Statistical Methods for NLP

Part I Markov Random Fields

Part 11 |

“quations to Implementation

Sameer Maskey

Week 14, April 20, 2010



‘ Announcement

Next class : Project presentation

10 mins total time, strictly timed
o 2 mins for questions

Please come to my office hours to download the
presentation to my laptop

Or please come 15 mins early to the class



‘ Markov Random Fields

Let ‘X’ represent the cost of a shirt in a flea market

The shirt price in flea market shops may be affected by proximity of
each other
We can take account of such dependency by potential function

0i;(xi, ;)




‘ Markov Random Fields

stronger dependency ~ larger values Hij (CEZ', xj)

Joint distribution over variables Seems familiar?

P(x Ty) = exp(2_ i) em 91 (Ti,2;))
1y o9 Ln Zwl ..... " ea:p(z(i,j)eE 0:;(x:,2;))

Global normalization in denominator

Log linear models, feature functions?




 Markov Random Fields (cont’d)

Rewriting in terms of factors

P(x1,...,Zn) = ﬁe)ea:p(z(i’j)ebﬁ 0;i(xi,x;))

7t Ui.pyen €xp(0i (i, z5))

= ﬁ H(z’,j)eE Vi (@i, T5)

Potential Functions

Positive functions over groups of variables



‘ Potential Functions

Potential is just a table (all node combinations represented as
B

entries)
A B
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Marginalizing the potential entails collapsing into one

dimension
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‘ Factorization

Each of this term is a clique,

in fact maximal clique\ Q_Q_Q

P(x1,22,23) = ﬁg)w(wlywz)ﬁb(@,$3)¢($2,€E3)

Represent global configuration as product of local potentials

Hammersley-Clifford theorem tell us how to represent a graph
that is consistent with given distribution

Clique : set of nodes such that there is an edge between
every node



‘ Graph Separation

We liked Bayesian Network because it allowed to represent
conditional independence well

Conditional independence governed by D-separation criterion
iIn Bayes Net

Simple representation of independence properties in Markov
Random Field

o Check graph reachability



Directed vs. Undirected Graphs
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Converting Directed to Unc

Additional links
My &T's L]

L

Xy

irected Graphs

L3

L

p(x) = pl(z1)p(z2)p(z3)p(Ta|T1, T2, T3)

1

— EwA(:ch562,563>¢B(55275537554>¢C(55175527x4>
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‘ Directed vs. Undirected

1 2 1 2

QO Q0
\Q/ \O/

xrs3 3

P(z1,z2,23) = P(x1)P(z2)P(z3|z1,22) P(x1,72,23) =\¢($13$23$3)

\. J
Y\/

Distribution has not changed but the graph representation has
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‘ Factor Graphs

Y1(r1) = P(x1) P2(z2) = P(z2)

Factor Node

"1!”123(531:332::32) — P($3|‘T1:$2)

Variable Node

L3

We saw directed graphical model represent a given distribution

We also found how to represent the same distribution using
undirected models

Factors graphs another way to represent same distribution
Variables involved in a factor connected to the factor node
Number of factors equal number of factor nodes

12



‘ Graph Representation

We saw that we can represent distributions in three
different types of graphs

o Directed Acyclic Graphs

o Undirected Graphs

o Factor Graphs

Depending on a problem one type of graph may be
favored against another

13



‘ Graphical Models in NLLP

Markov Random Field for term
dependencies [Metzler W and N D
Croft D, 095] \REoAnboAnboAantoandoAnb oAy e A

Conditional Random fields for
shallow parsing [Sha F. and

Bayesian Network for speech
summarization [Maskey S. and -
Hirschberg J., 03] e e

Dependency parsing with belief [T S

propagation [Smith D and Eisner /""/:"‘\( | z/\_\;\a\x\
J, 08] e .
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‘ Inference in Graphical Model

Weights in Network make local assertions on how
two nodes are related

Inference algorithm takes these local assertions into
global assertions between nodes[Jordan, M, 02]

Many inference algorithms
o Popular inference algorithm : Junction Tree algorithm

15



‘ Inference

Inference in Naive Bayes?

