
Google News Personalization: Scalable Online
Collaborative Filtering

Abhinandan Das
Google Inc.

1600 Amphitheatre Pkwy,
Mountain View, CA 94043

abhinandan@google.com

Mayur Datar
Google Inc.

1600 Amphitheatre Pkwy,
Mountain View, CA 94043

mayur@google.com

Ashutosh Garg
Google Inc.

1600 Amphitheatre Pkwy,
Mountain View, CA 94043

ashutosh@google.com

Shyam Rajaram
University of Illinois at Urbana

Champaign
Urbana, IL 61801

rajaram1@ifp.uiuc.edu

ABSTRACT
Several approaches to collaborative filtering have been stud-
ied but seldom have studies been reported for large (several
million users and items) and dynamic (the underlying item
set is continually changing) settings. In this paper we de-
scribe our approach to collaborative filtering for generating
personalized recommendations for users of Google News. We
generate recommendations using three approaches: collabo-
rative filtering using MinHash clustering, Probabilistic La-
tent Semantic Indexing (PLSI), and covisitation counts. We
combine recommendations from different algorithms using a
linear model. Our approach is content agnostic and con-
sequently domain independent, making it easily adaptable
for other applications and languages with minimal effort.
This paper will describe our algorithms and system setup in
detail, and report results of running the recommendations
engine on Google News.

Categories and Subject Descriptors: H.4.m [Informa-
tion Systems]: Miscellaneous

General Terms: Algorithms, Design

Keywords: Scalable collaborative filtering, online recom-
mendation system, MinHash, PLSI, Mapreduce, Google News,
personalization

1. INTRODUCTION
The Internet has no dearth of content. The challenge is

in finding the right content for yourself: something that will
answer your current information needs or something that
you would love to read, listen or watch. Search engines help
solve the former problem; particularly if you are looking
for something specific that can be formulated as a keyword
query. However, in many cases, a user may not even know
what to look for. Often this is the case with things like news,
movies etc., and users instead end up browsing sites like
news.google.com, www.netflix.com etc., looking around for
things that might “interest them” with the attitude: Show

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

me something interesting. In such cases, we would like to
present recommendations to a user based on her interests as
demonstrated by her past activity on the relevant site.

Collaborative filtering is a technology that aims to learn
user preferences and make recommendations based on user
and community data. It is a complementary technology
to content-based filtering (e.g. keyword-based searching).
Probably the most well known use of collaborative filtering
has been by Amazon.com where a user’s past shopping his-
tory is used to make recommendations for new products.
Various approaches to collaborative filtering have been pro-
posed in the past in research community (See section 3 for
details). Our aim was to build a scalable online recommen-
dation engine that could be used for making personalized
recommendations on a large web property like Google News.
Quality of recommendations notwithstanding, the following
requirements set us apart from most (if not all) of the known
recommender systems:
Scalability: Google News (http://news.google.com), is vis-
ited by several million unique visitors over a period of few
days. The number of items, news stories as identified by the
cluster of news articles, is also of the order of several million.
Item Churn: Most systems assume that the underlying
item-set is either static or the amount of churn is minimal
which in turn is handled by either approximately updating
the models ([14]) or by rebuilding the models ever so often to
incorporate any new items. Rebuilding, typically being an
expensive task, is not done too frequently (every few hours).
However, for a property like Google News, the underlying
item-set undergoes churn (insertions and deletions) every
few minutes and at any given time the stories of interest are
the ones that appeared in last couple of hours. Therefore any
model older than a few hours may no longer be of interest
and partial updates will not work.

For the above reasons, we found the existing recommender
systems unsuitable for our needs and embarked on a new
approach with novel scalable algorithms. We believe that
Amazon also does recommendations at a similar scale. How-
ever, it is the second point (item churn) that distinguishes
us significantly from their system. This paper describes our
approach and the underlying algorithms and system compo-

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

271

nents involved. The rest of this paper is organized as follows:
Section 2 describes the problem setting. Section 3 presents
a brief summary of related work. Section 4 describes our al-
gorithms; namely, user clustering using Minhash and PLSI,
and item-item covisitation based recommendations. Sec-
tion 5 describes how such a system can be implemented.
Section 6 reports the results of comparative analysis with
other collaborative filtering algorithms and quality evalua-
tions on live traffic. We finish with some conclusions and
open problems in Section 7.

