
1

Statistical Methods for NLP

Part I Markov Random Fields
Part II Equations to Implementation

Sameer Maskey

Week 14, April 20, 2010

2

Announcement

� Next class : Project presentation

� 10 mins total time, strictly timed

� 2 mins for questions

� Please come to my office hours to download the
presentation to my laptop

� Or please come 15 mins early to the class

3

Markov Random Fields

� Let ‘x’ represent the cost of a shirt in a flea market

� The shirt price in flea market shops may be affected by proximity of
each other

� We can take account of such dependency by potential function

θij(xi, xj)

4

Markov Random Fields

� stronger dependency ~ larger values

� Joint distribution over variables

θij(xi, xj)

P(x1, ..., xn) =
exp(

∑
(i,j)∈E θij(xi,xj))∑

x1,...,xn
exp(

∑
(i,j)∈E θij(xi,xj))

Global normalization in denominator

Seems familiar?

Log linear models, feature functions?

5

Markov Random Fields (cont’d)

� Rewriting in terms of factors

P(x1, ..., xn) =
1
Z(θ)exp(

∑
(i,j)∈E θij(xi, xj))

= 1
Z(θ)

∏
(i,j)∈E exp(θij(xi, xj))

= 1
Z(θ)

∏
(i,j)∈E ψij(xi, xj)

Potential Functions

Positive functions over groups of variables

6

Potential Functions

� Potential is just a table (all node combinations represented as
entries)

� Marginalizing the potential entails collapsing into one
dimension

Marginalize over B Marginalize over A

7

Factorization

P (x1, x2, x3) =
1
Z(θ)ψ(x1, x2)ψ(x2, x3)ψ(x2, x3)

Each of this term is a clique,
in fact maximal clique

� Represent global configuration as product of local potentials

� Hammersley-Clifford theorem tell us how to represent a graph
that is consistent with given distribution

� Clique : set of nodes such that there is an edge between
every node

8

Graph Separation

� We liked Bayesian Network because it allowed to represent
conditional independence well

� Conditional independence governed by D-separation criterion
in Bayes Net

� Simple representation of independence properties in Markov
Random Field

� Check graph reachability

9

Directed vs. Undirected Graphs

10

Converting Directed to Undirected Graphs

� Additional links

11

Directed vs. Undirected

� Distribution has not changed but the graph representation has

12

Factor Graphs

� We saw directed graphical model represent a given distribution

� We also found how to represent the same distribution using
undirected models

� Factors graphs another way to represent same distribution

� Variables involved in a factor connected to the factor node

� Number of factors equal number of factor nodes

Variable Node

Factor Node

13

Graph Representation

� We saw that we can represent distributions in three
different types of graphs

� Directed Acyclic Graphs

� Undirected Graphs

� Factor Graphs

� Depending on a problem one type of graph may be
favored against another

14

Graphical Models in NLP

� Markov Random Field for term
dependencies [Metzler W and
Croft D, 05]

� Conditional Random fields for
shallow parsing [Sha F. and
Pereira F, 03]

� Bayesian Network for speech
summarization [Maskey S. and
Hirschberg J., 03]

� Dependency parsing with belief
propagation [Smith D and Eisner
J, 08]

15

Inference in Graphical Model

� Weights in Network make local assertions on how
two nodes are related

� Inference algorithm takes these local assertions into
global assertions between nodes[Jordan, M, 02]

� Many inference algorithms

� Popular inference algorithm : Junction Tree algorithm

16

Inference

� Given a graph and probability function

we want to compute

� Need to compute marginals

� Computation of marginals needed in both directed and undirected
graphs

P(x1, x2, ..., xn)

P(Xh|Xe) =
p(Xh,Xe)
p(Xe)

Inference in Naïve Bayes?

P(Xe) =
∑
Xh
P (Xh,Xe)

17

Inference : Exploit Graph Structure

� We can compute marginals by summing over all
other variables

� Brute force, computationally expensive, not efficient

� Better algorithm?

� Pass messages in the graph

� Enforce consistency among messages

18

Inference on a Chain

*Next 4 slides are from Bishop book resource [1]

19

Inference on a Chain

20

Inference on a Chain

21

Inference on a Chain

22

Inference on a Chain

� To compute local marginals:

• Compute and store all forward messages, .

• Compute and store all backward messages, .

• Compute Z at any node xm

• Compute

for all variables required.

23

MOD

Graphical Model for Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.

Raw sentence

Part-of-speech tagging

He reckons the current account deficit will narrow to only 1.8 billion in September.
PRP VBZ DT JJ NN NN MD VB TO RB CD CD IN NNP .