Given a graph and probability function P(x1, 22, ..., 2,)
we want to compute

Xp,Xe
P(Xp|X,) = BELX)

Need to compute marginals P(Xe) = 2 x, P(Xn, Xe)

o Computation of marginals neededd”n/b'oth directed and undirected
graphs

p[‘x; rh] - 2“1 Z Zvj Hil p(m ‘ﬁ)
pleya) =32, 30, 2., # 1L (X))
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‘ Inference : Exploit Graph Structure

We can compute marginals by summing over all
other variables

o Brute force, computationally expensive, not efficient
Better algorithm?

o Pass messages in the graph
o Enforce consistency among messages

17



Inference on a Chain

L1 £ LN o€
1
p(x) = 2101,2(%1, 12)102,3(%2, T3) - '¢N—1,N($N—1, TN)

R IRPIPIED VL

Ln—1TLn41

*Next 4 slides are from Bishop book resource [1]
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Inference on a Chain

e () Halty)

LTn—1
ta(Tn)
Z wn,n—I-l(xnaxn—I—l) Z
Ln41 N
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Inference on a Chain

Ho {:Ln 1) Fho {IH) H i {:Eﬂ. } H i (:Eﬂ.-l—] }

L1 Ln 1 L Ll &£y

LTn—1 Ln—2

:uoc(xn> — Z ¢n_1,n(xn_1,xn) |:Z :|

= Z wn—l,n(xn—lv'xn>ua(xn—1>'

LTn—1
pa(Tn) = Z Un,n+1(Tn, Tnt1) |:Z :|
Tnt+1 Ln42

— Z wn,n—I—l(xnaxn—I—l),uﬁ(xn—I—l)-

Ln41
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Inference on a Chain

Lo {LL 1 1) Fe {-rn) H i {Iﬂ }

Ha (:Eﬂ.-l— 1 }
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Inference on a Chain

To compute local marginals:

. Compute and store all forward messages, (%)
. Compute and store all backward messages, (3(Zx)
. Compute Z at any node z,,

. Compute

= N\ A

for all variables required.
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Graphical Model for Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.

1 Part-of-speech tagging

He reckons the current account deficit will narrow to only 1.8 billion in September.
PRP VBZ DT 1 NN NN MD VB TO RB CD CD IN NNP

1 Word dependency parsing

He reckons the current account deficit will narrow to only 1.8 billion in September .
\W \j
MOD
COMP

ROOT

SUBJ

slide from Smith D and Eisner J, 08, [2] 23



Dependency Parsing with

Belief

Propagation [Smith D and

Hisner |, 03]

= We can have dependencies represented as nodes

of a factor graph

= Add constraints to make it a legal tree, no loops

®

find preferred

O

links

24



‘ Graphical Models Summary

Represent distributions with graphs (directed,
undirected, factor graphs)

Inference on the graph can be done by message
passing algorithms

Gaining more attention in NLP community
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Statistical Methods for NLP

Part I Equations to Implementation
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‘ Topics We Covered

-

NLP -- ML

Text Mining

Text Categorization

Information Extraction

Topic and Document Clustering

Machine Translation

Language Modeling
Speech-to-Speech Translation

Linear Models of Regression

Linear Methods of Classification
Support Vector Machines

Hidden Markov Model
Maximum Entropy Models
Conditional Random Fields

K-means

Expectation Maximization
Viterbi Search

Graphical Models
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‘ Scoring Unstructured Text

Rate This Item to Improve Your Recommendations All Amazon reviewers may not
e e rate the product, may just
write reviews, we may have to

Customer Reviews

Average Customer Rating infer the rating based on text review
Yreryeyryy (385 customer reviews) Easze of use Prdrdedede (1

S star [460) Image guality iR

; z::: :,?gg Construction guality ;‘;;‘;;‘;;‘;;: 0) f \

2 star: (1) Eattery life i

1 star: (1

» See and rate all 14 attributes.