2. PROBLEM SETTING
Google News is a computer-generated news site that ag-

gregates news articles from more than 4,500 news sources
worldwide, groups similar stories together and displays them
according to each reader’s personalized interests. Numerous
editions by country and language are available. The home
page for Google News shows “Top stories” on the top left
hand corner, followed by category sections such as World,
U.S. , Business,, etc. Each section contains the top three
headlines from that category. To the left of the “Top Sto-
ries” is a navigation bar that links each of these categories to
a page full of stories from that category. This is the format
of the home page for non signed-in users1. Furthermore,
if you sign-in using your Google account and opt-in to the
“Search History” feature that is provided by various Google
product websites, you enjoy two additional features:
(a) Google will record your search queries and clicks on news
stories and make them accessible to you online. This allows
you to easily browse stories you have read in the past.
(b) Just below the “Top Stories” section you will see a
section labeled “Recommended for youremailaddress” along
with three stories that are recommended to you based on
your past click history.

The goal of our project is to present recommendations
to signed-in users based on their click history and the click
history of the community. In our setting, a user’s click on
an article is treated as a positive vote for the article. This
sets our problem further apart from settings like Netflix,
MovieLens etc., where users are asked to rate movies on a
1-5 scale. The two differences are:
1. Treating clicks as a positive vote is more noisy than ac-
cepting explicit 1-5 star ratings or treating a purchase as a
positive vote, as can be done in a setting like amazon.com.
While different mechanisms can be adopted to track the au-
thenticity of a user’s vote, given that the focus of this paper
is on collaborative filtering and not on how user votes are
collected, for the purposes of this paper we will assume that
clicks indeed represent user interest. 2

2. While clicks can be used to capture positive user interest,
they don’t say anything about a user’s negative interest.
This is in contrast to Netflix, eachmovie etc. where users
give a rating on a scale of 1-5.

1The format for the web-site is subject to change.
2While in general a click on a news article by a user does not
necessarily mean that she likes the article, we believe that
this is less likely in the case of Google News where there are
clean (non-spammy) snippets for each story that the user
gets to see before clicking. Infact, our concern is that often
the snippets are so good in quality that the user may not
click on the news story even if she is interested in it; she
gets to know all that she wants from the snippet

2.1 Scale of our operations
The Google News website is one of the most popular news

websites in the world receiving millions of page views and
clicks from millions of users. There is a large variance in the
click history size of the users, with numbers being anywhere
from zero to hundreds, even thousands, for certain users.
The number of news stories3 that we observe over a period
of one month is of the order of several million. Moreover,
as mentioned earlier, the set of news stories undergoes a
constant churn with new stories added every minute and
old ones getting dropped.

2.2 The problem statement
With the preceding overview, the problem for our rec-

ommender system can be stated as follows: Presented with
the click history for N users (U = {u1, u2, . . . , uN}) over M
items (S = {s1, s2, . . . , sM}), and given a specific user u with
click history set Cu consisting of stories {si1 , . . . , si|Cu|},
recommend K stories to the user that she might be inter-
ested in reading. Every time a signed-in user accesses the
home-page, we solve this problem and populate the “Recom-
mended” stories section. Similarly, when the user clicks on
the Recommended section link in the navigation bar to the
left of the “Top Stories” on home-page, we present her with
a page full of recommended stories, solving the above stated
problem for a different value of K. Additionally we require
that the system should be able to incorporate user feedback
(clicks) instantly, thus providing instant gratification.

2.3 Strict timing requirements
The Google News website strives to maintain a strict re-

sponse time requirement for any page views. In particular,
home-page view and full-page view for any of the category
sections are typically generated within a second. Taking into
account the time spent in the News Frontend webserver for
generating the news story clusters by accessing the various
indexes that store the content, time spent in generating the
HTML content that is returned in response to the HTTP
request, it leaves a few hundred milliseconds for the recom-
mendation engine to generate recommendations.

