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Reminders

� Project Intermediate Report Due Thursday, March 25 

(11:59pm)

� HW3 will be out this week after project report due

� Reading Assignment: MT chapter in J&M book

� No Final Examination

� Next Lecture

� Statistical Machine Translation 

� By Dr. Salim Roukos

� Senior Manager, Multilingual NLP Technologies & CTO 

Translation Technologies, IBM
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Topics for Today

� Log-linear Models

� Maximum Entropy Markov Models

� Conditional Random Fields 

� Applications of CRF for NLP
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Naïve Bayes vs. Conditional Random Field

� Trained by maximizing 
likelihood of data and class

� Features are assumed 
independent

� Feature weights set 
independently

� Trained by maximizing 
conditional likelihood of classes

� Dependency on features taken 
account by feature weights

� Feature weights are set mutually

� Good for sequence prediction

Naïve Bayes Model CRF Model



5

Max Ent Model vs. CRF Model

� Both are types of log-linear models

� Max Ent variation called Max Ent Markov Model is more similar to

CRF Model addresses some deficiencies with MEMM

� CRF more suitable to take account of sequences

� Training is different; normalization is over all possible state 

sequence and labels

� This makes the training bit more complicated

� Can train both models with Iterative Scaling, though stochastic 

gradient method and other numerical optimization methods are 

preferred
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HMM vs. CRF

� Both have efficient inference algorithms to find the best sequence

� Some differences:

� maximizing p(y|x)

� No need to model p(x)

� Allows much more set of 
features to be used

� Normalization over the 
whole sequence 

� maximizing p(x,y)

� Models p(x) as well

� Limited on types of features 
that can be used

� Per State Normalization

HMM CRF



7

Relating CRF with Other Models

Figure from [1]
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Applications of Conditional Random Fields

� Many uses in NLP

� Noun phrase segmentation [Sha and Pereira, 2003]

� Named Entity Recognition [McCallum and Li, 2003]

� Semantic Roles [Roth and Yih, 2005]

� RNA structure alignment [Liu et. al, 2005]

� Protein structure [Liu et. al, 2005]
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Log-linear Models

Log-linear Models

Logistic Regression

/Max Ent

Maximum Entropy 

Markov Models

Conditional

Random Fields

All of these models are a type of log-linear models, there are more of them
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Log-Linear Model

� If x is any data point and y is the label, general log-linear linear 

model can be described as follows

Feature

Functions

Weight for

Given feature functions

Normalization Term 

(Partition Function)
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Understanding the Equation Form

� Linear combination of features and weights

� Can be any real value

� Numerator always positive (exponential of any number is +ve)

� Denominator normalizes the output making it valid probability 
between 0 and 1

� Ranking of output same as ranking of linear values

� i.e. exponentials magnify the ranking difference but ranking still stay the 
same

� Why is it called log-linear?

� Remember the logistic regression derivation?
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Inference in Log-Linear Model

� Best labels for the data given the model

� Basically saying we can find the best predicted label by doing linear 

combination of features and their weights and searching over the all 

label space
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Feature Functions

� Feature function can take account of relations between both 

data and label space

� Can be any real value

� Often feature functions are indicator functions such that they 

are 0 or 1 depending on absence or presence of the feature

� Weight of feature function captures how closely the given 

feature function is related with the given label

� f1(c,d) = { c=NN Λ curword(d)=book Λ prevword(d)=to}

� f3(c,d) = { c=VB Λ curword(d)=book Λ prevClass(d)=ADJ}
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Remember Maximum Entropy Model

� We predicted the class label given a set of features for the 

given data point

� Inference was just taking the trained weights, doing linear 

combination and finding the class with highest probability

� Find probability score for each class

� What if we have to predict a sequence of classes?