Some of these patterns
could be exploited to
1,568 of 1,594 people found the following review helpfal: discover knOWIGdge

Jrio'/ot Great camera, one of the best low(er)-end DSLRs on the market, April 23\@08 /
By Hyun Yu [~ - See all my reviews

Most Helpful Customer Reviews

My journey with DSLRs began back in 2003 with the original Digital Rebel. DSLRs changed my photography
for the better lke nothing else. Five years and some 25,000 shots later, it's still going strong. Along the

way I upgraded to the Canon 30D, which is a fantastic camera as well. When the 400 was announced -+
decided to wait until the 500 sometime in 2008, but wanted a newer backup/second body for my
photography needs. So when the XSi/450D was announced, it sounded like 3 perfect fit for my neeqs.

I got it from Amazon.com three days ago, and given it a pretty good workout since then, havipg shot Patterns may eX|St

about 650 shots under a variety of s g conditions and with a number of different Canon and
third-party lenses. The followi

e my impressim;r// in unstructured text
The build feels v&Fy good. The camera feels wondefally light yet well built, I'm &ft tall with aver Gize

4

hands, and the camera feels good in my hand. The battery grip, to me, defeats the purpos havi\%i
small, light DSLR, so I opted for a Hakuba/Opteka grip (it's a plate that screws into ripod socket that
enables you to use the excellent Canon E1 hand strap with it) and I couldn't be happier. I'm rot a fan of
neck straps, so this works well for me (see the uploaded photo for the configuration).

- - Review-of-a camera in Amazon - -~ -- 28



e J

inear Regression

Empirical Loss (Predicted vs. Original)

e
Uz

w0 =

o = (X1 x)"1xly

Given out N training data points we can build X and Y matrix and

perform the matrix operations

For any new test data plug in the x values (features) in our

L } -'..l'r -

1
= =

regression function with the best theta values we have

11 My
rIl TR

| L owwy ez

s
rag

TN
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Implementation ot Multiple Linear
Regression

o = (X1 x)"1xly

Given out N training data points we can build X and Y matrix and
perform the matrix operations

Can use MATLAB or write your own, Matrix multiplication
implementation to get theta matrix

For any new test data plug in the x values (features) in our
regression function with the best theta values we have

30



‘ Regression Pseudocode

Load X1, ... XN
Load Y1,.... YN

Build X Matrix (NxK)

o = (X1 x)"1xly

TestY=@g* X

31



‘ Text Classification

-
1905.5
26
/8.9
9.9
12.3
16.8
47.6

Diabetes
Journal

Diabetes
?

Hepatitis
Journal

-~ A
1

1802.
40.3
90.4

10.0
4.2
1.3
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‘ Perceptron

We want to find a function that would produce least
training error

R, (w) = % D i1 Loss(yi, f(zi;w)

33



‘ Perceptron Pseudocode

Load X1, ..., XN
Load Y1,...., YN
for (i=1to N)

if (y(i) * x(i) * w <= 0)
w=w + y(i) * x(i)
end
end

34



‘ Naive Bayes Classifier tor Text

T A

Prior Probability
of the Class

Conditional Probability
of feature given the
Class

Here N is the number of words, not to
confuse with the total vocabulary size

35



‘ Naive Bayes Classitier tor Text

Given the training data what are the parameters to
be estimated?

P(yY) PXv)  PX[Y:)

: . the: 0.001 the: 0.001
Dlabe’Fe.s ) 0.8 diabetic : 0.02 diabetic : 0.0001
Hepatitis : 0.2 blood - 0.0015 water  0.0118

fever : 0.01

sugar : 0.02 _
weight : 0.018 weight : 0.008




| Naive Bayes Pseudocode

Foreach Class C
total\WWCount=0
ford =1 to |V|
count(WJ)
end
totalCount = totalCount + totalCount(WJ)
for J=1to |V]|
C.WJProb = count(WJ) + delta /totalCount(\WJ) + delta * |V|
end
end

