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Topics for Today

� Logistic Regression/Maximum Entropy 

Models
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Project

� Feb 23, 2010 (11:59pm) : Project Proposal 

� March 23, 2010 (4pm) : Project Status 

Update 

� April 20, 2010 (4pm) : Final Projects Due

� April 27, 2010 (4pm) : Class Presentations for 

the project
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Maximum Entropy Model

� Maximum Entropy Model has shown to perform well 

in many NLP tasks

� POS tagging [Ratnaparkhi, A., 1996]

� Text Categorization [Nigam, K., et. al, 1999]

� Named Entity Detection [Borthwick, A, 1999]

� Parser [Charniak, E., 2000]

� Discriminative classifier

� Conditional model P(c|d) 

� Maximize conditional likelihood

� Can handle variety of features
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Naïve Bayes vs. Maximum Entropy Models

� Trained by maximizing 
likelihood of data and class

� Features are assumed 
independent

� Feature weights set 
independently

� Trained by maximizing 
conditional likelihood of 
classes

� Dependency on features taken 
account by feature weights

� Feature weights are set 
mutually

Naïve Bayes Model Maximum Entropy Model
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Entropy

� Measure of uncertainty 

� Higher uncertainty equals higher entropy

� Degree of surprise of an event

� Why this formula in particular? Why log? 

H(p) = −
∑

x

p(x)log2 p(x)
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Exploring the Entropy Formulation

� How much information received when observing a random 

variable ‘x’ ?

� Highly improbable event = received more information

� Highly probable event = received less information

� Need h(x) that express information content of p(x); we want

1. Monotonic function of p(x)

2. If p(x,y) = p(x). p(y) when x and y are unrelated, i.e. statistically 

independent then we want h(x,y) = h(x) + h(y) such that 

information gain by observing two unrelated events is their sum
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Exploring Entropy Formulation (cont.)

h(x) = - log2 p(x)

� What kind of h(x) satisfies two conditions mentioned 

previously

� Log of base 10 is ok as well

Remember logarithm function
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Entropy Formula

� h(x) = - log2 p(x) : information observed

� Expected amount of information observed can be found by 

taking expectation with respect to p(x)

H(p) = −
∑
x p(x)log2p(x)



10

Comparing Entropy Across Distributions

[1] Uniform distribution has higher entropy
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Maximizing Entropy

� How can we find a distribution with maximum 
entropy?

� What about maximizing entropy of a distribution with 
a set of constraints?

� What does maximizing entropy has to do with 
classification task anyway?

� Let us first look at logistic regression to understand 
this
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Remember Linear Regression

� We estimated theta by setting square loss function’s 

derivative to zero

yj = θ0 + θ1xj

yj =
∑N
i=0 θixij where x0j = 1

N is the number of dimensions where

each input lives in 
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Regression to Classification

� We also looked at why linear regression may not work well if ‘y’ are 

binary

� Output (-infinity to +infinity) is not limited to class labels (0 and 1)

� Assumption of noise (errors) normally distributed

� Train Regression and threshold the output

� If f(x) >= 0.7 CLASS1

� If f(x) < 0.7 CLASS2

� f(x) >= 0.5 ?

f(x)>=0.5?

Happy/Good/ClassA

Sad/Not Good/ClassB

1
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Ratio

� Instead of thresholding the output we can take the ratio of two 

probabilities

� Ratio is odds of predicting y=1 or y=0

� E.g. for given ‘x’ if p(y=1) = 0.8 and p(y=0) = 0.2

� Odds = 0.8/0.2 = 4

� Better?

