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Bhuvana Ramabhadran, Stanley Chen, Michael Picheny
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Project Proposal

� Proposal due in 1 week (Feb 23)

� 1 Page
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Topics for Today

� Short Detour: Unsupervised Learning

� Hidden Markov Models

� Forward-Backward algorithm
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Sequential Stochastic Models

� We saw in the last lecture that we can add memory to 

learning model by adding dependencies across classification 

labels over time

� Probabilistic models that can model such dependencies 

across time is useful for many tasks

� Information Extraction

� Speech Recognition

� Computational Biology

� We can build Markov model for underlying sequence of labels 

and associate the observations with each state
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Hidden Markov Models

� We can define HMM by 

� State :

� Transition Probabilities

� Emission Probabilities

� Observation Sequence

� Start and Final State

T = a11a12ann

Q = q1q2qN

O = o1o2oT

B = bi(ot)

q0, qF
Markov Model with 5 states

with 10 possible observation 

in each state will have 

T and B of what sizes?
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Three problems of general interest for 
an HMM
3 problems need to be solved for HMM’s:

� Given an observed output sequence X=x1x2..xT , compute  Pθ(X) for a given model 
θ  (scoring)

� Given X, find the most likely state sequence (Viterbi algorithm)

find best                                       using           

� Estimate the parameters of the model (training) using n  observed sequences of 
varying length

bi(ot|St)q(St|St−1) ,

P (x1, x2, , xT ; θ)

x̂1, ..., x̂TŜ1, ..., ŜT
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Problem 1: Forward Pass Algorithm

Let αt(s) for t ε {1..T} be the probability of being in state s at time t and having 

produced  output x1
t=x1..xt   

αt(s) = Σs’ αt-1(s’)  Pθ(s|s’) Pθ (xt|s’->s)  + Σs’ αt(s’)   Pθ(s|s’)

1st term: sum over all output producing arcs         2nd term:  all null arcs

This is called the Forward Pass algorithm.

This calculation allows us to solve Problem 1 efficiently:

N^2 * T

N^T
P (x1, x2, ..., xT ; θ) =

∑
s αT (s)

P (x1, x2, ..., xT ; θ) =
∑

s1,...ST
P (x1, x2, ..., xT , s1, s2, ..., sT )
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Problem 1: Trellis Diagram, cont’d
Boundary condition:  

Score of (state 1, φ) = 1.

Basic recursion: 

Score of node i = 0

For the set of predecessor nodes j:

Score of node i += score of predecessor node j  x                                                    

the transition probability from j to i  x

observation probability along            

that transition if the transition is not null.
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Example for Problem 
1,cont’d

Let’s enumerate all possible ways of producing x1=a, assuming we 

start in state 1.

0.7 

0.3

0.8 

0.2

1 2 3

0.5

0.3

0.2

0.4

0.5

0.1

0.3 

0.7

0.5 

0.5

a

b
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Problem 1: Trellis Diagram
� Now let’s accumulate the scores. Note that the inputs to a 
node are from the left and top, so if we work to the right and 
down all necessary input scores will be available.

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       aa                     aab             aabb

S
ta
te
:  1
                 2

                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1
.1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

1

.2

.02

0.4

.21+.04+.08=.33

.033+.03=.063

.16

.084+.066+.32=.182

.0495+.0182=.0677
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Problem 2

Given the observations X, find the most likely state sequence 

This is solved using the Viterbi algorithm

Preview:

The computation is similar to the forward algorithm, except we use      

max( ) instead of +

Also, we need to remember which partial path led to the max
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Problem 2: Viterbi algorithm
Returning to our example, let’s find the most likely path for producing 

aabb.  At each node, remember the max of predecessor score x 

transition probability. Also store the best predecessor for each node.

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       aa                     aab             aabb

S
ta
te
:  1
                 2

                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1
.1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

1 0.4

max(.03 .021) Max(.0084 .0315) 

max(.08 .21 .04)

.16 .016

.0294

max(.084 .042 .032)

.0016

.00336

.00588

.0168



EECS E6870

Speech Recognition Lecture 4: Hidden Markov Models 13

Problem 2: Viterbi algorithm, cont’d

Starting at the end, find the node with the highest score.  

Trace back the path to the beginning, following best arc 

leading into each node along the best path.

