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Outline

� Introduction to S2S: An overview of IBM MASTOR

� DARPA TRANSTAC Program: Bring S2S to real world

– Mission and the progress

– How S2S is evaluated?

– Video demo: Iraqi Arabic-English S2S on Tablet PC

� SMT and S2S Technologies

– Recap: Word alignment and phrase-based SMT

– Multiple graph-based phrasal SMT using finite state

– Real-time speech recognition & text-to-speech synthesis (no discussion today)

� Formal syntax-based SMT and SCFG

– Overview of syntax-based SMT and SCFG

– Efficiently integrating linguistic syntax information

� Case study: SMT systems used in IBM S2S

– Live demo: Pashto-English S2S on Google Nexus One (Android)
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IBM Speech-to-Speech Translator

A Real-time and Portable Solution to Mitigate Language Barriers

o Automatic Universal Translator

� The dream of scientists for decades – most challenging research

o MASTOR (Multilingual Automatic Speech-to-Speech TranslatOR)

� Attempting to facilitate cross-lingual oral communication for designed

domains

o Challenges

� Background noise in the field

� Accented speech and various dialects

� Ubiquitous ambiguity presented in speech and language, etc

� Conversational spontaneous speech: disfluent & ungrammatical input

� Real-time performance on low-end mobile computational platforms
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DARPA TRASTAC

� Spoken language communication & translation system for Tactical Use 

� Missions: 

– Demonstrate capabilities to rapidly develop and field two-way translation systems

– Enable speakers of different languages to spontaneously communicate with one 

another in real-world tactical situations.

� Program started in 2005/2006, as a continuation of DARPA Babylon/CAST:

– Phase I (05/06), II (06/07), III (07/08): focused on Iraqi-English

� Phase IV (08/09): added colloquial Afghanistan languages to the portfolio

– Dari-English

– Pashto-English

� Prototypes for both Dari & Pashto were built within the 6 months of 2009

– Demo later in this talk



© 2009 IBM CorporationIBM Speech-to-speech Translation

How S2S is evaluated?

� S2S/SMT: there is often no ground truth in speech translation

� Evaluations led by NIST and MITRE using multiple dimensional matrices

– Offline: component evaluation

� ASR WER 

� Translation accuracy (BLEU, TER, METOR, and human judge)

� TTS (human judge and WER)

� Low-level concept transfer odds

– Live: simulated real world scenarios between monolingual users 

� Task completion rate: accuracy and speed

� High-level concept transfer rate

� Number of attempts per success

� Time to retrieve a concept

– Post-live-session anonymous user feedback/questionnaires 

� Both English/foreign users provide scaled feedback on satisfaction 

� Performance, usability, eyes-free, mobility, form factors etc

� Commentary on overall performance
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Iraqi Arabic-English Video Demo
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A Typical Pipeline of SMT
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How word alignment is learnt: IBM Model 4 & EM (Brown’93)
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(Examples from Koehn ’04)

Alignment Symmetry & Refinement
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Phrase Translation: Putting More Context into Consideration

� Enumerate all phrase pairs w.r.t. word alignments boundary [Och et al, ’99]

� A phrase is just a n-gram, not necessarily in linguistic sense

– Every rectangle box in the above picture is a phrase pair

� Estimate phrase to phrase translation table by relative frequency

� Others (lexicalized distortion models, word-to-word translation model, etc) can also be 

estimated from alignment

� Simple yet most widely-used SMT techniques

经济 || economy || 0.31

经济 || economic || 0.63

中国大陆 || chinese mainland || 0.25

中国大陆 || mainland china || 0.75

开放 || open || 1.00

边境 开放 || border open || 1.00

......



© 2009 IBM CorporationIBM Speech-to-speech Translation

Decoding: Phrase-based Statistical Machine Translation

� Phrase-based: state-of-the-art MT performance for many tasks

� Log-linear model combination: language model, length bonus etc.

