)
N(µ2,

∑
2)

(30, 1)

(55, 2)

(24, 1)

(40, 1)

(35, 2)

…

Find out µi and
∑

i from data
for both classes

l =
∑N
n=1 log p(xn, yn|π, µ,

∑
)

l =
∑N
n=1 log πynN (xn|µyn ,

∑
yn
)
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Maximizing Likelihood for Mixture Model with 

Hidden Variables

� For a mixture model with a hidden variable 

representing 2 classes, log likelihood is 

l =
∑N
n=1 logp(xn|π, µ,

∑
)

=
∑N
n=1 log (π0N (xn|µ0,

∑
0)+π1N (xn|µ1,

∑
1))

l =
∑N
n=1 log

∑1
y=0N (xn, y|π, µ,

∑
)
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Log-likelihood for Mixture of Gaussians

log p(X|π, µ,
∑
) =

∑N
n=1 log (

∑k
k=1N (x|µk,

∑
k))

� We want to find maximum likelihood of the above log-

likelihood function to find the best parameters that maximize 

the data given the model

� We can again do iterative process for estimating the log-

likelihood of the above function

� This 2-step iterative process is called Expectation-Maximization
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Explaining Expectation Maximization

� EM is like fuzzy K-means

� Parameters to estimate for K classes

� Let us assume we can model this data

with mixture of two Gaussians (K=2)

� Start with 2 Gaussians (initialize mu and sigma values)

� Compute distance of each point to the mu of 2 Gaussians and assign it a soft 

class label (Ck)

� Use the assigned points to recompute mu and sigma for 2 Gaussians; but 

weight the updates with soft labels 

Hockey

Baseball

Expectation

Maximization
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Expectation Maximization

An expectation-maximization (EM) algorithm is used in statistics for 
finding maximum likelihood estimates of parameters in 
probabilistic models, where the model depends on unobserved 
hidden variables.

EM alternates between performing an expectation (E) step, which 
computes an expectation of the likelihood by including the latent 
variables as if they were observed, and a maximization (M) step, 
which computes the maximum likelihood estimates of the 
parameters by maximizing the expected likelihood found on the E 
step. The parameters found on the M step are then used to begin 
another E step, and the process is repeated.

The EM algorithm was explained and given its name in a classic 
1977 paper by A. Dempster and D. Rubin in the Journal of the 
Royal Statistical Society.
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Estimating Parameters

� E-Step

γ(znk) = E(znk|xn) = p(zk = 1|xn)

γ(znk) =
πkN (xn|µk,

∑
k)∑

K
j=1 πjN (xn|µj ,

∑
j)
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Estimating Parameters

� M-step

� Iterate until convergence of log likelihood

π′k =
Nk

N

log p(X|π, µ,
∑
) =

∑N
n=1 log (

∑k
k=1N (x|µk,

∑
k))

µ′k =
1
Nk

∑N
n=1 γ(znk)xn

∑′
k =

1
Nk

∑N
n=1 γ(znk)(xn − µ

′
k)(xn − µ

′
k)
T

where Nk =
∑N
n=1 γ(znk)
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EM Iterations

EM iterations [1]
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Clustering Documents with EM

� Clustering documents requires representation of 
documents in a set of features
� Set of features can be bag of words model

� Features such as POS, word similarity, number of 
sentences, etc

� Can we use mixture of Gaussians for any kind of 
features?

� How about mixture of multinomial for document 
clustering?

