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Statistical Methods for NLP

Language Models, Graphical Models

Sameer Maskey

Week 13, April 13, 2010

Some slides provided by Stanley Chen and from Bishop Book Resources
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Announcements

� Final Project Due, April 20 (11:59pm) 

� Some requests to push the date

� April 25 (11:59pm) (No extensions, no late days) – possibility?

� Project presentations April 27

� Email me if you want to give the presentation in a particular slot

� Randomized assignment

� 10 min presentations (8 mins presentation) (2 mins Q&A)

� HW2 Returned 

� Homework was difficult

� Average (75) � Highest (91) 

� Intermediate Report Returned

� Solutions for all available

� Please come to my office hours to discuss them

� For you to use the solutions for your other out of class project, will be 

available at the end of the semester
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Final Report

� Maximum 8 pages (including references)

� Using ACL style

� Latex or Word style

� Filename should be your UNI ID

� Needs to be pdf file

� Points will be taken off if any of the above requirements are 

not followed
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Writing the Final Project Report

� You should clearly state the problem and your 

solution to the problem

� Related work

� Problems you faced and Implementation discussion

� Analysis and discussion of results

� Critical Analysis of why the solution works or why it 

does not?  Important

� What changes you can suggest for future work
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Topics for Today

� Language Models

� Recap: Bayesian Network

� Markov Random Fields
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What’s a Language Model?

� A language model is a probability distribution over word 

sequences

� p(“nothing on the roof”)        0.001

� p(“huts sing on de woof”)           0

≈

≈
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Where Are Language Models Used?

� Speech recognition

� Handwriting recognition

� Spelling correction

� Optical character recognition

� Machine translation

� Natural language generation

� Information retrieval

� Any problem that involves sequences ?
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Use of Language Model in Speech 
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� W is a sequence of words, W* is the best sequence.

� X is a sequence of acoustic features.

� Θ is a set of model parameters.
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Language Modeling and Domain

� Isolated digits: implicit language model

� All other word sequences have probability zero

� Language models describe what word sequences the domain 

allows

� The better you can model acceptable/likely word sequences, or 

the fewer acceptable/likely word sequences in a domain, the 

better a bad acoustic model will look

� e.g. isolated digit recognition, yes/no recognition
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N-gram Models 

� It’s hard to compute 

p(“and nothing but the truth”)

� Decomposition using conditional probabilities can help

p(“and nothing but the truth”) = p(“and”) x p(“nothing”|“and”) x 

p(“but”|“and nothing”) x p(“the”|“and nothing but”) x 

p(“truth”|“and nothing but the”)
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The N-gram Approximation

� Q:  What’s a trigram? What’s an n-gram?
A:  Sequence of 3 words. Sequence of n words.

� Assume that each word depends only on the previous two 
words (or n-1 words for n-grams)

p(“and”) x p(“nothing”|“and”) 
x p(“but”|“and nothing”) x 
p(“the”|“nothing but”) x 
p(“truth”|“but the”)

p(“and nothing but the truth”) = 
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� Trigram assumption is clearly false

p(w | of the) vs. p(w | lord of the)

� Should we just make n larger?

can run into data sparseness problem

� N-grams have been the workhorse of language modeling 

for ASR over the last 30 years

� Uses almost no linguistic knowledge
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Technical Details: Sentence Begins & Ends
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Pad beginning with special beginning-of-sentence token: 

w-1 = w0 = >

Want to model the fact that the sentence is ending, so pad

end with special end-of-sentence token:
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Bigram Model Example

JOHN READ MOBY DICK

MARY READ A DIFFERENT BOOK

SHE READ A BOOK BY CHER

JOHN READ A BOOK

2

1
)|(

2

1

)(

)(
)|(

3

2

)(

)(
)|(

1
)(

)(
)|(

3

1

)(

)(
)|(

=

=
⋅

=

=
⋅

=

=
⋅

=

==

BOOKp

Acount

BOOKAcount
ABOOKp

READcount

AREADcount
READAp

JOHNcount

READJOHNcount
JOHNREADp

count

JOHNcount
JOHNp

<

>

>
>

training data:

testing data / what’s the probability of:

36

2

2

1

2

1

3

2
1

3

1
)( =⋅⋅⋅⋅=wp



15

Trigrams, cont’d

Q: How do we estimate the probabilities?