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       aa                     aab             aabb

S
ta
te
:  1
                 2

                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1
.1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

.03 .0315

.21

.16 .016

.0294

.0016

.00336.0168
0.2

0.02

1 0.4

.084 

.00588
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Detour: Unsupervised Learning

� Given the training data with class labels we saw we 

can compute Maximum Likelihood estimate for 

Naïve Bayes by getting relative frequencies of the 

word in the class 

� What if we do not have class labels?

� Can we still train the model?
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Classification with Known Class Labels

Hockey Baseball

~ Maximize the log-likelihood of data given our model

~ Simply counting and normalizing for some models
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Classification with Hidden Variables

Hockey

Baseball

~ Do not know the class labels

~ Treat class labels as hidden variables

~ Maximize log-likelihood of unlabeled training data

~ Cannot simply count for MLE as we do not know

which point belongs to which class
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Explaining of K-means

� Parameters to estimate for K classes

� Let us assume we can model this data

with mixture of two Gaussians

� Start with 2 Gaussians (initialize mu values)

� Compute distance of each point to the mu of 2 Gaussians and 

assign it to the closest Gaussian (class label (Ck))

� Use the assigned points to recompute mu for 2 Gaussians

Hockey

Baseball
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Explaining Expectation Maximization

� EM is like fuzzy K-means

� Parameters to estimate for K classes

� Let us assume we can model this data

with mixture of two Gaussians

� Start with 2 Gaussians (initialize mu and sigma values)

� Compute distance of each point to the mu of 2 Gaussians and 

assign it a soft class label (Ck)

� Use the assigned points to recompute mu and sigma for 2 

Gaussians; but weight the updates with soft labels 

Hockey

Baseball

Expectation

Maximization
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Expectation Maximization

An expectation-maximization (EM) algorithm is used in statistics for 
finding maximum likelihood estimates of parameters in 
probabilistic models, where the model depends on unobserved 
hidden variables.

EM alternates between performing an expectation (E) step, which 
computes an expectation of the likelihood by including the latent 
variables as if they were observed, and a maximization (M) step, 
which computes the maximum likelihood estimates of the 
parameters by maximizing the expected likelihood found on the E 
step. The parameters found on the M step are then used to begin 
another E step, and the process is repeated.

The EM algorithm was explained and given its name in a classic 
1977 paper by A. Dempster and D. Rubin in the Journal of the 
Royal Statistical Society.
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The Baum-Welch algorithm

The Baum-Welch algorithm is a generalized expectation-
maximization algorithm for computing  maximum likelihood 
estimates for the parameters of a Hidden Markov Model  when 
given only observations as training data. 

It is a special case of the EM algorithm for HMMs.
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Problem 3

Estimate the parameters of the model. (training)

� Given a model topology and an output sequence, find the transition 

and output probabilities such that the probability of the output

sequence is maximized.
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Problem 3 – State Observable 
Example

� Assume the output sequence X=abbab, and we start in state 1.

� Observed counts along transitions:

a

b b

a

a

b

1

2 1

0

1

0
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Problem 3 – State Observable 
Example
Observed counts along transitions:

Estimated transition probabilities. (this is of course too little data to estimate 
these well.)

1

2 1

0

1

0

0.33

0.67 1

0

1

0

�Recall in the state-observable case, we 

simply followed the unique path, giving a 

count to each transition.
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Generalization to Hidden MM case

State-observable

� Unique path

� Give a count of 1 to each

transition along the path

Hidden states

� Many paths

� Assign a fractional count to each 

path

� For each transition on a given 

path, give the fractional count for 

that path

� Sum of the fractional counts =1 

� How to assign the fractional 

counts??
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How to assign the fractional counts to 
the paths

� Guess some values for the parameters

� Compute the probability for each path using 

these parameter values

� Assign path counts in proportion to these 

probabilities

� Re-estimate parameter values

� Iterate until parameters converge
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Estimating Transition and Emission 
Probabilities 

âij
Expected number of transitions from state i to j

Expected number of transitions from state i
=

b̂j (xt)
Expected number of times in state j and observing symbol xt

Expected number of time in state j
=

aij =
count(i→j)∑
q∈Q count(i→q)
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Problem 3: Enumerative Example –
Assigning fractional counts

� For the following model, estimate the transition probabilities and the 

output probabilities for the sequence X=abaa

a1

a2

a3

a4

a5
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Problem 3: Enumerative Example -
Assigning fractional counts

� Initial guess: equiprobable

1/3

1/3

1/3

1/2

1/2

½

½ ½

½

½

½

½

½
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Problem 3: Enumerative 
Example cont’d