37



SVM: Maximizing Margin with Constraints

We can combine the two inequalities to get

y;(wlhz; +b) —1>0 Ve

Problem formulation

a2 Minimize ||w

o Subject to

38



‘ Dual Problem

Solve dual problem instead
Maximize

subject to constraints of

D i1 @iy =0

39



' SVM Solution

W = E Z‘:l QG Y5 Ly
Linear combination of weighted training example

Sparse Solution, why?
o Weights zero for non-support vectors

N

ZieSV oY (mzx) + b A

40



Sequential Minimal Optimization (SMO)
Algorithm

The weights are just linear combinations of training vectors
weighted with alphas

We still have not answered how do we get alphas
o Coordinate ascent

Do until converged
select pair of alpha(i) and alpha())
reoptimize W(alpha) with respect to alpha(i) and alpha(j)
holding all other alphas constant

done

41



Information Extraction Tasks

Named Entity Identification
Relation Extraction
Coreference resolution
Term Extraction

Lexical Disambiguation

Event Detection and Classification

42



Classifiers for Information Extraction

Sometimes extracted information can be a sequence

Extract Parts of Speech for the given sentence

DET VB AA A

DJ NN

What kind of classifier may work well for this kind of

sequence classification?

43



‘ Classification with Memory

P(NN|book, prevADJ) = 0.80
P(VB|book, prevADJ) = 0.04
P(VB|book, prevADV) = 0.10

C C ADJ C @
@ @ @ @ @

C(t) (class) is dependent on current observations X(t) and
previous state of classification (C(t-1))

C(t) can be POS tags, document class, word class, X(t) can
be text based features

44



| HMM Example

DBa

Let's enumerate all possible ways of producing X;=a, assuming we
start in state 1.

45



Forward Algorithm : Computing alphas

| 8lelS

.033+.03=.063 | 0495+ 0182=0677

46



Forward Algorithm Perl Code

Sub Forward() {
for (my $t = 0; $t < @obs ; $t++){

#sum across i,j transitions for all starting i and ending at j
for (my $i = 0; $i < $num_states; $i++){

my $tot_forward_prob_for_cur_dest = 0;
for (my $j = 0; $j < $num_states; $j++){

#multiply transition prob * obs prob
my $trans_prob = $trans_matrix[$i][$]];

#get obs_id
my $cur_obs = $obs[$t];
my $obs_id = $obs_vocab_id{$cur_obs};

#state i producing the given observation
my $obs_prob = $obs_matrix[$i][$obs_id];

#compute the forward prob

if ($t == 0)
my $start_trans_prob = $start_state_matrix[$j];
$tot_forward prob for cur_dest = $start_trans_prob * $obs_prob;

}

else{
$tot_forward prob for cur dest = $tot_forward prob for cur_dest
+ $forward_prob_matrix[$i][$t] * $trans_prob * $obs_prob;
}

}

#this is for passing on forward pass to next iteration
$forward_prob_matrix[$i][$t+1] = $tot_forward_prob_for_cur_dest;



| Viterbi Algorithm

| 8lelS

max{.084]|.042 032

lo i 1 >
Max(.0084].0315)

y

.

0294
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Problem 3: Forward-Backward
Algorithm

Consider transition from state i to |, tr;

Let p(tr;, X) be the probability that tr; is taken at time t, and the
complete output is X.

o(1) B()

Pi(tr;;, X) = o.4(1) @; by(%) Bil))

49



‘ Problem 3: F-B algorithm cont’d
Pi(tr;, X) = ay4(1) @; by(x) Byl))

where:

a.4(1) = Pr(state=i, x,...X.4) = probability of being in state i
and having produced Xj...X 4

a;; = transition probability from state i to
b;(%;) = probability of output symbol x; along transition ij

B(i) = Pr(X.4..-X7|state= j) = probability of producing X, ...X
given you are in state |

50



Estimating Transition and Emission
Probabilities

. — count(i—j)
o > eq count(i—q)

Expected number of transitions from state i to |

Aij = Expected number of transitions from state i
- _ Expected number of times in state j and observing symbol xt
b; (%)= Expected number of time in state j