A: Get real text, and start counting…

Maximum likelihood estimate would say:

p(“the”|“nothing but”) = 

C(“nothing but the”) / C(“nothing but”)

where C is the count of that sequence in the data
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Data Sparseness

� Let’s say we estimate our language model from yesterday’s 

court proceedings

� Then, to estimate

p(“to”|“I swear”) we use

count (“I swear to”) / count (“I swear”)

� What about p(“to”|“I swerve”) ?

If no traffic incidents in yesterday’s hearing,

count(“I swerve to”) / count(“I swerve”)

= 0 if the denominator > 0, or else is undefined

Very bad if today’s case deals with a traffic incident!
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Language Model Smoothing

� How can we adjust the ML estimates to 

account to account for the effects of the prior 

distribution when data is sparse?

� Generally, we don’t actually come up with 

explicit priors, but we use it as justification for 

ad hoc methods
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Smoothing: Simple Attempts

� Add one: (V is vocabulary size)

Advantage: Simple

Disadvantage:  Works very badly

� What about delta smoothing:

A: Still bad…..
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Smoothing: Good-Turing

� Basic idea: seeing something once is roughly the same as 
not seeing it at all

� Count the number of times you observe an event once; 
use this as an estimate for unseen events

� Distribute unseen events’ probability equally over all 
unseen events

� Adjust all other estimates downward, so that the set of 
probabilities sums to 1

� Several versions; simplest is to scale ML estimate by (1-
prob(unseen))
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Good-Turing Example

� Imagine you are fishing in a pond containing {carp, cod, tuna, 
trout, salmon, eel, flounder, and bass}

� Imagine you’ve caught: 10 carp, 3 cod, 2 tuna, 1 trout, 1 salmon, 
and 1 eel so far.

� Q: How likely is it that the next catch is a new species (flounder 
or bass)?

� A: prob(new) = prob(1’s) = 3/18 

� Q: How likely is it that the next catch is a bass?

� A: prob(new)x0.5 = 3/36 
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Back Off

� (Katz, 1987) Use MLE if we have enough counts, 

otherwise back off to a lower-order model

� choose         so that 
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Smoothing: Interpolation
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Idea:  Trigram data is very sparse, noisy, 

Bigram is less so,

Unigram is very well estimated from a large corpus

Interpolate among these to get the best combination

Find 0< λ , µ <1 by optimizing on “held-out” data

Can use deleted interpolation in an HMM framework
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Example

� Die              Possible outputs: 1,2,3,4,5,6

� Assume our training sequence is: x = 1,3,1,6,3,1,3,5

� Test sequence is: y = 5,1,3,4

� ML estimate from training:

θm = ( 3/8, 0, 3/8, 0, 1/8, 1/8)

pθm
(y) = 0

• Need to smooth θm
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Example, cont’d

� Let θu = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)

� We can construct a linear combination from θm and θu

θs = λ θm + (1- λ) θu 0 <= λ <= 1

� What should the value of 1- λ be?

� A reasonable choice is a/N, where a is a small number, and N 

is the training sample size
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Example, cont’d

� e.g. if a=2, then  1-λ = 2/8 = 0.25

θs = 0.75 (.375, 0, .375, 0, .125, .125)

+ 0.25 (.167, .167, .167, .167, .167, .167)

= (.323, .042, .323, .042, .135, .135)
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Held-out Estimation

� Split training data into two parts:

Part 1:   x1
n = x1 x2 … xn

Part 2:   xn+1
N = xn+1 xn+2 … xN

� Estimate θm from part 1, combine with θu

θs = λ θm + (1- λ) θu 0 <= λ <= 1

� Pick λ so as to maximize the probability of Part 2 of the training 
data

� Q: What if we use the same dataset to estimate the MLE 
estimate θm and λ? 

Hint: what does MLE stand for?
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Smoothing: Kneser-Ney

� Combines back off and interpolation

� Motivation: consider bigram model

� Consider p(Francisco|eggplant)

� Assume that the bigram “eggplant Francisco” never occurred in 
our training data ... therefore we back off or interpolate with 
lower order (unigram) model

� Francisco is a common word, so both back off and 
interpolation methods will say it is likely

� But it only occurs in the context of “San” (in which case the 
bigram models it well)

� Key idea:  Take the lower-order model to be the number of 
different contexts the word occurs in, rather than the unigram 
probability of the word
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Smoothing: Kneser-Ney

� Subtract a constant D from all counts

� Interpolate against lower-order model which measures how 
many different contexts the word occurs in

� Modified K-N Smoothing:  make D a function of the number of 
times the trigram xyz occurs
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So, which technique to use?