� We can make the linear model predict odds of y=1 instead of ‘y’

itself

p(y=true|x)
p(y=false|x)

=
∑N
i=0 θi xi
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Log Ratio

� LHS is between 0 and infinity, we want to be able to handle –

infinity to +infinity which RHS can produce

� If we take log of LHS, it can also range between –infinity and 

+ve infinity

log( p(y=true|x)
p(y=false|x)

)

log( p(y=true|x)
(1−p(y=true|x)

)

p(y=true|x)
p(y=false|x)

=
∑N
i=0 θi xi

logit(p(x)) = log p(x)
1−p(x)
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Logistic Regression

� Logistic Regression: A Linear Model in which we 

predict logit of probability instead of probability

log( p(y=true|x)
(1−p(y=true|x)

) =
∑N
i=0 θi × xi

log( p(y=true|x)
(1−p(y=true|x)

) = w · f
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Logistic Regression Derivation

log( p(y=true|x)
(1−p(y=true|x)

) = w · f

p(y=true|x)
(1−p(y=true|x)

= exp(w · f)

p(y = true|x) = exp(w · f)−p(y = true|x)exp(w · f)

p(y= true|x)+p(y= true|x)exp(w · f) = exp(w · f)

p(y = true|x) = exp(w·f)
1+exp(w·f)

p(y = true|x) = (1− p(y = true|x)exp(w · f)
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Logistic Regression

p(y = true|x) =
exp(

∑N
i=0 θixi)

1+exp(
∑

N
i=0 θixi)

p(y = false|x) = 1
1+exp(

∑
N
i=0
θixi)

For notation convenience for later part of the lecture replace theta 

with lambda and x with f where f is an indicator function

p(y = true|x) =
exp(

∑N
i=0 λifi)

1+exp(
∑

N
i=0 λifi)

p(y = false|x) = 1
1+exp(

∑
N
i=0
λifi)
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Logistic Regression for Multiple Classes

� We can also have logistic regression for multiple 

classes

� Normalization has to take account of all classes

p(c|x) =
exp(

∑N
i=0 λcifi)∑

c′∈C exp(
∑

N
i=0 λc′ifi)
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Exponential Models

� Turns out logistic regression is just a type of 

exponential model

� Linear combination of weights and features to 

produce a probabilistic model

p(c|x) =
exp(

∑N
i=0 λcifi)∑

c′∈C exp(
∑

N
i=0 λc′ifi)
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How Can We Estimate Weights

� How to estimate weights (Lambdas)

� For linear regression computed loss function and found 

derivative to zero

� We can estimate weights by maximizing (conditional) 

likelihood of data according to the model

So why did we talk all about logistic regression when 

we were trying to learn Maximum Entropy Models?

Let’s find out
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Maximum Entropy

� We saw what entropy is 

� We want to maximize entropy

� Maximize subject to feature-based 
constraints

� Feature based constraints help us bring 
the model distribution close to empirical 
distribution (data)

� In other words it increases maximum 
likelihood of data given the model but 
makes the distribution less uniform

H

Pheads

Fair coin has the highest

entropy

H(p) = −
∑
x p(x)log2p(x)
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Constraints on a Entropy Function 

Figure below is from Klein, D. and Manning, C., Tutorial [1]
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Features 

� We have seen many different types of features

� Count of words, length of docs, etc

� We can think of features as indicator functions that 

represent co-occurrence relation between input 

phenomenon and the class we are trying to predict

fi(cd) = φ(d) ∧ cd = ci
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Example: Features for POS Tagging

� f1(c,d) = { c=NN Λ curword(d)=book Λ

prevword(d)=to}

� f2(c,d) = { c=VB Λ curword(d)=book Λ

prevword(d)=to}

� f3(c,d) = { c=VB Λ curword(d)=book Λ

Λ prevClass(d)=ADJ}
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Maximum Entropy Example

NN JJ NNS VB

1/4 1/4 1/4 1/4

Add a constraint P(NN) + P(JJ) + P(NNS)  = 1

1/3 1/3 1/3 0

Add another constraint P(NN) + P(NNS)  = 8/10

4/10 2/10 4/10 0

Given Event space

Maximum Entropy Distribution
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Expectation of a Feature

� We can count the features from the labeled set of 

data

� Expectation of a feature given the trained model

Empirical(fi) =
∑

(c,d)∈observed(C,D) fi(c, d)

