
Perceptron Classifiers

Charles Elkan
elkan@cs.ucsd.edu

January 15, 2010

Suppose that we have n training examples. The training data are a matrix with
n rows and p columns, where each example is represented by values for p different
features. Assume that each feature value is a real number. Let feature value j for
example number i be written xij . The label of example i is yi. For example, yi = 1
if message i is spam and yi = 0 if it is not spam.

We have separate training and test sets of examples. Each test example is also
represented as a row vector of length p. The label y for a test example is unknown.
The output of a classifier is a guess at y.

The simplest way to distinguish between two classes in p-dimensional Eu-
clidean space Rp is a hyperplane, that is a linear subspace of dimension p−1. The
parameters defining a hyperplane are a vector w in Rp and a scalar b. The former
gives the orientation of the hyperplane, which is at right angles (also called per-
pendicular, also called orthogonal) to w. Only the direction of w is important, not
its length, so the true number of parameters of w is p − 1. The scalar b specifies
the distance from the origin to the hyperplane along the direction specified by w.
In all, it takes a total of p scalars to specify a hyperplane in Rp.

The projection of a vector (i.e. a point) u onto a unit vector v is the scalar
u · v =

∑p
j=1 ujvj , where · is the symbol for scalar product. The vector v is a

unit vector if its length is 1, that is ||v|| =
√
v · v = (

∑p
j=1 v

2
j)

1/2 = 1. Think
of u · v as the length of the shadow of u falling onto the direction of v. If w is a
unit vector, then the hyperplane consists of all points x whose projection onto w
equals b, i.e. x · w = w · x = b. The points on one side have projection greater
than b, while the points on the other side have projection less than b.

The hyperplane classifies a training example 〈x, y〉 correctly if and only if
y(w · x − b) > 0, that is if and only if y and w · x − b have the same sign. A

1

Figure 1: A hyperplane defined by a vectorw and a scalar ρ. All points x indicated
by circles have x · w > ρ. Picture from an unknown web source.

2

hyperplane is a convenient classifier because it is fast to apply to a test example z,
since it only takes O(p) time to compute w · z.

Without loss of generality, we will only look at learning hyperplanes that go
through the origin, that is with b = 0. “Without loss of generality” means that
if we have an algorithm for learning hyperplanes through the origin, we can use
it to learn hyperplanes with shift b by simply rewriting the training examples.
Specifically, we extend each original example x with an extra coefficient xp+1 =
1. Let x′ be the extended version of x and suppose y(w′ ·x′) > 0 for every training
example 〈x, y〉. Then w′ ·x′ = w ·x− b where b = −w′p+1 so w′ includes a vector
w and a scalar b defining a hyperplane shifted away from the origin. (Illustration
of changing 2D data on a circle to data on a circle on a sphere.)

The task of learning a hyperplane through the origin is:
Task: Given training data {〈xi, yi〉} find w such that yi(w · xi) > 0 for all i.

Geometrically, the constraint for each training example specifies a half-space that
w must lie inside: w · xi > 0 if yi > 0 and w · xi < 0 if yi < 0. Some obvious
questions arise: (1) What if there is no solution? (2) If more than one solution w
exists, then which one should we choose? That is, what is the objective function
of w to maximize?

If we fix a linear objective function, then the learning task becomes what is
called a “linear programming” problem: maximizing an objective function that is
linear subject to constraints that are also linear. This raises a third issue: (3) Even
if a solution exists, algorithms for linear programming are complicated and slow
and/or biologically not plausible.

In 1958 Frank Rosenblatt created much enthusiasm when he published a method
called the “perceptron algorithm” that answers the three concerns above.1 For
convenience, let the training labels yi be −1 or +1. The basic algorithm is very
simple:

initialize w = 0
while any training example 〈x, y〉 is not classified correctly

set w := w + yx

Consider an example of the algorithm in operation. Suppose that all training ex-
amples are points on a circle, with positive points in one semicircle, and negative
points in the opposite semicircle. Remember that the hyperplane goes through the
origin and is perpendicular to the vector w.

1For interesting and important historical background, see the Wikipedia biographies of Rosen-
blatt and of Marvin Minsky.

3

Notice that as the algorithm proceeds the coefficients of the vectorw may keep
growing in magnitude, and/or in digits of precision.