� Decoding: Stack (A*) beam search (Och’04, Koehn’04) is commonly used

– Moses: widely used open source toolkit

– Many other implementations around the world

� Alternatively,  the decoding can be done by WFST techniques

– No consideration of recursion or hierarchical structures in languages,

phrase-based SMT is essentially a finite state problem!
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Formulate Phrase-based SMT in WFST

� Pros of applying Weighted Finite State Transducer (WFST):

– Mature algorithms for operations and optimization (Mohri’02): compact models

– Incorporate multiple sources, multi-level & heterogeneous statistical knowledge

– Better integration with uncertainties; Suitable for S2S translation

� Early studies: Knight’98, Bangalore’01

� General framework of using WFST for translation

– A WFST Implementation for Phrase-based SMT (Kumar’05)

– WFST for constrained Phrase-based translation (Zhou’05)

� In above cases, decoding is performed with a general purpose FSM Toolkit
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Issues with Previous Approaches

� Ideal case of WFST approach: 
– Compute entire H offline: perform all composition operations ahead of time. 

– Determinization & minimization: further reduces computation

– At translation time: only need to do  best-path (I o H)

� In reality, very difficult to do full offline composition or optimization :
– The nondeterministic nature of the phrase translation transducer interacts poorly 

with the LM; 

– H is of intractable size (even for inf. memory); 

– I °H expensive: even w/ on-the-fly composition followed by beam-pruning search

– Reordering is a big challenge, making search NP-hard, and H non finite-state

� In previous work, compositions have all been done online for given input
– Slow speed (<5 words/second) (kumar’05), 

– Needs multiple GB memory at runtime 
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A Multiple-Graph based Approach for Phrasal SMT
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≈ � Decompose the problem as a chain of 

conditional probabilities (see left)

� Each represented by WFST: models the 

relationships between their inputs/ outputs.  

� Compose & optimize the static graph as 

much as possible 

� Encode reordering into a separate 

dynamically expanded graph that can 

combine other uncertainty on-the-fly

� A dedicated decoder needed for efficient 

decoding

–Dynamic composition of multiple graphs

–Multi-dimensional synchronous Viterbi search

S = I  o  P o T  o W o L

P: source language segmentation

T:  phrasal translation

W: target language phrase-to-word

L: target language model

I:   input with dynamic uncertainty (reorder, 

ASR, segmentation, morphology  etc)
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Determinize Phrase Segmentation Transducer P

� Mapping word sequences to all “acceptable” phrase sequences:
– How many people are injured

� How

� How many

� How many people

� many people are

� peole are injured

� …

� Determinization is crucial here:
– Reduce the size of this machine, 

– Making following compositions possible

� Non-determinizability is caused by overlap between phrases, 
– word sequences segmented into phrases in multiple nested ways

– phrase identity may not be determined until entire sentence is observed

– such unbounded delays make P non-determinizable

� Our Solution: 
– introduce an auxiliary symbol, EOP, 

– Marking the end of each distinct source phrase. 
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Other Component Transducers and Offline Optimization

� T: maps source phrases to target 
phrases. 

–One-state machine: every arc  
corresponds to a phrase pair

–Weights determined by log-linear of 
multiple models 

�phrasal translation
�word lexicons
�phrase penalty etc

–One arc maps EOP to itself w/o cost

� W: maps target phrase to words
–A deterministic machine

� L: Back-off N-gram target language 
model

–a weighted acceptor assigns 
probabilities to target word sequences

–Mostly determinized

� H = P  o T  o W o L, not computable 
offline!