� Is this method optimal?  

p(c|x) =
exp(

∑N
i=0 λcifi)∑

c′∈C exp(
∑

N
i=0 λc′ifi)
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Thinking of Classification as Search in 

Label Space

� We can think of classification as searching the feature and 

label space to find the correct sequence of labels

� Think about binary classifier for finding the right segmentation

of a word

� Can treat as a binary classifier for individual letter

� If we believe that there is dependency between labels then 

the output label is in fact vector sequence of 0 and 1

� 2^N possible label vectors

� Cannot infer using brute force, need to search the label space 

given the features

Seg-men-tation or segment-ation ?
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HMM to Maximum Entropy Markov 

Model

� We have already seen a modeling technique which exploits 

markov assumption to search over label space : HMM

� Issue with HMM was restrictions on types of features

� We can marry the good things of both HMM and Maximum 

Entropy models

� Use Viterbi and Forward-Backward styled algorithm we learned in 

HMM

� But use the framework of Maximum Entropy for features and 

normalization

Maximum Entropy Markov Models
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MEMM

HMM

Figures from [2]
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Maximum Entropy Markov Model 

T̂ = argmaxTP (W |T )P (T )

T̂ = argmaxTP (T |W )

T̂ = argmaxTP (T |W )

MEMM Inference

HMM Inference

= argmaxT
∏
i P (ti|ti−1, wi)

= argmaxT
∏
i P (wi|ti)p(ti|ti−1)
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Transition Matrix Estimation

P (qi|qi−1, oi) =
1

Z(o,q′)exp(
∑
i wifi(o, q))

T̂ = argmaxTP (T |W )
MEMM Inference

= argmaxT
∏
i P (ti|ti−1, wi)

� Transition is dependent on the state and the feature

� These features do not have to be just word id, it can be any 

features functions 

� If q are states and o are observations we get
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Viterbi in HMM vs. MEMM

� HMM decoding:

� MEMM decoding: 

This computed in maximum entropy framework

but has markov assumption in states thus its name MEMM

vt(j) = maxNi=1vt−1(i)P (sj |si)P (ot|sj) 1 ≤ j ≤ N, 1 < t ≤ T

vt(j) = maxNi=1vt−1(i)P (sj |si, ot) 1 ≤ j ≤ N, 1 < t ≤ T
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Viterbi in MEMM

Figure from [2]
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Label Bias Problem in MEMM

� We saw that with markov assumption but with transitions 
conditioned on both state and observation where transitions 
are computed based on exponential model on state allowed 
us to do Viterbi Inference in MEMM

� There is a weakness in MEMM though

� “Label Bias Problem”

� Transitions from a given state are competing against each other 
only

� Per state normalization, i.e. sum of transition probability for any 
state has to sum to 1

� Causes bias: states with fewer arcs are preferred

� What happens if there is only one outgoing arc? Does it matter 
what the observation is?



23

MEMMs to Conditional Random Fields

� MEMM

� We have exponential model for each state to tell us the 

conditional probability of the next states

� CRF

� No per state normalization

� Per sequence normalization
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CRF, MEMM, HMM

y1 y2

X1 X2

y3

X3

y1 y2

X1 X2

y3

X3

y1 y2

X1 X2

y3

X3

CRF MEMM

HMM

y

X1 X2 X3

Naïve Bayes
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Conditional Random Field

Feature

Functions

Weight for

given feature function

Feature function can 

access all of observation

Sum over

all data points

Sum over

all feature function

Sum over

all possible label sequence

Model log linear on Feature functions

P (y|x;w) =

exp(

∑

i

∑

j

wjfj(yi−1, yi, x, i))

∑

y′∈Y

exp(
∑

i

∑

j

wjfj(y
′
i−1, y

′
i, x, i))
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Conditional Random Field

Let Fj(x, y) =
∑

i

fj(yi−1, yi, x, i)

We get p(y|x;w) = 1
Z(x,w)exp

∑

j

wjFj(x, y)

Costly operation in CRF

whereZ(x, w) =
∑

y′∈Y

exp
∑

i

∑

j

wjFj(x, y′)
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Inference in Linear Chain CRF