Having described the problem setting and the underlying
challenges, we will give a brief summary of related work on
recommender systems before describing our algorithms.

3. RELATED WORK
Recommender systems can be broadly categorized into

two types: Content based and Collaborative filtering.
In content based systems the similarity of items, defined
in terms of their content, to other items that have been
rated highly by the user is used to recommend new items.
However, in the case of domains such as news, a user’s in-
terest in an article cannot always be characterized by the
terms/topics present in a document. In addition, our aim
was to build a system that could be potentially applied to
other domains (e.g. images, music, videos), where it is hard
to analyse the underlying content, and hence we developed
a content-agnostic system. For the particular application of

3As mentioned earlier, the website clusters news articles
from different news sites (e.g. BBC, CNN, ABC news etc.)
that are about the same story and presents an aggregated
view to the users. For the purpose of our discussion, when
we refer to a news story it means a cluster of news articles
about the same story as identified by Google News.

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

272

Google News recommendations, arguably content based rec-
ommendations may do equally well and we plan to explore
that in the future. Collaborative filtering systems use the
item ratings by users to come up with recommendations,
and are typically content agnostic. In the context of Google
News, item ratings are binary; a click on a story corresponds
to a 1 rating, while a non-click corresponds to a 0 rating.
Collaborative filtering systems can be further categorized
into types: memory-based, and model-based. Below, we
give a brief overview of the relevant work in both these types
while encouraging the reader to study the survey article [1]

3.1 Memory-based algorithms
Memory-based algorithms make ratings predictions for

users based on their past ratings. Typically, the prediction
is calculated as a weighted average of the ratings given by
other users where the weight is proportional to the “similar-
ity” between users. Common “similarity” measures include
the Pearson correlation coefficient ([19]) and the cosine sim-
ilarity ([3]) between ratings vectors. The pairwise similarity
matrix w(ui, uj) between users is typically computed offline.
During runtime, recommendations are made for the given
user ua using the following formula:

rua,sk =
�

i�=a

I(ui,sk)w(ua, ui) (1)

Note that this formula applies to our setting where the
ratings are binary. The indicator variable I(ui,sk) is 1 if
the user ui clicked on the story sk and 0 otherwise. The
predicted rating rua,sk can be binarized using an appropriate
threshold.

Memory-based methods have grown in popularity because
of their simplicity and the relatively straightforward train-
ing phase. However, as noted in [23], one of the biggest
challenges is to make memory-based algorithms more scal-
able. In fact [23] focusses on instance selection to reduce the
training set size, as means to achieve this scalability. How-
ever, their techniques are not applicable in our scenario due
to the large item churn. For instance, one of their methods
(TURF1) tries to compute for each item, a subset of training
users that are sufficient to predict any given users rating on
this item. Clearly this wont’t work for Google News since
an old news item, for which this computation can be offline,
is typically too stale to recommend anyway.

A variation of the memory-based methods [21], tries to
compute the similarity weight matrix between all pairs of
items instead of users. The similarity is computed based on
the ratings the items receive from users and measures such
as Pearson correlation or vector similarity are used. During
the testing phase, recommendations are made to users for
items that are similar to those they have rated highly.

3.2 Model-based algorithms
In contrast to the memory-based algorithms, model-based

algorithms try to model the users based on their past ratings
and use these models to predict the ratings on unseen items.
One of the earliest examples of this approach, include [3]
which proposes two alternative probabilistic models: cluster
models and Bayesian models. The shortcoming of this paper
was that it only categorized each user into a single class while
intuitively a user may have different tastes corresponding to
different topics. Similar to our approach, most of the recent
work in model-based algorithms captures multiple interests

of users by classifying them into multiple clusters or classes.
Model-based approaches include: latent semantic indexing
(LSI) [20], Bayesian clustering [3], probabilistic latent se-
mantic indexing (PLSI) [14], multiple multiplicative Factor
Model [17], Markov Decision process [22] and Latent Dirich-
let Allocation [2]. Most of the model-based algorithms are
computationally expensive and our focus has been on devel-
oping a new, highly scalable, cluster model and redesigning
the PLSI algorithm [14] as a MapReduce [12] computation
to make it highly scalable.

