Statistical Methods for NLP

Semantics, Brief Introduction to Graphical Models

Sameer Maskey

Week 7, March 2010

Topics for Today

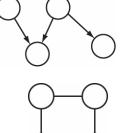
- Brief Introduction to Graphical Models
- Discussion on Semantics and its use in Information Extraction, Question Answering
- Programming for text processing

Graphical Models

- "Graphical Model is a family of probability distributions defined in terms of a directed or undirected graph [1]" Michael Jordan
- Nodes of the graph represent random variables and lack of arcs represent conditional independence

Graphical Models

- Joint probability distributions can be computed by taking products over functions defined on connected subset of nodes [1]
- Many different types of graphical models
 - Bayesian Networks
 - Markov Random Fields
 - Factor Graphs



Graphical Models

 Given a random variable X we can represent it as a node in a graph

 We can represent relationships between random variables by arcs

X1

 Computing joint probability may not be feasible in many cases, too many parameters to estimate

$$P(Y_k, X_1, X_2, ..., X_N)$$

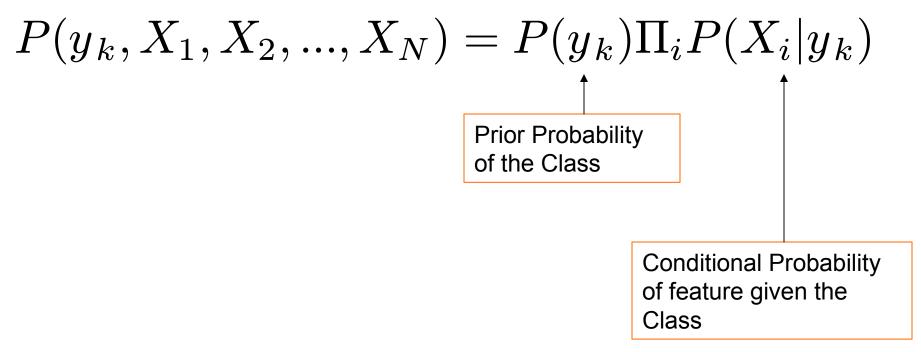
 For N binary variable joint probability table will have 2^N parameters to estimate Conditional Independence

 Given random variables X, Y,Z, X is conditionally independent of Y given Z if and only if

$$P(X|Y,Z) = p(X|Z)$$

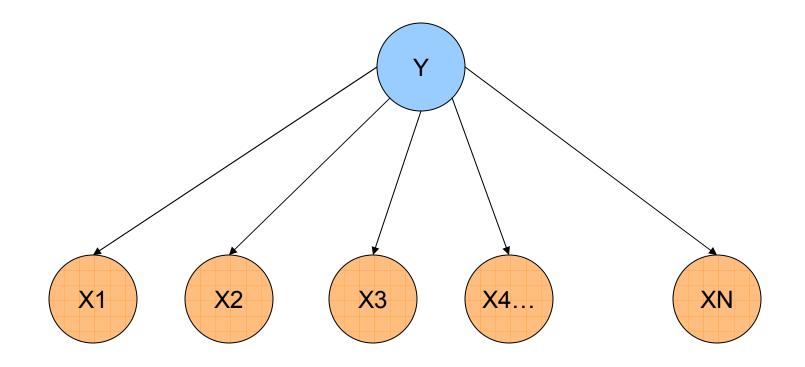
$$P(X|Y) = P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y) = P(X_1|Y)P(X_2|Y)$$

Conditional Independence in Naïve Bayes Classifier



Conditional Independence assumption lowered the number of parameters to estimate Graphical Models Can Efficiently Represent Conditional Independence

Graphical Model for Naïve Bayes Classifier



Questions We Ask When Modeling

- How can we find distributions that satisfy given independence property?
 - Representation
- How do we use independence property to efficiently make an inference
 - Inference
- How can we find independence properties in data
 - Learning

Bayesian Networks

- Type of graphical model
- Network structure G is Directed acylic graph
- Model represents factorization of the joint probability of all random variables
- Parent-Child relationship represented by an arrow starting at parent with destination to the child

$$p(x_1, x_2) = p(x_1)p(x_2)$$

$$x_1$$

$$x_2$$

$$p(x_1, x_2) = p(x_2|x_1)p(x_1)$$

$$x_1$$

$$x_2$$

Bayesian Networks

Graph G where G is acyclic and is defined as follows

$$G = (V, E)$$

$$V = X_1, X_2, \dots, X_N$$

$$E = (X_i, X_j) : i \neq j$$

$$X_3$$

$$X_1$$

$$X_2$$

Each node has a set of parents

Factorization of Joint Probability

 Factorization of joint probability reduces the number of parameters to estimate

$$P(x_{1},...,x_{n}) = \prod_{i=1}^{N} p(x_{i}|\pi_{i})$$

$$p(x_{1},x_{2},x_{3},x_{4},x_{5},x_{6}) =$$

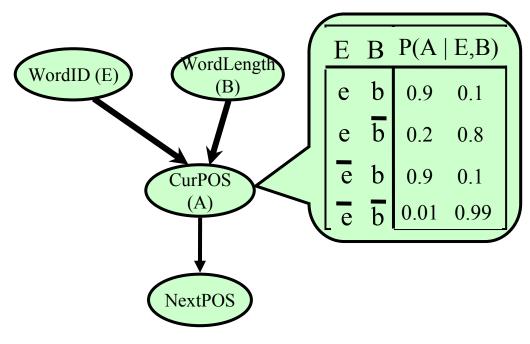
$$p(x_{1})p(x_{2}|x_{1})p(x_{3}|x_{2})p(x_{4}|x_{1})p(x_{5}|x_{3})p(x_{6}|x_{2},x_{5})$$

$$2^{1} \quad 2^{2} \quad 2^{2} \quad 2^{2} \quad 2^{2} \quad 2^{3}$$

Conditional Probability Tables in each node are smaller

Normalization of Probability Tables

 Normalization: Sum of conditional probabilities equals 1 for each setting of parents



Bayesian Network Example

Class Discussion

Semantics and Its Use in IE and QA

References

 [1] Jordan, M., "Graphical Models," Statistical Science, 2004