� Solution: Separate H as: H = M o L 

� M = Min(Min(Det(P) o T) o W )
–tropical semiring for Viterbi compability

–Further optimization w/ minimization

� M can be computed fully offline due to 
the determinizability of P

–Millions of states

–Tens of millions arcs
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Lexicalized Word Reordering in Graph (Zhou et al 08)

� Reordering graph embedded in decoding

– To incorporate ordering ambiguity

– Bit-vector to indicate covering status

� 000..0 indicates that no words translated

� 111..1 indicates that all finished

– Reordering graph (topology & weights) 
controlled by reordering constraints & models

� Maximum window (4), maximum skip (2)

– Reordering graph is determinized and 
minimized on-the-fly during decoding

– Reordering cost is added into log-linear models

� Similar implementation can incorporate speech 

recognition (ASR lattice) ambiguity for S2S

� Quiz: when there is no reorder constraint

– For a m word input, how many reorder options?

– How many states needed in this reorder graph?

m!

2m
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Folsom: Multiple-graph SMT (Zhou et al., 06;07;08)

� SMT built upon multi weighted finite state graphs:

–Input graph I: model uncertainty in inputs 

� Reordering, ASR ambiguity, morphological, 

segmentation, and/or their combinations

� Statically or lazily constructed

–Translation graph M: encode phrasal translations

–Target graph L: measure target acceptability

� Decoder: Best-path ( I o M o L )
–Sync-Viterbi search on each layer & joint graph

–7-tuple search hypothesis organized as a prefix tree; merge 
hyp. as early as possible

� WFST perspective: can be viewed as optimized 
implementation of combined WFST operations:

–Lazy multiple composition

–Lazy determinization and minimization

–Viterbi search

� Use lexicalized reordering models (Zhou et al., 08)
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� Syntax analysis
– Parse the source and/or target sentence (string) into a structured 

representation (tree)

– trees reveal translation patterns that are more generalizable than what 

string can offer

� Syntax-based translation:

– Improved performance over state-of-the-art phrase-based  
(Chiang, 2005; Galley et al., 2004; Liu et al., 2006)

� One of the hottest topics in SMT/NLP fields 

Putting Syntax into Translation Model: Introduction
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What’s common between ice creams & syntax-based SMT?

� Linguistic syntax-based: 

– Explicitly utilizes structures defined over linguistic theory & human 

annotations (e.g., Penn Treebank)

– SCFG rules (define later) derived from parallel corpus guided by parsing 

on at least one side of the corpus: 

� tree-to-string, string-to-tree, tree-to-tree…

– Examples: (Yamada and Knight, 01), (Galley et al., 04), (Huang, 07) etc

� Formal syntax-based:

– Based on hierarchical structures of natural language 

– No annotation needed

– Synchronous grammars extracted w/o  any usage of linguistic knowledge

– A good fit for low-resource spoken language

– Examples: ITG (Wu, 97) & hierarchical models (Chiang, 07)

� Will linguistic theory & annotations help formal syntax-based models?

They both come with different flavors…
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� A synchronous rewriting system generating source & target side 

simultaneously, based on PCFG

� Each production (i.e., rule) rewrites a nonterminal into a pair of strings 

–Include both terminals & nonterminals in both languages, 

–One-to-one correspondence between nonterminal occurrences

� Explore hierarchical structure & utilize a unified nonterminal X in 

grammar, which is replaceable with any other X

~: one-to-one correspondence indicated by co-indices on both sides. 

� Examples: English-to-Chinese production rules

SCFG: (Probabilistic) Synchronous Context-Free Grammar
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Why does it help?

� Syntax-based translation:

– Observed improved performance over state-of-the-art phrase-based  
(Chiang05; Galley et al.04; Liu et al. 06)

� Engagement of synchronous context-free grammars (SCFG): 
enhanced generative capacity through recursive replacement

� Phrase-based �syntax-based: one level higher in Chomsky
Hierarchy more principled long-distance reordering

– Regular language (pair) � Context-free language (pair)