The perceptron algorithm has an “online” version also. Given an infinite
stream of training examples 〈xt, yt〉 where time is indexed t = 1, 2, 3, . . ., this
version is as follows:

initialize w = 0
for t = 1, 2, 3, . . .

if yt(w · xt) ≤ 0 then set w := w + ytxt

This online learning algorithm is biologically plausible, because (i) it uses only
simple arithmetic, (ii) the learner does not need to memorize examples, (iii) ex-
amples can arrive in any order selected by nature, and (iv) the learner can run the
algorithm throughout its life.

The algorithm also has aspects that are not biologically plausible. The oper-
ation w := w + ytxt needs more and more digits of precision to be performed
correctly. It is plausible that neurons can do basic arithmetic easily, and that they
may have evolved to implement an algorithm like the online perceptron. However,
it is not plausible that they can do high-precision arithmetic.

The perceptron algorithm is mathematically important because of a theorem
about its convergence, due to Novikoff in 1962.

Assumptions: Let the training set be finite or infinite. Let R = maxt ||xt||. If
the training data are all on the unit sphere, then R = 1 for example. Suppose that
the learning task is solvable, i.e. there exists some vector w∗ of unit length and
some δ > 0 such that yt(w

∗ · xt) ≥ δ for all t.
Theorem: Under these assumptions, the perceptron algorithm converges after

at most (R/δ)2 updates.
Proof: Let wn be the w vector after n updates and let w0 = 0. We will argue

that whenever w is updated it becomes closer to w∗.
Suppose wn+1 is an update, i.e. wn fails to classify x correctly and hence

wn+1 = wn + yx. Consider

wn+1 · w∗ = (wn + yx) · w∗ = wn · w∗ + yx · w∗ ≥ wn · w∗ + δ.

This says that the projection of wn+1 onto w∗ has increased. We would like this
to mean that wn+1 is closer to w∗. However, what it really means is that wn+1 is
closer to w∗ and/or wn+1 has grown bigger. So, consider the Euclidean length of
wn+1:

||wn+1||2 = ||wn + yx||2 = ||wn||2 + 2y(wn · x) + ||x||2 ≤ ||wn||2 +R2

4

since y(wn · x) ≤ 0. Now, after N actual updates we know two facts: ||wn||2 ≤
NR2 and wn · w∗ ≥ Nδ. Putting these together gives a contradiction if N is too
large: wN · w∗ ≤ ||wN ||||w∗|| = ||wN || so Nδ ≤ ||wN || ≤ R

√
N so

√
N ≤ R/δ.

End of proof.
Can the perceptron learn to distinguish between any two classes? If yes, it is a

general-purpose biologically plausible learning algorithm! The answer is obvious
in retrospect: No. The reason is simple. “You cannot learn what you cannot rep-
resent.” Many concepts (i.e. distinctions between classes) cannot be represented
by a hyperplane. The simplest example of a non-representable, and hence non-
learnable, concept is exclusive-or in R1: u xor v is true if and only if u = v = 0
or u = v = 1.

The insight that the perceptron algorithm is incapable of learning many very
simple distinctions killed most interest in it for many years. However, there are at
least three compelling reasons to investigate perceptron methods further.

One, as mentioned above, the online perceptron is a lifelong learning method
for an intelligent agent such as an animal or robot. Two, the convergence theorem
says that the algorithm can generalize from a finite training set to a concept that is
valid for an infinite set, because the final classifier is a +1/ − 1 weighted sum of
a finite number of training points, even if the input is an infinite stream of data.

Of course, this guarantee is only true under some conditions. First, some such
valid concept must actually exist. Second, a valid concept must exist without
needing too much arithmetic precision. Specifically, learning converges after at
most (R/δ)2 updates, where R = max ||xt|| and δ is a level of precision: we need
yt(w

∗xt) ≥ δ for all t.
Three, a modern observation is that the number of updates until convergence

does not depend on the dimensionality of the data. This suggests that perceptron
methods will be useful for very high-dimensional data such as images. Indeed,
this is true.

The resurgence of interest in perceptron-type classifiers came in the 1980s
because backpropagation was invented as a training algorithm for multiple per-
ceptrons connected in layers. Layers means that the outputs of lower-level per-
ceptrons are the inputs of a higher-level perceptron. Rather confusingly, the lower
layer of a two-layer network of perceptrons of often called a hidden layer, and
such a network is often said to have three layers. The reason for this terminol-
ogy is that there are three levels of nodes. The middle level is the outputs of
the lower-layer perceptrons. These nodes are hidden because they are not visible
input values x and they are not visible training labels y.