51



‘ Problem 3: F-B algorithm

Compute a’s. since forced to end at state 3, a;=.008632=Pr(X)

| -8lels

52



‘ Problem 3: F-B algorithm, cont’d

Compute B’s.
2 Time: 0 1 2
® Obs: ¢ a 1/3%1/2 ab 1/3x1/2 aba1 X12abaa

'1/3

53



‘ Problem 3: F-B algorithm, cont’d

Compute counts. (a posteriori probability of each transition)
C(try| X) = ay4(i) @; by(xy) B() Pr(X)

167x.0625X.333x.5/.008632

Time: O
Obs: ¢

| -8lels

54



@ Backward Algorithm Perl Code

# we need to start at the end

my $end_t = scalar(@obs);

#go upto zero so start 1 less

$end_t--;

for (my $t = $end_t; $t >=0; $t--}
#sum across i,j transitions for all starting i and ending at j
for (my $i = 0; $i < $num_states; $i++){

my $tot_back prob for cur_dest = 0;
for (my $j = 0; $j < $num_states; $j++){

#multiply transition prob * obs prob
my $trans_prob = $trans_matrix[$i][$];

#get obs_id
my $cur_obs = $obs[$t];
my $obs_id = $obs_vocab_id{$cur_obs};

#state i producing the given observation
my $obs_prob = $obs_matrix[$i][$obs_id];

#compute the back prob

if ($t == $end_t){
my $end_trans_prob = $end_state_matrix[$j];
$tot_back prob for cur_dest = $end_trans_prob ;

}

else{
$tot_back prob _for cur_dest = $tot_back prob for cur_dest +

$back prob_matrix[$i][$t] * $trans_prob * $obs_prob;
}
¥

$back_prob_matrix[$i][$t-1] = $tot_back_prob_for_cur_dest;
}

} 55



‘ Finding Maximum Likelthood of our Conditional
Models (Multinomial Logistic Regression)

(c,d)€(C,D)

P(CID,N) = Y logp(cld, )
(¢,d)€(C,D)

exp ) ; N\ifi(c, d)
P(C|D, \) = Z log i 2iJilC
(¢,d)e(C,D) D €rp) ;i Nifi(d,d)

56



‘ Maximizing Conditional Log Likelthood

P(C‘ D, )\) — Z logea:p E )\Zfz (C, d)

(c,d)e(C,D)

= (e.d)e(c,D) 109 D exp y ; Aifi(c s d)

Taking derivative and setting it to zero

Olog(P|C,\) _ Z fi(C, d) — Z ZP(Cl|d7 )‘)fz(clad)

O\
(c,d)e(C,D) (c,d)e(C,D) c’

[ Empirical count (f, c) } [ Predicted count (f, A) }

Optimal parameters are obtained when empirical expectation equal predicted expectatigp




‘ Finding Model Parameters

We saw that optimum parameters are obtained when
empirical expectation of a feature equals predicted
expectation

We are finding a model having maximum entropy and
satisfying constraints for all features fj

E,(f;) = B (f;)

Hence finding the parameters of maximum entropy
model entails to maximizing conditional log-likelihood
and solving it

o Conjugate Gradient Descent

o Quasi Newton’s Method

a A simple iterative scaling
Features are non-negative (indicator functions ar rmn-njlgative)

= i(d,c

Add a slack feature fm+1 d,C =M —

where M = max; . 2211 fj (dz’a C)

g=1

58



‘ Finding Model Parameters

We saw that optimum parameters are obtained when empirical
expectation of a feature equals predicted expectation

We are finding a model having maximum entropy and satisfying
constraints for all features fj

E,(f;) = B (f;)

Hence finding the parameters of maximum entropy model entails to
maximizing conditional log-likelihood and solving it

o Conjugate Gradient Descent
o Quasi Newton’s Method

o A simple iterative scaling
Features are non-negative (indicator functions are non-negative)
Add a slack feature

where

fmi1(d,c) =M =327, fi(d,c)
M = maz; . Z;.n:l fi(d;,c)

59



How to Cluster Documents with No
Labeled Data?