1/3

1/3

1/3

1/2

1/2

½

½ ½

½

½

½

½

½� 7 paths corresponding to an output of abaa

� 1.                        pr(X,path1)=1/3x1/2x1/3x1/2x1/3x1/2x1/3x1/2x1/2=.000385

� 2.                        pr(X,path2)=1/3x1/2x1/3x1/2x1/3x1/2x1/2x1/2x1/2=.000578

� 3.                        pr(X,path3)=1/3x1/2x1/3x1/2x1/3x1/2x1/2x1/2=.001157

� 4.                        pr(X,path4)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2x1/2=.000868
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Problem 3: Enumerative 
Example cont’d

� 7 paths:

� 5.                        pr(X,path5)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2=.001736

� 6.                        pr(X,path6)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.001302

� 7.                        pr(X,path7)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.002604

� Pr(X) = Σi pr(X,pathi) = .008632

1/3

1/3

1/3

1/2

1/2

½

½ ½

½

½

½

½

½
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Problem 3: Enumerative 
Example cont’d

� Let Ci be the a posteriori probability of path i
� Ci = pr(X,pathi)/pr(X)
�

� C1 = .045    C2 = .067   C3 = .134    C4=.100   C5 =.201   C6=.150  C7=.301

� Count(a1)= 3C1+2C2+2C3+C4+C5  = .838
� Count(a2)=C3+C5+C7 = .637
� Count(a3)=C1+C2+C4+C6 = .363

� New estimates:
� a1 =.46       a2 = .34       a3=.20

� Count(a1,’a’) = 2C1+C2+C3+C4+C5  = .592   Count(a1,’b’)=C1+C2+C3=.246

� New estimates:  
� p(a1,’a’)= .71         p(a1,’b’)= .29

a1

a2

a3

a4

a5

a1= C(a1)/{C(a1) + C(a2) + C(a3)} 

1st term 2C1 because in abaa, last ‘a’ by

a5 so 2’a’s in aba
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Problem 3: Enumerative 
Example cont’d

� Count(a2,’a’) = C3+C7  = .436   Count(a2,’b’)=C5 =.201

� New estimates:  
� p(a2,’a’)= .68        p(a2,’b’)= .32

� Count(a4)=C2+2C4+C5+3C6+2C7 = 1.52
� Count(a5)=C1+C2+C3+C4+C5+C6+C7 = 1.00

� New estimates:  a4=.60     a5=.40
� Count(a4,’a’) = C2+C4+C5+2C6+C7 = .972   Count(a4,’b’)=C4+C6+C7=.553

� New estimates:  
� p(a4,’a’)= .64         p(a4,’b’)= .36

� Count(a5,’a’) = C1+C2+C3+C4+C5+2C6+C7 = 1.0  Count(a5,’b’)=0
� New estimates:  
� p(a5,’a’)= 1.0        p(a5,’b’)= 0

a1

a2

a3

a4

a5
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Problem 3: Enumerative Example 
cont’d
� New parameters

� Recompute Pr(X) = .02438  > .008632

� Keep on repeating…..

.46

.34

.20

.60

.40

.71

.29 .68

.32

.64

.36

1

0
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Problem 3: Enumerative Example 
cont’d
Step                                        Pr(X)

� 1                                        0.008632

� 2                                        0.02438

� 3                                        0.02508

� 100                                     0.03125004

� 600                                     0.037037037  converged

0

1

0

2/3

1/3

1

0

1/2

1/2

1

0
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Problem 3: Enumerative Example 
cont’d
� Let’s try a different initial parameter set

1/3

1/3

1/3

1/2

1/2

.6

.4 ½

½

½

½

½

½

Only

change
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Problem 3: Enumerative Example 
cont’d
Step                                        Pr(X)

� 1                                        0.00914

� 2                                        0.02437

� 3                                        0.02507

� 10                                       0.04341

� 16                                       0.0625  converged

1/2

1/2

0

1/2

1/2

0

1

1

0

1

0

1

0
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Problem 3: Parameter Estimation 
Performance

� The above re-estimation algorithm converges to a 

local maximum.

� The final solution depends on the starting point.

� The speed of convergence depends on the starting 

point.
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Problem 3: Forward-Backward 
Algorithm

� The forward-backward algorithm improves on the 

enumerative algorithm by using the trellis

� Instead of computing counts for each path, we 

compute counts for each transition at each time in 

the trellis.