– Finite-state machinery (FSM) � Push-down automata 

� Phrasal translation structures to handle local fluency (borrowed from 
phrase-based models, Och04)
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Example of SCFG Learning
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… and back

die herausforderung besteht darin diese systeme zu den besten der welt zu machen

the challenge is to make the system the very best

X d <besteht darin, is>

X d <zu den besten der welt, the very  best>

X d <diese systeme, the system>

X d <die herausforderung, the challenge>

X d <zu machen, to make>

German-English: Phrasal Rule Extraction

Long distance reorderings require 
jumping over untranslated text

Rules have probabilities, the 
decoder searches for the most 
probable translation
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r4: X d <zu den besten der welt, the very  best>

r3: X d <diese systeme, the system>

r2: X d <die herausforderung, the challenge>

r1: X d <machen, make>

die herausforderung besteht darin diese systeme zu den besten der welt zu machen

the challenge is to make the system the very best

r5: X d <besteht darin X1 zu X2 ,is to X2 X1>

glue: X d <X1 X2 , X1 X2>

Example of German-English Non-terminal rule extraction

The reordering is 
captured by this 

rule
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SCFG based SMT

� All rules paired with statistical parameters (i.e., Probabilistic SCFG); 
combined with other features using a log-linear framework

� Decoding: 

Find the best translation using SCFG for an input f

↔

Search for the optimal derivation on source and target sides

� Optimal derivation D: maximizes following log-linear models over all 
possible derivations:
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Common SCFG Models

� Standard features in log-linear models

– Conditional rule probabilities in both directions: 

– Lexical weights in both directions:

– Word counts |e|;

– Rule counts |D|;

– Target n-gram language model PLM(e);

– Glue rule penalty

� We propose a new feature, abstraction penalty exp(-Na) , to 
balance the decoder’s choice on rules with 0, 1 or 2 
nonterminals. Na is defined as:
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Chart-parsing based Decoder for SCFG

� Objective: search for the optimal derivation 

tree from all possible trees covering input

� Synchronous: 

–source & target side isomorphic tree;

–string-to-tree-to-string

� Decoder: a modified CKY parser in C++ with 

integrated n-gram LM scoring

� LM scoring is implemented as a Viterbi

search in FSM

� Chart cells filled in a bottom-up fashion until 

a tree rooted from nonterminal is generated 

that covers the entire input 

� Lazy cube pruning (Chiang07) used for 

decoding speed up
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Motivation of Prior Derivation

� Baseline uses heuristic-based estimation of

–Relative counts collected from hypothesized rule distribution

–Inaccurate estimation compared to terminal phrasal pairs 

� No discrimination between parses on one side, when the other side is 
unknown

� If we can learn some prior distribution of rules, we rewrite:

� L(·) defined over each rule production

� Prior_derivation(D)  = Production of L(·) over all rules in D; 

� Here we show PD on source side; however, it can be computed on 
either source and/or target side
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� Link the source side derivation prior probability with the expected 
ambiguity on target side 

–A derivation is favored if it introduces less ambiguity on target generation

� Observation: same source side maps into different target orders, often 
depending on the syntactic role of nonterminal(s) 

� Hypothesis: Higher variation of syntax structures the nonterminal
embodies, the more translation options needed to account for various 
syntactic roles; estimated models are thus less reliable.

� Prefer nonterminals that cover more syntactically homogeneous
expressions

� Now, how to quantify & model it?

A Prior Derivation Model

If X2 is NP

If X2 is PP
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Model Syntactic Variations: Definitions

� At training: parse the English side of the 
parallel corpus

� Tree fragment of a phrase: the minimal set of 

internal tree whose leaves span exactly over 
this phrase

–e.g., “reading books” a tree fragment rooted 

from NP

� Two special kinds of fragment root

–INC: incomplete tree fragment; 

phrase pairs crossing constituency boundary 

–EMPTY: failed parsing



© 2009 IBM CorporationIBM Speech-to-speech Translation

Definitions (continued)

� Abstraction forest: the set of tree 
fragments of all sub-phrases 

abstracted by a nonterminal

� Subset trees: any sub-graph that 

contains more than one node, with the 

restriction that entire rule productions 

must be included.

