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‘ Announcement

Reading Assignments
o Will be posted online tonight

Homework 1

o Assigned and available from the course website
0 Due in 2 Weeks (Feb 16, 4pm)
0 2 programming assignments



‘ Project Proposals

Reminder to think about projects
Proposals due in 3 weeks (Feb 23)



‘ Topics for Today

Naive Bayes Classifier for Text

Smoothing
Support Vector Machines
Paper review session



‘ Naive Bayes Classifier tor Text

P(yr, X1, Xo,..., XN)

Here N is the number of words, not to
confuse with the total vocabulary size

= P(yk)HiP(Xﬂyk)

T

Prior Probability
of the Class

Conditional Probability
of feature given the
Class




‘ Naive Bayes Classitier tor Text

P — P Xl,XQ,..,XN —
P(y — yk|X17X27°“7XN) — Zj(g(yy:k;j)(lt’(xl,X2,-.,X‘l\?i|yZﬁy)j)

_ Py =y)I; P(X;|ly =y&)

2, Py =y))IL P(X;ly =y;)

y < argmaz, Py = yi)ILP(X;ly = yx)



‘ Naive Bayes Classitier tor Text

Given the training data what are the
parameters to be estimated?

Py ) P(Xly1) P(Xly2)

: the: 0.001
Diabetes : 0.9 ;?:52{;3;0-10 02 diabetic : 0.0001
Hepatitis : 0.2 blood O..O(.)15 water : 0.0118
sugar : 0.02 fever : 0.01
weight : 0.018 weight : 0.008

y < argmaz, Py = yi)ILP(X;ly = yx)



Estimating Parameters

Maximum Likelihood Estimates
o Relative Frequency Counts

For a new document

o Find which one gives higher posterior probability
Log ratio
Thresholding

Classify accordingly



‘ Smoothing

MLE for Naive Bayes (relative frequency
counts) may not generalize well

o Zero counts

Smoothing
2o With less evidence, believe in prior more
o With more evidence, believe in data more



‘ Laplace Smoothing

Assume we have one more count for each
element

Zero counts become 1

cw+1
Pamootn(w) = sy

cw+1

Psmooth (w) — N+
&L Vocab Size }




‘ Back to Discriminative Classification




‘ Linear Classification

If we have linearly separable data we can find
w such that

yi(whz; +b) >0Vi



| Margin

Let us have hyperplanes such that

wliz, +b> +1ify; = +1
WT.CUi + b S —1 1if Y; — —1

N
(WTQZZ—I—[))1>D

d-

Yi

Total margin is sum of d+ and d- AL SO NI




Maximizing Margin

Distance between H and H+ is ﬁ

Distance between H+ and H- is Hi—li

In order to maximize the margin need to minimize
the denominator %HwH?



Maximizing Margin with Constraints

We can combine the two inequalities to get

y;(wlhz; +b) —1>0 Ve

Problem formulation

2
L |w]]
o Minimize 5

o Subjectto q; (Wsz‘ +b)—-1>0VW:



‘ Solving with Lagrange Multipliers

Solve by introducing Lagrange Multipliers for
the constraints

Minimize
J(w,b,a) = ”'“;” Z?’:l ai{yi(waz- +b) —1}

For given «;

6%‘](“77 b, Oz) — W — Z?:l O Y; Xy

2 J(w,b,a) = =50 oy



‘ Dual Problem

Solve dual problem instead
Maximize

subject to constraints of

D i1 @iy =0



‘ Quadratic Programming Problem

Minimize f(x) such that g(x) = k
o Where f(x) is quadratic and g(x) are linear constraints
Constrained optimization problem

Saw the example before



' SVM Solution

W = E Z‘:l QG Y5 Ly
Linear combination of weighted training example

Sparse Solution, why?

o Weights zero for non-support vectors
AN

ZiGSV (Sé\zyz (CBZCIJ) + b A




Sequential Minimal Optimization (SMO)
Algorithm

The weights are just linear combinations of training
vectors weighted with alphas

We still have not answered how do we get alphas
o Coordinate ascent

Do until converged
select pair of alpha(i) and alpha())
reoptimize W(alpha) with respect to alpha(i) and alpha(j)
holding all other alphas constant

done




 Not Linearly Separable




‘ Transformation

Transformation h(@ ) = @



‘ Non Linear SVMs

Map data to a higher dimension where linear
separation is possible

We can get a longer feature vector by adding
dimensions
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‘ Kernels

Given feature mapping ¢(x) define
K(z,2) = ¢(z)" ¢(2)

d(x)" P(2)

2.2 2,2
= x72] + X525 + 221292120 + 22121 + 22229 + 1

= (1.2 + 1)?

May not need to
explicitly transform




‘ Example of Kernel Functions

K(CB, Z) — Linear Kernel

K(ﬂ?, Z) p— (sz —+ 1)p Polynomial Kernel

K(x,z) = exp( ”x2_2”2) Gaussian Kernel
o



‘ Non-separable case

Some data sets may not be linearly separable
Introduce slack variable

Also helps regularization
o Less sensitive to outliers

0 Minimize  ||w]|? n
FC Y 1 &

2

o Subject to i (WTa; +b) > 1— & Vi

§ > 0 Vi



‘ Summary

. CLASS1

~

Features}—/—’ X —’[ PREDICT
J

L, CLASS2

Linear Classification Methods
a Fisher’s Linear Discriminant

2 Perceptron

o Support Vector Machines



‘ Reterences

Tutorials on www.svms.org/tutorial