� This results in the reduction from exponential 

computation to linear computation.
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Problem 3: Forward-Backward 
Algorithm
Consider transition from state i to j, trij

Let pt(trij,X) be the probability that trij is taken at time t, and the 

complete output is X.

pt(trij,X) = αt-1(i) aij bij(xt)  βt(j)

Si
Sj

αt-1(i) βt(j)

xt
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Problem 3: F-B algorithm cont’d

pt(trij,X) = αt-1(i) aij bij(xt)  βt(j)

where:

αt-1(i) = Pr(state=i, x1…xt-1) = probability of being in 
state i and having produced  x1…xt-1

aij = transition probability from state i to j

bij(xt) = probability of output symbol xt  along 
transition ij

βt(j) = Pr(xt+1…xT|state= j) = probability of producing 
xt+1…xT 
given you are in state j
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Problem 3: F-B algorithm cont’d

� Transition count ct(trij|X) = pt(trij,X) / Pr(X) 

� The β’s are computed recursively in a backward 

pass (analogous to the forward pass for the α’s)

βt(j) = Σk βt+1(k)  ajk bjk(xt+1)  (for all output producing 

arcs)

+ Σk βt(k)  ajk (for all null arcs) 
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Problem 3: F-B algorithm cont’d

� Let’s return to our previous example, and work out the trellis calculations

1/3

1/3

1/3

1/2

1/2

½

½ ½

½

½

½

½

½
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Problem 3: F-B algorithm, cont’d

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       ab                     aba             abaa

S
ta
te
:  1
                 2

                3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2

1/3x1/2

1/3x1/2

1/3x1/2

1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2
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Problem 3: F-B algorithm, cont’d

.083

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       ab                     aba             abaa

S
ta
te
:  1
                 2

                3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2

1/3x1/2

1/3x1/2

1/3x1/2

1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1

.33

0

.167

.306

.027

.076

Compute α’s. since forced to end at state 3, αT=.008632=Pr(X)

.113

.0046

.035

.028

.00077

.0097

.008632
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Problem 3: F-B algorithm, cont’d

0

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       ab                     aba             abaa

S
ta
te
:  1
                 2

                3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2

1/3x1/2

1/3x1/2

1/3x1/2

1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

.0086

.0039

0

.028

.016

.076

0

Compute β’s. 

.0625

.083

.25

0

0

0

1
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Problem 3: F-B algorithm, cont’d

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       ab                     aba             abaa

S
ta
te
:  1
                 2

                3

.547 .246 .045 0

.151 .101 .067 .045 0

.302
.201

.134
0

.151 .553 .821 0

00 0 1

Compute counts. (a posteriori probability of each transition)
ct(trij|X) = αt-1(i) aij bij(xt)  βt(j)/ Pr(X)

.167x.0625x.333x.5/.008632
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Problem 3: F-B algorithm cont’d

� C(a1)=.547+.246+.045

� C(a2)=.302+.201+.134

� C(a3)=.151+.101+.067+.045

� C(a4)=.151+.553+.821

� C(a5)=1

� C(a1,’a’)=.547+.045,  C(a1,’b’)=.246

� C(a2,’a’)=.302+.134,  C(a2,’b’)=.201

� C(a4,’a’)=.151+.821,  C(a4,’b’)=.553

� C(a5,’a’)=1,                C(a5,’b’)=0

a1

a2

a3

a4

a5
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Problem 3: F-B algorithm cont’d

Normalize counts to get new parameter values.

Result is the same as from the enumerative algorithm!!

.46

.34

.20

.60

.40

.71

.29 .68

.32

.64

.36

1

0
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Summary of Markov Modeling Basics

� Key idea 1: States for modeling sequences
Markov introduced the idea of state to capture the dependence on the past 
(time evolution). A state embodies all the relevant information about the past. 
Each state represents an equivalence class of pasts that influence the future in 
the same manner.

� Key idea 2: Marginal probabilities
To compute Pr(X), sum up over all of the state sequences than can produce X         

Pr(X) = Σs Pr(X,S)
For a given S, it is easy to compute Pr(X,S)

� Key idea 3: Trellis
The trellis representation is a clever way to enumerate all sequences. It uses 
the Markov property to reduce exponential-time enumeration algorithms to 
linear-time trellis algorithms.
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Reference

� http://www.cs.jhu.edu/~jason/papers/#tnlp02


