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Project Proposals

� Proposals due in 2 weeks (Feb 23)

� 1 Page
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Topics for Today

� Information Extraction

� Hidden Markov Models
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Information Extraction

�Extract relevant information from large 

amount of unstructured text

�Extracted information can be in structured 

form

� Can be used to populate databases for 

example

�We can define the kind of information we 

want to extract
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Examples of Information Extraction 
Tasks

� Named Entity Identification

� Relation Extraction

� Coreference resolution

� Term Extraction

� Lexical Disambiguation

� Event Detection and Classification
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Classifiers for Information Extraction

� Sometimes extracted information can be a sequence

� Extract Parts of Speech for the given sentence

� What kind of classifier may work well for this kind of 
sequence classification?

DET   VB   AA    ADJ   NN

This    is     a     good    book 
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Classification without Memory

Features

X

PREDICT

CLASS2CLASS1

Features

X

PREDICT

CLASS2CLASS1

Features

X

PREDICT

CLASS2CLASS1

Features

X

PREDICT

CLASS2CLASS1

… … PREDICT

CLASS2
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Classification without Memory

C

X1

C

X2

C

X3

C

book

C

XN

…

� C(t) (class) is dependent on current observations X(t) 

� C(t) can be POS tags, document class, word class, X(t) can be text based 

features

� Perceptron is an example of classifier without memory

P(NN|book) = 0.62

P(VB|book) = 0.14

P(ADV|book) = 0.004

…
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Probability Sequence Computation for 
Models without Memory
� A coin has probability of “heads” = p  ,  probability of “tails” = 1-p

� Flip the coin 10 times. Assume I.I.D. random sequence. There are 210

possible sequences.

� Sequence:     1    0  1   0     0      0    1   0     0    1 
Probability:     p(1-p)p(1-p)(1-p)(1-p) p(1-p)(1-p)p        =   p4(1-p)6

� Models without memory: Observations are Independent. Probability is the same 
for all sequences with 4 heads & 6 tails. Order of heads & tails does not matter in 
assigning a probability to the sequence, only the number of heads & number of 
tails

� Probability of 

� 0 heads         (1-p)10 

� 1  head          p(1-p)9

…
10 heads         p10
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If p is known, then it is easy to compute the probability of the sequence.   Now 
suppose p is unknown.

We toss the coin N times, obtaining H heads and T tails, where H+T=N
We want to estimate p

A “reasonable” estimate is p=H/N.   Is this actually the “best” choice for p?

What is “best”?  Consider the probability of the observed sequence.           
Prob(seq)=pH(1-p)T

The value of p for which Prob(seq) is maximized is the Maximum Likelihood 
Estimate (MLE) of p. (Denote pmle )

Models without Memory: Learning Model 
Parameters

Prob(seq)

p
pmle
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Models without Memory: Example, 
cont’d

Assertion:   pmle =  H/N

Proof:       Prob(seq)=pH(1-p)T              

Maximizing Prob is equivalent to maximizing log(Prob)

L=log(Prob(seq)) = H log p  +  T log (1-p)

H/pmle - T/(1-pmle)  = 0

H – H pmle = T pmle

H = T pmle + H pmle = pmle (T + H)   = pmle N

pmle = H/N

p

L

∂

∂
= Η/p + Τ/(1−p)

p

L

∂

∂
L maximized when = 0
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Models without Memory Example, 
cont’d

� We showed that in this case 

MLE = Relative Frequency = H/N

� We will use this idea many times.  

� Often, parameter estimation reduces to
counting and normalizing.



EECS E6870

Speech Recognition Lecture 4: Hidden Markov Models 13

Models with Memory: Markov Models

� Flipping a coin was memory-less. The outcome of 

each flip did not depend on the outcome of the 

other flips.

� Adding memory to a memory-less model gives us a 

Markov Model.  Useful for modeling sequences of 

events.

� For POS tagging adding memory to classifier could 

be useful
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Classification with Memory

Features

X

PREDICT

CLASS2CLASS1

Features

X

PREDICT

CLASS2CLASS1

Features

X

PREDICT

CLASS2CLASS1

Features

X

PREDICT

CLASS2CLASS1

… … PREDICT

CLASS2

Current Prediction depends only on previous predictions and current observation
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Classification with Memory

C

X1

C

X2

ADJ

good

C

book

C

XN

…

� C(t) (class) is dependent on current observations X(t) and previous state of 

classification (C(t-1))

� C(t) can be POS tags, document class, word class, X(t) can be text based 

features

P(NN|book, prevADJ) = 0.80

P(VB|book, prevADJ) = 0.04

P(VB|book, prevADV) = 0.10

…
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Adding Memory to Coin Example
� Consider 2 coins.    