POS-tagged sentence

Word dependency parsing

slide from Smith D and Eisner J, 08, [2]

Word dependency parsed sentence

He reckons the current account deficit will narrow to only 1.8 billion in September .

SUBJ

ROOT

S-COMP

SUBJ

SPEC

MOD
MOD

COMP

COMP

24

Dependency Parsing with Belief

Propagation [Smith D and Eisner J, 08]

find preferred links ……

� We can have dependencies represented as nodes
of a factor graph

� Add constraints to make it a legal tree, no loops

25

Graphical Models Summary

� Represent distributions with graphs (directed,
undirected, factor graphs)

� Inference on the graph can be done by message
passing algorithms

� Gaining more attention in NLP community

26

Statistical Methods for NLP

Part II Equations to Implementation

27

Topics We Covered

NLP -- ML
� Text Mining

� Text Categorization

� Information Extraction

� Topic and Document Clustering

� Machine Translation

� Language Modeling
� Speech-to-Speech Translation

Linear Models of Regression

Linear Methods of Classification
Support Vector Machines

Hidden Markov Model
Maximum Entropy Models
Conditional Random Fields

K-means
Expectation Maximization
Viterbi Search

Graphical Models

28

Scoring Unstructured Text

Patterns may exist
in unstructured text

Some of these patterns
could be exploited to
discover knowledge

All Amazon reviewers may not
rate the product, may just

write reviews, we may have to
infer the rating based on text review

Review of a camera in Amazon

29

Linear Regression

� Empirical Loss (Predicted vs. Original)

Y X θ

� Given out N training data points we can build X and Y matrix and
perform the matrix operations

� For any new test data plug in the x values (features) in our
regression function with the best theta values we have

30

Implementation of Multiple Linear

Regression

� Given out N training data points we can build X and Y matrix and
perform the matrix operations

� Can use MATLAB or write your own, Matrix multiplication
implementation to get theta matrix

� For any new test data plug in the x values (features) in our
regression function with the best theta values we have

31

Regression Pseudocode

Load X1, … XN
Load Y1,…. YN

Build X Matrix (NxK)

Test Y = θ∗X

32

Text Classification

Diabetes

Diabetes
Journal

Hepatitis
Journal

1802.1
40.3
90.4
4

10.0
4.2
1.3

1905.5
26
78.9
9.9
12.3
16.8
47.6

.

.

.

2000
25
85
9
15
20
45

.

.

. ?

33

Perceptron

Rn(w) =
1
n

∑n
i=1 Loss(yi, f(xi;w)

� We want to find a function that would produce least
training error

34

Perceptron Pseudocode

Load X1, …, XN
Load Y1,…., YN

for (i = 1 to N)
if (y(i) * x(i) * w <= 0)
w = w + y(i) * x(i)

end
end

35

Naïve Bayes Classifier for Text

Prior Probability
of the Class

Conditional Probability
of feature given the
Class

Here N is the number of words, not to
confuse with the total vocabulary size

P (Yk,X1,X2, ..., XN) = P (Yk)ΠiP (Xi|Yk)

36

Naïve Bayes Classifier for Text

� Given the training data what are the parameters to
be estimated?

P (X|Y2)P (X|Y1)P (Y)

Diabetes : 0.8
Hepatitis : 0.2

the: 0.001
diabetic : 0.02
blood : 0.0015
sugar : 0.02
weight : 0.018
…

the: 0.001
diabetic : 0.0001
water : 0.0118
fever : 0.01
weight : 0.008
…

37

Naïve Bayes Pseudocode

Foreach Class C
totalWCount=0
for J = 1 to |V|
count(WJ)

end
totalCount = totalCount + totalCount(WJ)
for J= 1 to |V|
C.WJProb = count(WJ) + delta /totalCount(WJ) + delta * |V|

end
end

38

SVM: Maximizing Margin with Constraints

� We can combine the two inequalities to get

� Problem formulation

� Minimize

� Subject to

‖w‖2

2

yi(w
Txi + b)− 1 ≥ 0 ∀i

yi(w
Txi + b)− 1 ≥ 0 ∀i

d+

d-

39

� Solve dual problem instead

� Maximize

� subject to constraints of

Dual Problem

J(α) =
∑n
i=1 αi −

1
2

∑n
i,j=1 αiαjyiyj(xi.xj)

αi ≥ 0 ∀i

∑n
i=1 αiyi = 0

40

SVM Solution

� Linear combination of weighted training example

� Sparse Solution, why?

