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‘ Announcements

Final Project Due, April 20 (11:59pm)

o Some requests to push the date

o April 25 (11:59pm) (No extensions, no late days) — possibility?
Project presentations April 27

o Email me if you want to give the presentation in a particular slot
o Randomized assignment

o 10 min presentations (8 mins presentation) (2 mins Q&A)
HW?2 Returned

o Homework was difficult

o Average (75) - Highest (91)

o Intermediate Report Returned

Solutions for all available

o Please come to my office hours to discuss them

o For you to use the solutions for your other out of class project, will be
available at the end of the semester



‘ Final Report

Maximum 8 pages (including references)

Using ACL style
o Latex or Word style

Filename should be your UNI ID
Needs to be pdf file

Points will be taken off if any of the above requirements are
not followed



‘ Writing the Final Project Report

You should clearly state the problem and your
solution to the problem

Related work
Problems you faced and Implementation discussion
Analysis and discussion of results

Critical Analysis of why the solution works or why it
does not? < Important

What changes you can suggest for future work



‘ Topics for Today

Language Models
Recap: Bayesian Network
Markov Random Fields



| What's a Language Model?

A language model is a probability distribution over word
sequences

p("nothing on the roof”’) &~ 0.001

p(“huts sing on de woof’) =~ 0



Where Are LLanguage Models Used?

Speech recognition

Handwriting recognition

Spelling correction

Optical character recognition

Machine translation

Natural language generation
Information retrieval

Any problem that involves sequences ?



Use of Language Model in Speech

Recognition

i argVI;laX PW|X,0)

' wemax PCX | W, ©)P(W | ©)
v P(X)

Bayes'rule

=" PX |[W,0)P(W|0O) P(X) doesn't depend on W

W is a sequence of words, W* is the best sequence.
X is a sequence of acoustic features.

® is a set of model parameters.



‘ Language Modeling and Domain

|solated digits: implicit language model

1 1 1 1
"one')=—, p("two")=—,..., p("zero")=—, p("oh")=—
p("one") . p("two") . o ) . p("oh") .

All other word sequences have probability zero

Language models describe what word sequences the domain
allows

The better you can model acceptable/likely word sequences, or
the fewer acceptable/likely word sequences in a domain, the
better a bad acoustic model will look

e.g. isolated digit recognition, yes/no recognition



‘ N-gram Models

It's hard to compute
p(“and nothing but the truth”)

Decomposition using conditional probabilities can help

p(“and nothing but the truth”) = p(*and”) x p(“nothing”|"and”) x
p(“but’|*and nothing”) x p(“the”|*and nothing but”) x
p(“truth”|*and nothing but the”)
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‘ The N-gram Approximation

Q: What’s a trigram? What’s an n-gram?
A: Sequence of 3 words. Sequence of n words.

Assume that each word depends only on the previous two
words (or n-1 words for n-grams)

3 _ ) p(“and”) x p(“nothing”|“and”)
p(“and nothing but the truth”) = o(“but’|“and nothing”) x
p(“the”|“nothing but”) x
p(“truth”|“but the”)
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Trigram assumption is clearly false
p(w | of the) vs. p(w | lord of the)
m Should we just make n larger?
can run into data sparseness problem

s N-grams have been the workhorse of language modeling
for ASR over the last 30 years

m Uses almost no linguistic knowledge
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Technical Details: Sentence Begins & Ends

pw=w.w,)= Hp(wi W, ,w )
i=1

Pad beginning with special beginning-of-sentence token:
W =W,=D

Want to model the fact that the sentence is ending, so pad
end with special end-of-sentence token:
wn,, = <

n+l

pw=w..w,)=]]p0w w_,w,)
i=1
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Bigram Model Example

training data:

testing data / what’s the probability of:

count(> JOHN) 1
count(>) 3
count(JOHN - READ) 1
count(JOHN)
p(A| READ) = count(READ - A) :2
count(READ) 3
count(A-BOOK) 1

BOOK | A) = —
P( 4 count(A) 2

p(JOHN |>) =

P(READ| JOHN) =

p(<| BOOK) :%

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

JOHN READ A BOOK

K|

1

W | —
W | N
N | —
N | —

p(w) =
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‘ Trigrams, cont’d

Q: How do we estimate the probabilities?
A: Get real text, and start counting...

Maximum likelihood estimate would say:
p(“the”|“nothing but”) =

C(“nothing but the”) / C(“nothing but”)
where C is the count of that sequence in the data
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‘ Data Sparseness

Let’'s say we estimate our language model from yesterday’s
court proceedings

Then, to estimate
p(“toulul Swear”) We use
count (“I swear to”) / count (‘| swear”)

What about p(“to”|“l swerve™) ?
If no traffic incidents in yesterday’s hearing,
count(“l swerve to”) / count(“l swerve”)
= 0 if the denominator > 0, or else is undefined
Very bad if today’s case deals with a traffic incident!
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‘ Language Model Smoothing

How can we adjust the ML estimates to
account to account for the effects of the prior
distribution when data is sparse?