Treat cluster IDs or class labels as hidden variables
Maximize the likelihood of the unlabeled data

Cannot simply count for MLE as we do not know
which point belongs to which class

o User Iterative Algorithm such as K-Means, EM

60



| Document Clustering with K-means

We can estimate parameters by doing 2 step
iterative process

5 Minimize J with respectto Tk [ Step 1 }
Keep Uk fixed

o Minimize J with respect to Uk [ }
: Step 2
Keep T'nk fixed
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a2 Minimize J with respectto 7nk [ Step 1 }
Keep i fixed =

Optimize for each n separately by choosing "nk for k that
gives minimum Hﬂ?n _ TnkHQ

roke = 1 if k = argmin,||z, — ,uj||2
— (0 otherwise

Assign each data point to the cluster that is the closest
Hard decision to cluster assignment

62



o Minimize J with respect to L
_ [ Step 2 }
Keep Tk fixed

J is quadratic in Mk . Minimize by setting derivative w.rt. Lk to
zero

o Zn T'nkdn
Hi =
Zn Tnk

Take all the points assigned to cluster K and re-estimate the
mean for cluster K
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Expectation Maximization for Gaussian

Mixture Models
Y(znk) = E(znk|Tn) = p(zr = 1|zp)

= E-Step

L WkN(a3n|Hk7Zk)
’Y(Z'n,k:) T le 7Tj./\/’(a7n|:ujazj)
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Estimating Parameters
M-step

N
/’L;€ — Nik anl ’Y(an)xn

N
Z;c — Nik D n=1 Y (Znk)(Tn — p)(Tn — :“;c)T
m o= Sk

where N, = Z,,]jzl Y(Znk)
lterate until convergence of log likelihood

log p(X|m, 11, 3°) = Ymq log (X1 N (@ pe, Sp))
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Maximum Entropy Markov Model

n MEMM Inference
T = argmazxp P(T|W)

—(argmazr 1, P(tlts_1,w5) |

T — CL’I“ngLQZTP(T|W) HMM Inference
T = argmaxrP(W|T)P(T)

—(argmazr [T, P(wilt)p(tilti 1))
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Transition Matrix Estimation

| MEMM Inference
T = argmazxp P(T|W)

—(argmazr 1, P(tlts_1,w5) |

Transition is dependent on the state and the feature

These features do not have to be just word id, it can be any
features functions

If g are states and o are observations we get

[P(C]z'\qq;—h@;) = mewp(zi w; fi(o, Q))]

67



 Viterbi in HMM vs. MEMM

HMM decoding:

ve(g) = maa:ﬁilvt_l(i)P(sj|3i)P(0t|sj) 1<j<N,1<t<T

MEMM decoding:

ve(5) = maz_jvi_1(1)P(s;]s:,04) 1< j< N, 1<t <T

This computed in maximum entropy framework
but has markov assumption in states thus its name MEMM
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‘ Conditional Random Field

Sum over
Sum over all feature function Weight for
all data points given feature function

jfj Yi—1,Yi, T, Z) Feature
Functions

%>
— A
) Z €£Bp(zzwjfj(yg—1ay7/j)_7 7’))
y' ey ? J

\ Feature function can
Sum over access all of observation
all possible label sequence

Model log linear on Feature functions
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‘ Inference in Linear Chain CRF

We saw how to do inference in HMM and MEMM

We can still do Viterbi dynamic programming based
inference

y* = argmazyp(y|T; w)
= argmay Zj ijj (f, y)
= argmay ZJ W Zz f] (yi—la Yi, T, Z)

— CLTngLZEg ZZ g (yz’—ly yz) [Denominator?}

whereg; (y;—1,y;) = Zj w; fi(Yi—1,Yi, T, 1)

x and i arguments of f_j dropped in definition of g_i
g_i is different for each |, depends on w, x and i

70



‘ Computing Expected Counts

eajp(z Z w]f] (yi—la Yi, E) 7’))

Pz, w) =

? J
Z ea:p(z Z wjfj (yg—la y7/,7 Z, 7’))
]

y'eYy

[ Need to compute denominator }
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Optimization: Stochastic Gradient Ascent

For all training (x,y)
For all | /
Compute Ey’rvp(y’ |z;w) [FJ (:Ev Yy )]

w; = wj + &(Fj(2,Y) = Eymp(y |z [Fj (2, 9)])

End For
End For
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