It turns out that a multilayer perceptron with a single hidden layer is a universal

5

Figure 2: A multilayer perceptron with a single hidden layer. Picture from
www.cis.hut.fi/ahonkela/dippa/.

approximator. This means that the network can mimic any continuous function
Rn → Rm with any specified level of accuracy. However, as the desired accuracy
increases, and as the function to be represented becomes less smooth, the number
of nodes needed increases, and/or the number of digits of numerical precision
needed. One of the first proofs of this fact was given by Hal White, professor of
Economics at UCSD [Hornik et al., 1989].

The universal-approximator property depends on having at least one hidden
layer, and on the nodes being nonlinear, which are biologically plausible. How-
ever it also depends on high-precision arithmetic, which may not be biologically
plausible. Moreover, plausibility for the representation does not necessarily imply
plausibility for the training algorithm.

Overall, biological plausibility remains an open question. On the one hand,
Terry Sejnowski, also a professor at UCSD, has written “No biological signifi-
cance is claimed for the algorithm (backpropagation) by which the network de-
veloped” [Lehky and Sejnowski, 1988, page 454]. On the other hand, current
findings in neuroscience suggest that forward and backward waves of activity,
until quiescence, may be widespread in the brain. Also, some modern training

6

algorithms benefit from injecting random noise, so high-precision arithmetic may
not be needed.

The basic perceptron algorithm will never converge on nonseparable data. An
idea for dealing with nonseparable data is to just iterate through the training data
for a fixed number K of epochs. The disadvantage of this procedure is that just
before finishing, it might do an update on an outlier, and hence terminate with a
very bad concept w. A better idea is, for every w ever considered, to remember
for how many training points it was correct.

This is the idea behind a method called the “voted perceptron” due to Yoav
Freund, another UCSD professor, and Robert Schapire [Freund and Schapire, 1999]:

initialize n = 1, w1 := 0, c1 := 0
repeat for T epochs:

for i = 1 to i = m (this is one epoch)
if 〈xi, yi〉 is classified correctly then increment cn
otherwise:

increment n
wn := wn−1 + yixi

cn := 1

When the algorithm terminates we have a set of classifiers wn each with a weight
cn that is its survival time. The survival times add up to mT . We know that each
wn was correct on either cn or cn − 1 training examples, so cn is a reasonable
measure of the reliability of wn.

The final classifier is nonlinear. It is

f(x) = sign(
∑

n

cnsign(wn · x)).

Computing f(x) requires storing all the intermediate wn in memory, which is not
practical. Making the classifier linear by eliminating the inner sign operator makes
it efficient:

f ′(x) = sign(
∑

n

cn(wn · x)) = sign(x ·
∑

n

cnwn).

In experiments this averaging method works slightly better than the voting method.
Why is the voted perceptron important? First, there is a theorem about general-

ization accuracy withm training examples, k training mistakes, and boundsR and
δ. The result of the theorem is an upper bound on the error probability for an iid
(independent identically distributed) test example. Second, the algorithm works
well in practice on high-dimensional separable as well as nonseparable data.

7

Quiz 2, January 14, 2010

Write your name:
Let the training set be {〈xi, yi〉} for i = 1 to i = n, where xi ∈ Rp and yi ∈
{−1,+1}. Dr. Rocchio says that the perceptron algorithm is too complicated and
instead we should just use the linear classifier w = u − v where u is the average
of the positive examples and v is the average of the negative examples:

u =
1

|{i : yi = +1}|
∑

{i:yi=+1}

xi

and
v =

1

|{i : yi = −1}|
∑

{i:yi=−1}

xi.

[3 points] Draw a simple sketch of a small dataset. Use your sketch to explain in
one or two sentences why Dr. Rocchio’s suggestion is sensible.

Hint: Draw a few positive and negative examples on the unit circle in two dimen-
sions. Draw the u and v vectors and explain what the hyperplane corresponding
to w = u− v looks like.

Note: The idea above is the essence of the Rocchio algorithm that is widely used
in information retrieval. If the positive examples are relevant documents and the
negative examples are irrelevant documents, then the Rocchio w is a reasonable
definition of a corresponding query. However, the Rocchio w sometimes yields
a hyperplane that does not separate the positive and negative training examples,
even when these are separable.

8

References
[Freund and Schapire, 1999] Freund, Y. and Schapire, R. E. (1999). Large margin

classification using the perceptron algorithm. Machine Learning, 37(3):277–
296.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Mul-
tilayer feedforward networks are universal approximators. Neural Networks,
2:359–366.

[Lehky and Sejnowski, 1988] Lehky, S. R. and Sejnowski, T. J. (1988). Network
model of shape-from-shading: neural function arises from both receptive and
projective fields. Nature, 333(6172):452–454.

9