� We saw how to do inference in HMM and  MEMM

� We can still do Viterbi dynamic programming based 

inference

y∗ = argmaxyp(y|x;w)

= argmaxy
∑
j wjFj(x, y)

= argmaxy
∑
i gi(yi−1, yi)

wheregi(yi−1, yi) =
∑
j wjfj(yi−1, yi, x, i)

= argmaxy
∑
j wj

∑
i fj(yi−1, yi, x, i)

x and i arguments of f_j dropped in definition of g_i

g_i is different for each I, depends on w, x and i

Denominator?
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Recurrence Relation for CRF

LetU(k, v)score of best sequence from tags 1 to K

U(k, v) = maxy1,y2,...,yk−1 [
k−1∑

i=1

gi(yi−1, yi) + gk(yk−1, v)]

U(k, v) = maxyk−1
[U(k − 1, yk−1) + gk(yk−1, v)]

Runtime? What was runtime for

HMM viterbi?
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Inference in CRF

� Our inference algorithm is again based on Viterbi 

algorithm

� Output transition and observation probabilities are 

not modeled separately

� Output transition dependent on the state and the 

observation as one conditional probability

� Build lattice like we did before for decoding
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Parameter Estimation for CRF

� Mostly supervised learning

� No EM like we have for HMM

� Introduction of hidden variable makes the problem 

very hard

� Can be interpreted in maximum entropy framework
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Conditional Likelihood

� Given the data we want to maximize the conditional 

likelihood 

� Like we have done previously we can set the derivative of 

the conditional likelihood function to zero

L(w, D) = log(
∏m
k=1 p(yk|xk, w))

p(y|x;w) = 1
Z(x,w)exp

∑

j

wjFj(x, y)
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Taking the Gradient

Derivative w.r.t to the weight wi = ( value of feature function i for 

true y) – (average value  of feature function for all possible y’)

= Fj(x, y)− 1
Z(x,w)

∑
y′

∂
∂wj

exp
∑
j′ wj′Fj′(x, y′)

= Fj(x, y)−
∑
y′ Fj(x, y′)p(y′|x;w)

= Fj(x, y)−Ey′∼p(y′|x;w)[Fj(x, y′)]
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Maximum Entropy Interpretation

Empirical count Predicted count

Fj(x, y)−Ey′∼p(y′|x;w)[Fj(x, y′)]
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Computing Expected Counts

Need to compute denominator

P (y|x;w) =

exp(

∑

i

∑

j

wjfj(yi−1, yi, x, i))

∑

y′∈Y

exp(
∑

i

∑

j

wjfj(y
′
i−1, y

′
i, x, i))
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Estimating Denominator of CRF

Mt(u, v) = exp gt(u, v)

[Derivation in Detail in [3]]
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Estimating Denominator for CRF

• Matrix multiplication method can be used for computing the denominator

[Derivation in Detail in [3]]
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Optimization: Stochastic Gradient Ascent

For all training (x,y)

For all j

Compute

End For

End For Most computationally 

expensive part

Ey′∼p(y′|x;w)[Fj(x, y′)]

wj := wj + α(Fj(x, y)−Ey′∼p(y′|x;w)[Fj(x, y′)])
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Optimization Methods

� Iterative Scaling 

� Gradient Descent

� Newton’s Method

� Many optimization packages are available that can 

treated as blackbox replacement

� Second order methods have shown to be faster
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General CRF

� We just showed how to do inference and training of 

linear structure CRF

� But we can add varying level of dependencies 

across states

� Training more complicated if we add more 

dependencies

� We can use more general graphical model 

approximate algorithms such as belief propagation
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General CRF

y1 y2

X1 X2

y3

X3

Linear Chain CRF
y1 y2

X1 X2

y3

X3

More General CRF

CRF can be used trees, graphs, etc but can be expensive to train the model
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CRF for Shallow Parsing

� [Sha and Pereira, 2004]

� NP chunking

� Used many overlapping 

features that took account 

of word interaction
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