Generally, we don't actually come up with
explicit priors, but we use it as justification for
ad hoc methods
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‘ Smoothing: Simple Attempts

Add one: (V is vocabulary size)

C(xyz)+1
p(z]xy) =
C(xy)+V
Advantage: Simple
Disadvantage: Works very badly
What about delta smoothing:
C(xyz)+o

i - Z |l X ~
A: Still bad..... p(z | xy) Clp)+ VS
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‘ Smoothing: Good-Turing

Basic idea: seeing something once is roughly the same as
not seeing it at all

Count the number of times you observe an event once;
use this as an estimate for unseen events

Distribute unseen events’ probability equally over all
unseen events

Adjust all other estimates downward, so that the set of
probabilities sums to 1

Several versions; simplest is to scale ML estimate by (1-
prob(unseen))
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‘ Good-Turing Example

Imagine you are fishing in a pond containing {carp, cod, tuna,
trout, salmon, eel, flounder, and bass}

Imagine you've caught: 10 carp, 3 cod, 2 tuna, 1 trout, 1 salmon,
and 1 eel so far.

Q: How likely is it that the next catch is a new species (flounder
or bass)?

A: prob(new) = prob(1’s) = 3/18
Q: How likely is it that the next catch is a bass?
A: prob(new)x0.5 = 3/36
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‘ Back Off

(Katz, 1987) Use MLE if we have enough counts,
otherwise back off to a lower-order model

Prae Wi [ W) = Pre W [ W) ip count(w, ;w;) > 5
= Per(W; | W) if 1< count(w,_ ,w,) <4
=a,, Dka:(W;) if count(w; ;w;) =0

choose ¢,  so that Z Pra: (W, W) =1
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‘ Smoothing: Interpolation

Idea: Trigram data 1s very sparse, noisy,

Bigram 1s less so,

Unigram is very well estimated from a large corpus
Interpolate among these to get the best combination

C(xyZ)WC(yZ)Hl_l_ﬂ) C(z)

C(xy) C(y) C(eo)

p(zlxy)=4

Find O<A , u <I by optimizing on “held-out” data
Can use deleted interpolation in an HMM framework
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‘ Example

Die > Possible outputs: 1,2,3,4,5,6
=

Assume our training sequence is: x = 1,3,1,6,3,1,3,5
Test sequence is:y =5,1,3,4
ML estimate from training:

0.=(3/8,0,3/8,0, 1/8, 1/8)
Po,, (¥) =0

Need to smooth 0,
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‘ Example, cont’d

Let 6,=(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)

We can construct a linear combination from 6., and 6,

0.=10,+(1-1)0, 0<=Ar<=1
= \What should the value of 1- A be?

m A reasonable choice is a/N, where a is a small number, and N
IS the training sample size
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‘ Example, cont’d

e.g. ifa=2,then 1-A =2/8 =0.25

0. = 0.75 (.375, 0, .375, 0, .125, .125)
+0.25 (.167, .167, .167, .167, .167, .167)

= (.323, .042, .323, .042, .135, .135)
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‘ Held-out Estimation

Split training data into two parts:
Part 1: x"=X; X, ... X,
Part 2: X, .N=X..1 X --- Xy

Estimate 6, from part 1, combine with 6,
0,=A0,+(1-1)0, 0<=Ar<=1

m Pick A so as to maximize the probability of Part 2 of the training
data

m Q: What if we use the same dataset to estimate the MLE
estimate 0,, and A?

Hint: what does MLE stand for?
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‘ Smoothing: Kneser-Ney

Combines back off and interpolation
Motivation: consider bigram model
Consider p(Franciscol|eggplant)

Assume that the bigram “eggplant Francisco” never occurred in
our training data ... therefore we back off or interpolate with
lower order (unigram) model

Francisco is a common word, so both back off and
interpolation methods will say it is likely

But it only occurs in the context of “San” (in which case the
bigram models it well)

Key idea: Take the lower-order model to be the number of
different contexts the word occurs in, rather than the unigram
probability of the word
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‘ Smoothing: Kneser-Ney

Subtract a constant D from all counts

Interpolate against lower-order model which measures how
many different contexts the word occurs in

Modified K-N Smoothing: make D a function of the number of
times the trigram xyz occurs

C(xyz)—D P C(-z)
Coy) Y C()

p(z|xy)=
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‘ So, which technique to use?

Empirically, interpolation is superior to back off

State of the art is Modified Kneser-Ney smoothing
(Chen & Goodman, 1999)
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‘ Does Smoothing Matter?