� Weights zero for non-support vectors

∑
i∈SV α̂iyi(xi.x) + b̂

ŵ=
∑n
i=1 α̂iyixi

41

Sequential Minimal Optimization (SMO)

Algorithm

� The weights are just linear combinations of training vectors
weighted with alphas

� We still have not answered how do we get alphas

� Coordinate ascent

Do until converged

select pair of alpha(i) and alpha(j)

reoptimize W(alpha) with respect to alpha(i) and alpha(j)

holding all other alphas constant

done

42

Information Extraction Tasks

� Named Entity Identification

� Relation Extraction

� Coreference resolution

� Term Extraction

� Lexical Disambiguation

� Event Detection and Classification

43

� Sometimes extracted information can be a sequence

� Extract Parts of Speech for the given sentence

� What kind of classifier may work well for this kind of
sequence classification?

Classifiers for Information Extraction

DET VB AA ADJ NN

This is a good book

44

Classification with Memory

C

X1

C

X2

ADJ

good

C

book

C

XN

…

� C(t) (class) is dependent on current observations X(t) and
previous state of classification (C(t-1))

� C(t) can be POS tags, document class, word class, X(t) can
be text based features

P(NN|book, prevADJ) = 0.80
P(VB|book, prevADJ) = 0.04
P(VB|book, prevADV) = 0.10

…

45

HMM Example

46

Forward Algorithm : Computing alphas

47

Forward Algorithm Perl Code
Sub Forward() {

for (my $t = 0; $t < @obs ; $t++){

#sum across i,j transitions for all starting i and ending at j

for (my $i = 0; $i < $num_states; $i++){

my $tot_forward_prob_for_cur_dest = 0;
for (my $j = 0; $j < $num_states; $j++){

#multiply transition prob * obs prob
my $trans_prob = $trans_matrix[$i][$j];

#get obs_id
my $cur_obs = $obs[$t];
my $obs_id = $obs_vocab_id{$cur_obs};

#state i producing the given observation
my $obs_prob = $obs_matrix[$i][$obs_id];

#compute the forward prob
if ($t == 0){

my $start_trans_prob = $start_state_matrix[$j];
$tot_forward_prob_for_cur_dest = $start_trans_prob * $obs_prob;

}
else{

$tot_forward_prob_for_cur_dest = $tot_forward_prob_for_cur_dest
+ $forward_prob_matrix[$i][$t] * $trans_prob * $obs_prob;

}
}
#this is for passing on forward pass to next iteration

$forward_prob_matrix[$i][$t+1] = $tot_forward_prob_for_cur_dest;
}

}
}

48

Viterbi Algorithm

49

Problem 3: Forward-Backward

Algorithm
Consider transition from state i to j, trij

Let pt(trij,X) be the probability that trij is taken at time t, and the
complete output is X.

pt(trij,X) = αt-1(i) aij bij(xt) βt(j)

Si

Sj

αt-1(i) βt(j)

xt

50

Problem 3: F-B algorithm cont’d

pt(trij,X) = αt-1(i) aij bij(xt) βt(j)

where:

αt-1(i) = Pr(state=i, x1…xt-1) = probability of being in state i
and having produced x1…xt-1

aij = transition probability from state i to j

bij(xt) = probability of output symbol xt along transition ij

βt(j) = Pr(xt+1…xT|state= j) = probability of producing xt+1…xT

given you are in state j

51

Estimating Transition and Emission

Probabilities

âij
Expected number of transitions from state i to j

Expected number of transitions from state i=

b̂j (xt)
Expected number of times in state j and observing symbol xt

Expected number of time in state j=

aij =
count(i→j)∑
q∈Q count(i→q)

52

Problem 3: F-B algorithm

.083

Time: 0 1 2 3 4
Obs: φ a ab aba abaa

S
ta

te
: 1

 2
 3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2

1/3x1/2

1/3x1/2

1/3x1/2

1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1

.33

0

.167

.306

.027

.076

Compute α’s. since forced to end at state 3, αT=.008632=Pr(X)

.113

.0046

.035

.028

.00077

.0097

.008632

Compute α’s. since forced to end at state 3, αT=.008632=Pr(X)

53

Problem 3: F-B algorithm, cont’d

0

Time: 0 1 2 3 4
Obs: φ a ab aba abaa

S
ta

te
: 1

 2
 3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2

1/3x1/2

1/3x1/2

1/3x1/2

1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

.0086

.0039

0

.028

.016

.076

0

Compute β’s.