Coin 1:   pH = 0.9   ,  pT = 0.1
Coin 2:   pH = 0.2   ,  pT = 0.8

� Experiment:
Flip Coin 1.
for J = 2 ; J<=4; J++

if (previous flip == “H”)   flip Coin 1;
else  flip Coin 2;

� Consider the following 2 sequences:
H  H  T  T   prob = 0.9 x 0.9 x 0.1 x 0.8 = .0648
H  T  H  T   prob = 0.9 x 0.1 x 0.2 x 0.1 = .0018

� Sequences with consecutive heads or tails are more likely.
� The sequence has memory - order matters.
� Order matters for language. 

� Adjective noun probably more common than adjective adjective
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Markov Models – State Space 
Representation
� Consider 2 coins.    

Coin 1:   pH = 0.9   ,  pT = 0.1

Coin 2:   pH = 0.2   ,  pT = 0.8

State-space representation of previous example

1 2

H 0.9

T 0.1
T 0.8

H 0.2
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Markov Models – State Space 
Representation (Con’t)
� State sequence can be uniquely determined from 
the outcome sequence, given the initial state.

� Output probability is easy to compute. It is the 
product of the transition probs for state sequence.

� Example: O:      H         T         T       T    
S:  1(given)   1          2       2

Prob:     0.9  x   0.1  x  0.8  x 0.8

1 2

H 0.9
T 0.1

T 0.8

H 0.2
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Back to Memory-Less Models: Hidden 
Information
Let’s return to the memory-less coin flip model

Consider 3 coins.   Coin 0:  pH = 0.7

Coin 1:  pH = 0.9

Coin  2  pH = 0.2

Experiment:

For J=1..4

Flip coin 0. If  outcome == “H”

Flip coin 1 and record.

else  

Flip coin 2 and record.
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Hiding Information (cont.)

Coin 0: pH = 0.7    Coin 1: pH = 0.9   Coin 2: pH = 0.2

We cannot uniquely determine the output of the 

Coin 0 flips. This is hidden.

Consider the sequence H T T T.

What is the probability of the sequence?

Order doesn’t matter (memory-less)  

p(head)=p(head|coin0=H)p(coin0=H)+

p(head|coin0=T)p(coin0=T)= 0.9x0.7 + 0.2x0.3 = 0.69

p(tail)  =  0.1 x 0.7 + 0.8 x 0.3 = 0.31

P(HTTT) = .69 x .31 3
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Hidden Markov Model
� The state sequence is hidden.

� Unlike Markov Models, the state sequence cannot be uniquely deduced from 

the output sequence.

� Experiment:  

Flip the same two coins. This time, flip each coin twice. The first flip gets 

recorded as the output sequence. The second flip determines which coin 

gets flipped next.  

� Now, consider output sequence H  T  T  T.

� No way to know the results of the even numbered flips, so no way to know 

which coin is flipped each time.

� Unlike previous example, order now matters (start with coin 1, pH = 0.9)

� H H T T T H T  = .9 x .9 x .1 x .1 x .8 x .2 x .1 = .0001296

� T T T H T T H = .1 x .1 x .8 x .2 x .1 x .1 x .2 = .0000032

� Even worse, same output sequence corresponds to multiple probabilities!

� H T T H T T T  = .9 x .1 x .8 x .2 x .1 x .1 x .8 = .0001152
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0.2 

0.8 

0.9 

0.1 

Hidden Markov Model
� The state sequence is hidden. Unlike Markov Models, the state sequence cannot 

be uniquely deduced from the output sequence.

0.9 0.1 0.8

0.2

0.9 

0.1 

0.2 

0.8 

1 2
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Is a Markov Model Hidden or Not?

A necessary and sufficient condition for being state-observable

is that all transitions from each state produce different outputs 

a, b

c

d

a, b

b

d

State-observable Hidden
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Three problems of general interest for 
an HMM
3 problems need to be solved before we can use HMM’s:

� 1. Given an observed output sequence X=x1x2..xT , compute              
Pθ(X) for a given model θ  (scoring)

� 2. Given X, find the most likely state sequence (Viterbi 
algorithm)

3. Estimate the parameters of the model (training)

These problems are easy to solve for a state-observable Markov 
model. More complicated for an HMM because we need to consider 
all possible state sequences. Must develop a generalization….
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Problem 1

1. Given an observed output sequence X=x1x2..xT ,         

compute Pθ(X) for a given model θ

� Recall the state-observable case

� Example: O:      H         T         T       T    

S:  1(given)   1         2        2

Prob:     0.9  x   0.1  x  0.8  x 0.8

1 2

H 0.9
T 0.1

T 0.8

H 0.2
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Problem 1

1. Given an observed output sequence X=x1x2..xT ,         

compute Pθ(X) for a given model θ

Sum over all possible state sequences:

Pθ(X)=ΣS Pθ(X,S)

The obvious way of calculating Pθ(X) is to enumerate 

all state sequences that produce X

Unfortunately, this calculation is exponential in the 

length of the sequence
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Example for Problem 1

Compute Pθ(X) for X=aabb, assuming we start in state 1

0.7 

0.3

0.8 

0.2

1 2 3

0.5

0.3

0.2

0.4

0.5

0.1

0.3 

0.7

0.5 

0.5

a

b
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1

Example for Problem 
1,cont’d

Let’s enumerate all possible ways of producing x1=a, assuming we 

start in state 1.