No smoothing (MLE estimate):
o Performance will be very poor
o Zero probabilities will kill you

Difference between bucketed linear interpolation (ok) and
modified Kneser-Ney (best) is around 1% absolute in word
error rate for a 3-gram model

No downside to better smoothing (except in effort)

Differences between best and suboptimal become larger
as model order increases
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‘ Model Order

Should we use big or small models?
e.g. 3-gram or 5-gram?
s With smaller models, less sparse data issues - better
probability estimates?
o Empirically, bigger is better

o With best smoothing, little or no performance degradation if
model is too large

o With lots of data (100M words +) significant gain from 5-
gram

m Limiting resource: disk/memory
s Count cutoffs can be used to reduce the size of the LM
s Discard all n-grams with count less than threshold
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‘ Evaluating L.anguage Models

Best way: plug into your system (ASR, Summarizer, Text
Categorizer), see how LM affects error rate

o Expensive to compute
Is there something cheaper that predicts WER well?

o “perplexity” (PP) of test data (only needs text)

o Doesn’t always predict WER well, but has theoretical
significance

o Predicts best when 2 LM’s being compared are trained on
same data
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‘ Perplexity

Perplexity is average branching factor, i.e. how many alternatives the LM
believes there are following each word

Another interpretation: log,PP is the average number of bits per word
needed to encode the test data using the model P( )

Ask a speech recognizer to recognize digits: 0,1,2,3,4,5,6,7,8,9 simple
task (?) perplexity = 10
Ask a speech recognizer to recognize alphabet: a,b,c,d,e,...z
more complex task ... perplexity = 26
m alpha, bravo, charlie ... yankee, zulu
perplexity = 26

Perplexity measures LM difficulty
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‘ Computing Perplexity

1. Compute the geometric average probability
assigned to each word in test data w,..w,, by model

P()

pavg :[HP(WZ |W1°"Wi—1)]
i=1

2. Invert it: PP = 1/p,,,
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‘ ML Models We Know in Graphical

Representation

—

SEQUENCE

iv

Maive Bayes

cu@m
é3o

Logistic Eegression

—

SEQUENCE

Figure from [1]
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HMMs
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Y

Linear-chain CRFs

= 1%

GENERAL
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cu@m
—

GENERAL m

GMPHS General CRFs
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| CRF, MEMM., HMM

CRF MEMM

M Naive Bayes



Review: Bayesian Networks

Graph G where G is acyclic and is defined as follows

G=(V,E)
V=X, Xo, ... Xn

Each node has a set of parents
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| Factotization of Joint Probability

Factorization of joint probability reduces the number of
parameters to estimate

Pl ) =T e \'

p($1,$2,$3,$4,$5,$6) —

. p(xl)p(x2|xl) (CE3|CC2 CC4|ZE1 CE5|ZE3 SU6|5132,SC5

2 = = @ = =

Conditional Probability Tables in each node are smaller
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Conditional Independence

a is independent of b given ¢

p(alb, c) = p(alc)

Equivalently
p(a,blc) = plalb, c)p(blc)
= p(ale)p(blc)
Notation
allblc

*Slides from here forward are from Bishop Book Resource [3]
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Conditional Independence: Example 1

4 ¢ i
O—0O—0
pla, b, c) = p(a)p(cla)p(blc)

p(a,b) = p(a) Y p(cla)p(ble) = p(a)p(bla)

all bl
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Conditional Independence: Example 1

s

p(a, b|C> — C;
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Conditional Independence: Example 2

¢ p(a,b,c) = p(alc)p(blc)p(c)
pla,b) = > p(ale)p(ble)p(c)

all bl
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Conditional Independence: Example 2

p(a, b, c)
p(c)
= plale)p(blc)

p(a,b|c) —

allblc
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Conditional Independence: Example 3

p(a, b, c) = pla)p(b)p(cla, b)
pla,b) = p(a)p(b)

allb|d

-

= Note: this is the opposite of Example 1, with ¢ unobserved.
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Conditional Independence: Example 3

y b
a C — p(CL, b, C)
bl p(c)
_ p(a)p(b)p(c|a,b)
p(c)
‘ all b]c

Note: this is the opposite of Example 1, with c observed.
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Joint Distribution

General joint distribution: K2 — 1 parameters

X1 X K K
O—0O s fif

Independent joint distribution: 2( K — 1) parameters

O O wown-flafie

46



‘ Discrete Variables (2)

General joint distribution over M variables:
KM — 1 parameters

M-node Markov chain: K- 1+ (M- 1)K(K-1)
parameters
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| Conditional Probability Tables

sz 2L \'

p(xl Lo, L3,T4,Is5, 366 —

p(w1)p(z2|z1)p(z3|z2)p(T4a|T1)P |$3 $6|$2 T5)

48



‘ Markov Random Fields

-—--
e --,-I

AL B|C

Markov Blanket
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