X1 enjoy reading X2

Abstraction forest of X2
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Compute Syntactic Homogeneity

� Tree fragment similarity: naturally defined by

K(T1, T2 ) = number of common subset trees in T1 and T2

� Conceptually, enumerate all possible subset trees 1,…,M, and let 

h(T) = (c1,…,cM), a vector of counts of each subset tree 

– K(T1, T2 ) = < h(T1),  h(T2) >; an inner product

– Note: h(T) will be a vector with a huge number of dimensions

� Kernel methods: an efficient way to carry out computation when original 
feature dimension is large or infinite

� (Collins & Duffy, 02) suggested to employ convolution kernels for tree 
structures
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Tree Kernel Methods

� Dynamic-programming based computation: 
worst case complexity is O(|N1|x|N2|)

� In practice, linear time on average

� Forest purity:

� Quadratic complexity: 
–Lazy pruning in training: prune forest with 
large N

–Parallel computation
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How does prior derivation model impact in MT

� Straightforward motivation: some derivations preferred over others. 

� However, there are other interpretations:

1. An analogy between prior derivation distributions to non-uniform source side 
segmentation in phrase-based models. 

� However, prior derivation models influence not only on phrase choices, 
but also on ordering options due to the nonterminal usage

2. Smoothing on rule translation probabilities estimated from heuristics

– More translation options in a rule  ↔ More ambiguity for this rule. 

– When a dominating translation option is overestimated, all translation 
options of this rule are discounted, as they are less favored by prior 
derivation models.
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Recap: Various Translation Models


	 ا�� ا���ن �X1  	���� || yes his name is X1 saaedi || 2.11e-08 0 7.5 8.824
 	��������X1   ����� X2 �م �� || fortunately X1 i get X2 illness || 3.1e-08 0 21. 16.7
X1   ا��ار ���ش �X2��ا   || X2 cover X1 living expenses || 2.0-07 0 11.5 18.5
X1او �	 ��ر�	  �ود � || he visits syria X1 || 6.73709e-08 0 7.25473 8.77122
  "#$ 	%X1   ���ا X2 || to just X1 for X2 || 7.07394e-08 0 18.0796 19.9809

Statistical synchronous context-

free grammar (SCFG), where

�Co-indexed X’s are non-

terminals that can be recursively 

instantiated

�Models language’s hierarchical 

characteristics

X � <X1 ا��ار ���ش � ��ا X2 , X2 cover X1 living expenses>

.- �#�ط +*�( ا)'�رات || on vehicle checkpoints || 0.4 0 1 0

�#�ط +*�( ا)'�رات || vehicle checkpoints ||  0 0 1 0.0308615

�رات� || vehicles ||  0 0.00203285 0.08 0.0832386

ا)'�رة || vehicle || 0 0 0.285714 0.407666

Statistical synchronous context-

free grammar (SCFG), where

�Co-indexed X’s are non-

terminals that can be recursively 

instantiated

�Models language’s hierarchical 

characteristics

Phrase-based translation 

model: encode context and 

local reorder information

Graph-based phrasal translation 

model: optimize translation 

options into a compact graph
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IBM S2S Decoders: Search for the best translation

f1 f2 f3 f4 f5

X1-><f1f2,e1e2> X2-><f4f5,e5e6>

X-><X1f3X2, X2e3e4X1>

S-><X, X>

Translation obtained by parsing: 
f1f2f3f4f5 � e5e6e3e4e1e2

Stack: Phrasal SMT Folsom: Multi-graph SMT ForSyn: Chart-based SCFG SMT

Fast decoding & efficient training Fast & memory efficient; Enable large 
vocabulary translation on small devices; 
Efficient coupling with ASR for integrated 
speech translation

Better generalization for unseen 
data; more principled reordering; 
Better accuracy for difficult 
language pairs (e.g, Pashto

Optionally, the independent best translations from different decoders can be combined to produce a 
better translation than any single of them
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More Questions ?

Email me: 
zhou@us.ibm.com