.0625

.083

.25

0

0

0

1

54

Problem 3: F-B algorithm, cont’d

Time: 0 1 2 3 4
Obs: φ a ab aba abaa

S
ta

te
: 1

 2
 3

.547 .246 .045 0

.151 .101 .067 .045 0

.302
.201

.134
0

.151 .553 .821 0

00 0 1

Compute counts. (a posteriori probability of each transition)
ct(trij|X) = αt-1(i) aij bij(xt) βt(j)/ Pr(X)

.167x.0625x.333x.5/.008632

55

sub Backward() {

my (@obs) = @_;
we need to start at the end
my $end_t = scalar(@obs);
#go upto zero so start 1 less
$end_t--;
for (my $t = $end_t; $t >=0; $t--){

#sum across i,j transitions for all starting i and ending at j
for (my $i = 0; $i < $num_states; $i++){

my $tot_back_prob_for_cur_dest = 0;
for (my $j = 0; $j < $num_states; $j++){

#multiply transition prob * obs prob
my $trans_prob = $trans_matrix[$i][$j];

#get obs_id
my $cur_obs = $obs[$t];
my $obs_id = $obs_vocab_id{$cur_obs};

#state i producing the given observation
my $obs_prob = $obs_matrix[$i][$obs_id];

#compute the back prob
if ($t == $end_t){

my $end_trans_prob = $end_state_matrix[$j];
$tot_back_prob_for_cur_dest = $end_trans_prob ;

}
else{

$tot_back_prob_for_cur_dest = $tot_back_prob_for_cur_dest +
$back_prob_matrix[$i][$t] * $trans_prob * $obs_prob;

}
}
$back_prob_matrix[$i][$t-1] = $tot_back_prob_for_cur_dest;

}
}

}

Backward Algorithm Perl Code

56

Finding Maximum Likelihood of our Conditional

Models (Multinomial Logistic Regression)

P(C|D,λ) =
∑

(c,d)∈(C,D)

log
exp

∑
i λifi(c,d)∑

c′ exp
∑
i λifi(c

′, d)

P(C|D,λ) =
∑

(c,d)∈(C,D)

logp(c|d,λ)

(C|D,λ) =
∏

(c,d)∈(C,D)

p(c|d,λ)

57

Maximizing Conditional Log Likelihood

P(C|D,λ) =
∑

(c,d)∈(C,D)

−
∑
(c,d)∈(C,D) log

∑
c′ exp

∑
i λifi(c

′, d)

logexp
∑
iλifi(c,d)

∑

(c,d)∈(C,D)

fi(c, d)−
∑

(c,d)∈(C,D)

∑

c′

P (c′|d, λ)fi(c
′, d)∂log(P |C,λ)

∂λi
=

Empirical count (fi, c) Predicted count (fi, λ)

Optimal parameters are obtained when empirical expectation equal predicted expectation

Taking derivative and setting it to zero

58

Finding Model Parameters

� We saw that optimum parameters are obtained when
empirical expectation of a feature equals predicted
expectation

� We are finding a model having maximum entropy and
satisfying constraints for all features fj

� Hence finding the parameters of maximum entropy
model entails to maximizing conditional log-likelihood
and solving it
� Conjugate Gradient Descent
� Quasi Newton’s Method

� A simple iterative scaling
� Features are non-negative (indicator functions are non-negative)
� Add a slack feature

� where

Ep(fj) = E(̃p)(fj)

M = maxi,c
∑m
j=1 fj(di, c)

fm+1(d, c) =M −
∑m
j=1 fj(d, c)

59

Finding Model Parameters
� We saw that optimum parameters are obtained when empirical

expectation of a feature equals predicted expectation
� We are finding a model having maximum entropy and satisfying

constraints for all features fj

� Hence finding the parameters of maximum entropy model entails to
maximizing conditional log-likelihood and solving it
� Conjugate Gradient Descent
� Quasi Newton’s Method
� A simple iterative scaling

� Features are non-negative (indicator functions are non-negative)
� Add a slack feature

� where

Ep(fj) = E(̃p)(fj)

M = maxi,c
∑m
j=1 fj(di, c)

fm+1(d, c) =M −
∑m
j=1 fj(d, c)

60

How to Cluster Documents with No

Labeled Data?