� How do we get EM algorithm for mixture of 
multinomial?
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EM Algorithm in General

� We want to find maximum likelihood solution for the 

model with latent variables

� For document clustering latent variable may represent 

class tags

� The method of expectation-maximization can be 

used for maximizing many flavors of functions with 

latent variables

� Let us look at general representation of EM 

algorithm
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General EM Algorithm

We want to maximize likelihood function p(X|θ)

Let the latent variables be Z

Joint distribution over observed

and hidden/latent variables is p(X,Z|θ)

~

~

~

p(X|θ) =
∑
z p(X,Z|θ)

log p(X|θ) = log(
∑
z p(X,Z|θ))

We want to maximize the log likelihood 

but 

Log likelihood not concave so cannot just derivative to zero
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� If we were given the class labels (values for hidden variables Z) we 

will have {X,Z} which is complete data set 

� maximization of complete-data log-likelihood would be simpler

� Even though we may not have real class labels we can get expected 

Z using posterior distribution

� We can then use this posterior distribution and find expectation of 

the complete-data log likelihood evaluated for some parameter θ

denoted by 

General EM Algorithm

p(Z|X, θ)

Q(θ, θold) =
∑
z p(Z|X, θ

old) log p(X,Z|θ)

Also known as

auxiliary function
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General EM Algorithm

� E-Step:

� M-Step:

p(Z|X, θold)

θnew = argmaxθ Q(θ, θ
old)

Q(θ, θold) =
∑
z p(Z|X, θ

old) log p(X,Z|θ)

where

We are using expected values

of hidden parameters to maximize

the log likelihood in M step, thus 

finding better parameters in each

iteration
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EM as Bound Maximization
� If we cannot maximize a log-likelihood function directly maximize it’s 

lower bound

� Lower bound takes the form

� Maximizing auxiliary function we showed before

Q(θ, θold) =
∑
z p(Z|X, θ

old) log p(X,Z|θ)

L(q, θ) = Q(θ, θold)− const

Entropy of q distribution, independent of θ

Maximizing auxiliary function [1]
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Clustering Algorithms

� We just described two kinds of clustering algorithms

� K-means

� Expectation Maximization

� Expectation-Maximization is a general way to 

maximize log likelihood for distributions with hidden 

variables

� For example, EM for HMM, state sequences were hidden

� For document clustering other kinds of clustering 

algorithm exists



40

Similarity

� While clustering documents we are essentially 

finding ‘similar’ documents 

� How we compute similarity makes a difference in the 

performance of clustering algorithm

� Some similarity metrics

� Euclidean distance

� Cross Entropy

� Cosine Similarity

� Which similarity metric to use?
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Similarity for Words

� Edit distance

� Insertion, deletion, substitution

� Dynamic programming algorithm

� Longest Common Subsequence

� Bigram overlap of characters

� Similarity based on meaning

� WordNet synonyms

� Similarity based on collocation
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Similarity of Text : Surface, Syntax and 

Semantics
� Cosine Similarity 

� Binary Vectors

� Multinomial Vectors

� Edit distance

� Insertion, deletion, substitution

� Semantic similarity

� Look beyond surface forms

� WordNet, semantic classes

� Syntactic similarity

� Syntactic structure

� Tree Kernels

� Many ways to look at similarity and choice of the metric is 
important for the type of clustering algorithm we are using
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Clustering Documents

� Represent documents as feature vectors

� Decide on Similarity Metric for computing similarity 

across feature vectors

� Use Iterative algorithm that maximize the log-

likelihood of the function with hidden variables that 

represent the cluster IDs
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Automatic Labeling of Clusters

� How do you automatically label the clusters

� For example, how do you find the headline that represent the 

news pieces in given topic 

� One possible way is to find the most similar sentence to the 

centroid of the cluster

Cluster Label 1

Cluster Label 2
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Clustering Sentences by Topic

� We can cluster documents, sentences or any 

segment of text 

� Similarity across text segments can take account of 

topic similarity

� We can still use our unsupervised clustering 

algorithm based on K-means or EM

� Similarity needs to be computed at the sentence level

� Useful for summarization, question answering, text 

categorization
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Summary

� Unsupervised clustering algorithms

� K-means

� Expectation Maximization

� EM is a general algorithm that can be used to 

estimate maximum likelihood of functions with 

hidden variables

� Similarity Metric is important when clustering 

segments of text
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