E(fi) =
∑

(c,d)∈(C,D) p(c, d)fi(c, d)
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Maximization with Constraints

maxp(x)H(p) = −
∑
x p(x)logp(x)

∑
x p(x) = 1

s.t.
∑
x p(x)fi(x) =

∑
x
˜p(x)fi(x), i = 1...N
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Solving MaxEnt

� MaxEnt is a convex optimization problem with 

concave objective function and linear 

constraints

� We have seen such optimization problems 

before

� Solved with Lagrange multipliers
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Lagrange Equation

L(p, λ) = −
∑
x p(x)logp(x) + λ0[

∑
x p(x)− 1]+

∑N
i=1 λi[

∑
x p(x)fi(x)−

∑
x
˜p(x)fi(x)]

Lagrangian gives us unconstrained 

optimization as constraints are built into the 

equation. We can now solve it by setting 

derivatives to zero
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Maximum Entropy and Logistic Regression

� This unconstrained optimization problem is a dual 

problem equivalent to estimating maximum 

likelihood of logistic regression model we saw before

Maximizing entropy subject to our constraints 

Is equivalent to

Maximum likelihood estimation over exponential family of        pλ(x)
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Maximum Entropy and Logistic Regression

“Exponential Model for Multinomial Logistic Regression, when trained

according to the maximum likelihood criterion, also finds the 

Maximum Entropy Distribution subject to the constraints

from the feature function” [2]
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Finding Maximum Likelihood of our Conditional 

Models (Multinomial Logistic Regression)

P(C|D,λ) =
∑

(c,d)∈(C,D)

log
exp

∑
i λifi(c,d)∑

c′ exp
∑
i λifi(c

′, d)

P(C|D,λ) =
∑

(c,d)∈(C,D)

logp(c|d,λ)

(C|D,λ) =
∏

(c,d)∈(C,D)

p(c|d,λ)
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Maximizing Conditional Log Likelihood

P(C|D,λ) =
∑

(c,d)∈(C,D)

−
∑
(c,d)∈(C,D) log

∑
c′ exp

∑
i λifi(c

′, d)

logexp
∑
iλifi(c,d)

∑

(c,d)∈(C,D)

fi(c, d)−
∑

(c,d)∈(C,D)

∑

c′

P (c′|d, λ)fi(c
′, d)∂log(P |C,λ)

∂λi
=

Empirical count (fi, c) Predicted count (fi, λ)

Optimal parameters are obtained when empirical expectation equal predicted expectation

Taking derivative and setting it to zero
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Finding Model Parameters
� We saw that optimum parameters are obtained when 

empirical expectation of a feature equals predicted 
expectation

� We are finding a model having maximum entropy and 
satisfying constraints for all features fj

� Hence finding the parameters of maximum entropy 
model entails to maximizing conditional log-likelihood 
and solving it
� Conjugate Gradient Descent

� Quasi Newton’s Method

� A simple iterative scaling
� Features are non-negative (indicator functions are non-negative)

� Add a slack feature

� where

Ep(fj) = E(̃p)(fj)

M = maxi,c
∑m
j=1 fj(di, c)

fm+1(d, c) =M −
∑m
j=1 fj(d, c)
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Generalized Iterative Scaling

� Empirical Expectation

� Initialize m+1 lambdas to 0

� Loop Until Converged

� End loop

Ep̃(fj) =
1
N

N∑

i=1

fj(di, ci)

Ept(fj) =
1
N

N∑

i=1

K∑

k=1

P (ck|di)fj(di, ck)

λt+1j = λtj +
1
M
log(

Ep̃(fj)
Ept (fj)

)
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Summary

� Logistic Regression

� Maximize conditional log-likelihood to estimate parameters

� Maximum Entropy Model

� Maximize entropy with feature constraints

� Constrained maximization

� Solving for H(p) with maximum entropy is equivalent 

to maximizing conditional log-likelihood for our 

exponential model
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