� Treat cluster IDs or class labels as hidden variables

� Maximize the likelihood of the unlabeled data

� Cannot simply count for MLE as we do not know
which point belongs to which class

� User Iterative Algorithm such as K-Means, EM

61

Document Clustering with K-means

� We can estimate parameters by doing 2 step
iterative process

� Minimize J with respect to

� Keep fixed

� Minimize J with respect to

� Keep fixed

rnk
µk

µk
rnk

Step 1

Step 2

62

� Optimize for each n separately by choosing for k that
gives minimum

� Assign each data point to the cluster that is the closest

� Hard decision to cluster assignment

rnk

||xn − rnk||2

rnk = 1 if k = argminj ||xn − µj ||2

= 0 otherwise

rnk
µk

Step 1
� Minimize J with respect to

� Keep fixed

63

� J is quadratic in . Minimize by setting derivative w.rt. to
zero

� Take all the points assigned to cluster K and re-estimate the
mean for cluster K

� Minimize J with respect to

� Keep fixedrnk

µk
Step 2

µk µk

µk =

∑
n rnkxn∑
n rnk

64

Expectation Maximization for Gaussian

Mixture Models

� E-Step

γ(znk) = E(znk|xn) = p(zk = 1|xn)

γ(znk) =
πkN (xn|µk,

∑
k
)

∑
K
j=1 πjN (xn|µj ,

∑
j
)

65

Estimating Parameters

� M-step

� Iterate until convergence of log likelihood

π′k =
Nk

N

log p(X|π, µ,
∑
) =

∑N
n=1 log (

∑k
k=1N (x|µk,

∑
k))

µ′k =
1
Nk

∑N
n=1 γ(znk)xn

∑′
k =

1
Nk

∑N
n=1 γ(znk)(xn − µ

′
k)(xn − µ

′
k)
T

where Nk =
∑N
n=1 γ(znk)

66

Maximum Entropy Markov Model

T̂ = argmaxTP (W |T)P (T)

T̂ = argmaxTP (T |W)

T̂ = argmaxTP (T |W)

MEMM Inference

HMM Inference

= argmaxT
∏
i P (ti|ti−1, wi)

= argmaxT
∏
i P (wi|ti)p(ti|ti−1)

67

Transition Matrix Estimation

P (qi|qi−1, oi) =
1

Z(o,q′)exp(
∑
i wifi(o, q))

T̂ = argmaxTP (T |W)
MEMM Inference

= argmaxT
∏
i P (ti|ti−1, wi)

� Transition is dependent on the state and the feature

� These features do not have to be just word id, it can be any
features functions

� If q are states and o are observations we get

68

Viterbi in HMM vs. MEMM

� HMM decoding:

� MEMM decoding:

This computed in maximum entropy framework
but has markov assumption in states thus its name MEMM

vt(j) = max
N
i=1vt−1(i)P (sj |si)P (ot|sj) 1 ≤ j ≤ N, 1 < t ≤ T

vt(j) = max
N
i=1vt−1(i)P (sj |si, ot) 1 ≤ j ≤ N, 1 < t ≤ T

69

Conditional Random Field

Feature
Functions

Weight for
given feature function

Feature function can
access all of observation

Sum over
all data points

Sum over
all feature function

Sum over
all possible label sequence

Model log linear on Feature functions

P (y|x;w) =

exp(

∑

i

∑

j

wjfj(yi−1, yi, x, i))

∑

y′∈Y

exp(
∑

i

∑

j

wjfj(y
′
i−1, y

′
i, x, i))

70

Inference in Linear Chain CRF

� We saw how to do inference in HMM and MEMM

� We can still do Viterbi dynamic programming based
inference

y∗ = argmaxyp(y|x;w)

= argmaxy
∑
j wjFj(x, y)

= argmaxy
∑
i gi(yi−1, yi)

wheregi(yi−1, yi) =
∑
j wjfj(yi−1, yi, x, i)

= argmaxy
∑
j wj

∑
i fj(yi−1, yi, x, i)

x and i arguments of f_j dropped in definition of g_i
g_i is different for each I, depends on w, x and i

Denominator?

71

Computing Expected Counts

Need to compute denominator

P (y|x;w) =

exp(

∑

i

∑

j

wjfj(yi−1, yi, x, i))

∑

y′∈Y

exp(
∑

i

∑

j

wjfj(y
′
i−1, y

′
i, x, i))

72

Optimization: Stochastic Gradient Ascent

For all training (x,y)
For all j

Compute

End For
End For

Ey′∼p(y′|x;w)[Fj(x, y
′)]

wj := wj + α(Fj(x, y)−Ey′∼p(y′|x;w)[Fj(x, y
′)])

73

References

� [1] Christopher Bishop, “Pattern Recognition and
Machine Learning” 2006

� [2] David Smith and Jason Eisner, “Dependency Parsing
by Belief Propagation,” Proceedings of the 2008
Conference on Empirical Methods in Natural Language
Processing, pages 145–156, Honolulu, October 2008.