� Empirically, interpolation is superior to back off

� State of the art is Modified Kneser-Ney smoothing 

(Chen & Goodman, 1999)
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Does Smoothing Matter?

� No smoothing (MLE estimate): 

� Performance will be very poor

� Zero probabilities will kill you

� Difference between bucketed linear interpolation (ok) and 

modified Kneser-Ney (best) is around 1% absolute in word 

error rate for a 3-gram model

� No downside to better smoothing (except in effort)

� Differences between best and suboptimal become larger 

as model order increases
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Model Order

� Should we use big or small models? 

e.g. 3-gram or 5-gram?

� With smaller models, less sparse data issues � better 
probability estimates?
� Empirically, bigger is better

� With best smoothing, little or no performance degradation if 
model is too large

� With lots of data (100M words +) significant gain from 5-
gram

� Limiting resource:  disk/memory

� Count cutoffs can be used to reduce the size of the LM

� Discard all n-grams with count less than threshold
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Evaluating Language Models

� Best way: plug into your system (ASR, Summarizer, Text 

Categorizer), see how LM affects error rate

� Expensive to compute

� Is there something cheaper that predicts WER well?

� “perplexity” (PP) of test data (only needs text)

� Doesn’t always predict WER well, but has theoretical 

significance

� Predicts best when 2 LM’s being compared are trained on 

same data
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Perplexity

� Perplexity is average branching factor, i.e. how many alternatives the LM 
believes there are following each word

� Another interpretation: log2PP is the average number of bits per word 
needed to encode the test data using the model P( )

� Ask a speech recognizer to recognize digits: 0,1,2,3,4,5,6,7,8,9 simple 
task (?) perplexity = 10

� Ask a speech recognizer to recognize alphabet:  a,b,c,d,e,…z

more complex task … perplexity = 26

� alpha, bravo, charlie … yankee, zulu

perplexity = 26

Perplexity measures LM difficulty
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Computing Perplexity

1. Compute the geometric average probability 

assigned to each word in test data w1..wn by model 

P( )

2. Invert it: PP = 1/pavg
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ML Models We Know in Graphical 

Representation

Figure from [1]
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CRF, MEMM, HMM

y1 y2

X1 X2
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Review: Bayesian Networks

V = X1, X2, ...,XN

E = (Xi,Xj) : i �= j

G = (V,E)

� Graph G where G is acyclic and is defined as follows

X2X1

X3

� Each node has a set of parents
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Factorization of Joint Probability

� Factorization of joint probability reduces the number of 

parameters to estimate

X1

X2

X3

X5

X6

X4

P (x1, ..., xn) =
∏N

i=1 p(xi|πi)

p(x1, x2, x3, x4, x5, x6) =

26

22 2322222221

� Conditional Probability Tables in each node are smaller 

p(x1)p(x2|x1)p(x3|x2)p(x4|x1)p(x5|x3)p(x6|x2, x5)
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Conditional Independence

� a is independent of b given c

� Equivalently

� Notation

*Slides from here forward are from Bishop Book Resource [3]
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Conditional Independence: Example 1
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Conditional Independence: Example 1
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Conditional Independence: Example 2
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Conditional Independence: Example 2
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Conditional Independence: Example 3

� Note: this is the opposite of Example 1, with c unobserved.
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Conditional Independence: Example 3

Note: this is the opposite of Example 1, with c observed.
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Joint Distribution

� General joint distribution: K 2 — 1 parameters

� Independent joint distribution: 2(K — 1) parameters
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Discrete Variables (2)

General joint distribution over M variables: 

KM — 1 parameters

M -node Markov chain: K — 1 + (M — 1)K(K — 1)
parameters
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Conditional Probability Tables

X1

X2

X3

X5

X6

X4

P (x1, ..., xn) =
∏N

i=1 p(xi|πi)

p(x1, x2, x3, x4, x5, x6) =

p(x1)p(x2|x1)p(x3|x2)p(x4|x1)p(x5|x3)p(x6|x2, x5)
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Markov Random Fields

Markov Blanket
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