1
0.4

0.5 x
 0.8

0.5 x 0.3
3
0.03

2
0.08

0.2

10.5 x 0.8

2
0.4 x 0.5

2

0.2

2

0.2

2

0.2

0.4 x 0.5
2
0.04 0.1

3
0.004

2
0.21

0.3 x 0.7

2

0.3 x 0.7

0.1
3
0.021

0.1
1

2

3
0.008

0.20.5 x 0.8

0.7 

0.3

0.8 

0.2

1 2 3

0.5

0.3

0.2

0.4

0.5

0.1

0.3 

0.7

0.5 

0.5

a

b
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Example for Problem 1, cont’d
� Now let’s think about ways of generating x1x2=aa, for all paths from 

state 2 after the first observation

2
0.21

2 2
0.04

1
2
0.08

1

2

2 3

3

2

2 3

3

2

2 3

3
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Example for Problem 1,cont’d

We can save computations by combining paths.

This is a result of the Markov property, that the future doesn’t depend on 

the past if we know the current state

1

2
0.33

2

2

30.5 x 0.3

0.4
x 0
.51

2

0.4 x
 0.5

3
0.1
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Problem 1: Trellis Diagram
� Expand the state-transition diagram in time.

� Create a 2-D lattice indexed by state and time.

� Each state transition sequence is represented exactly once.

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       aa                     aab             aabb

S
ta
te
:  1
                 2

                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1
.1 .1

.3x.7
.3x.7

.3x.3

.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7
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Problem 1: Trellis Diagram, cont’d
� Now let’s accumulate the scores. Note that the inputs to a 
node are from the left and top, so if we work to the right and 
down all necessary input scores will be available.

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       aa                     aab             aabb

S
ta
te
:  1
                 2

                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1
.1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

1

.2

.02

0.4

.21+.04+.08=.33

.033+.03=.063

.16

.084+.066+.32=.182

.0495+.0182=.0677
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Problem 1: Trellis Diagram, cont’d
Boundary condition:  

Score of (state 1, φ) = 1.

Basic recursion: 

Score of node i = 0

For the set of predecessor nodes j:

Score of node i += score of predecessor node j  x                                                    

the transition probability from j to i  x

observation probability along            

that transition if the transition is not null.
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Problem 1: Forward Pass Algorithm

Let αt(s) for t ε {1..T} be the probability of being in state s at time t and 
having produced  output x1

t=x1..xt   

αt(s) = Σs’ αt-1(s’)  Pθ(s|s’) Pθ (xt|s’->s)  + Σs’ αt(s’)                      
Pθ(s|s’) 

1st term: sum over all output producing arcs         2nd term:  all null arcs

This is called the Forward Pass algorithm.

Important:  The computational complexity of the forward algorithm is linear 
in time (or in the length of the observation sequence)

This calculation allows us to solve Problem 1:

Pθθθθ(X)   =  ΣΣΣΣs ααααT(s) 
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Problem 2

Given the observations X, find the most likely state sequence 

This is solved using the Viterbi algorithm

Preview:

The computation is similar to the forward algorithm, except we use      

max( ) instead of +

Also, we need to remember which partial path led to the max
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Problem 2: Viterbi algorithm
Returning to our example, let’s find the most likely path for producing 

aabb.  At each node, remember the max of predecessor score x 

transition probability. Also store the best predecessor for each node.

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       aa                     aab             aabb

S
ta
te
:  1
                 2

                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1
.1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

1 0.4

max(.03 .021) Max(.0084 .0315) 

max(.08 .21 .04)

.16 .016

.0294

max(.084 .042 .032)

.0016

.00336

.00588

.0168
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Problem 2: Viterbi algorithm, cont’d

Starting at the end, find the node with the highest score.  

Trace back the path to the beginning, following best arc 

leading into each node along the best path.

Time:  0                       1                        2       3                    4

Obs:    φ                        a                       aa                     aab             aabb

S
ta
te
:  1
                 2

                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1
.1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

.03 .0315

.21

.16 .016

.0294

.0016

.00336.0168
0.2

0.02

1 0.4

.084 

.00588
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