4. ALGORITHMS
We use a mix of memory based and model based algo-

rithms to generate recommendations. As part of model-
based approach, we make use of two clustering techniques -
PLSI and MinHash and as part of memory based methods,
we make use of item covisitation. Each of these algorithms
assigns a numeric score to a story (such that better rec-
ommendations get higher score). Given a set of candidate
stories, the score (rua,sk) given by clustering approaches is
proportional to

rua,sk ∝
�

ci:ua∈ci

w(ua, ci)
�

uj :uj∈ci

I(uj,sk)

where w(ua, ci) is proportional to the fractional membership
of the user ua to cluster ci. The covisitation algorithm as-
signs a score to each candidate story which is proportional to
the number of times the story was covisited with the other
stories in the user’s click-history.

The scores given by each of these algorithms are combined
as
�

a wara
s (where wa is the weight given to algorithm a and

ra
s is the score given by algorithm a to story s) to obtain a

ranked list of stories. Top K stories are chosen from this list
as recommendations for the user. The weights used in com-
bining the individual algorithm scores (wa’s) are learned by
exploring a pre-selected discrete parameter space (possible
combinations of weights) and for each point in the parame-
ter space running a live experiment (see section 6.5) to see
which one performs the best. In future we plan to explore
using SVM [7] (with linear kernel) to learn these weights.
Next we describe each of these algorithms in detail.

4.1 MinHash
MinHashing is a probabilistic clustering method that as-

signs a pair of users to the same cluster with probability pro-
portional to the overlap between the set of items that these
users have voted for (clicked-on). Each user u ∈ U is repre-
sented by a set of items (news stories) that she has clicked
on, i.e her click history Cu. The similarity between two
users ui, uj is defined as the overlap between their item sets

given by the formula S(ui, uj) =
|Cui

∩Cuj
|

|Cui
∪Cuj

| . This similarity

measure, also known as the Jaccard coefficient, takes values
between 0 and 1 and it is well known that the corresponding
distance function D(ui, uj) = 1 − S(ui, uj) is a metric [6].
As a thought experiment, given a user ui, conceptually we
would like to compute the similarity of this user, S(ui, uj),
to all other users uj , and recommend to user ui stories voted
by uj with weight equal to S(ui, uj). However, doing this
in real-time is clearly not scalable; one could imagine simple
pruning techniques such as using a hash table to find out
users who have at least one vote in common, but even do-
ing so is not going to reduce the number of candidates to a

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

273

manageable number due to the presence of popular stories.
Offline computation is also infeasible for such a large num-
ber of user pairs. Not suprisingly, what comes to our rescue
is a provably sublinear time near-neighbor search technique
called Locality Sensitive Hashing (LSH) [16].

4.1.1 LSH
The LSH technique was introduced by Indyk and Mot-

wani [16] to efficiently solve the near-neighbor search prob-
lem and since then has found applications in many fields
[13, 9, 5]. The key idea is to hash the data points using
several hash functions so as to ensure that, for each func-
tion, the probability of collision is much higher for objects
which are close to each other than for those which are far
apart. Then, one can determine near neighbors by hash-
ing the query point and retrieving elements stored in buck-
ets containing that point. LSH schemes are known to exist
for the following distance or similarity measures: Hamming
norm [13], Lp norms [13, 11], Jaccard coefficient [4, 8], cosine
distance and the earth movers distance (EMD) [6]. Our sim-
ilarity measure, the Jaccard coefficient, thankfully admits a
LSH scheme called Min-Hashing (short for Minwise Inde-
pendent Permutation Hashing) that was first introduced by
Cohen [8] to estimate the size of transitive closure and reach-
ability sets (see also Broder [4]).

The basic idea in the Min-Hashing scheme is to randomly
permute the set of items (S) and for each user ui compute
its hash value h(ui) as the index of the first item under the
permutation that belongs to the user’s item set Cui . It is
easy to show ([8, 4, 9]) that for a random permutation, cho-
sen uniformly over the set of all permutations over S , the
probability that two users will have the same hash function is
exactly equal to their similarity or Jaccard coefficient. Thus,
we can think of min-hashing as a probabilistic clustering al-
gorithm, where each hash bucket corresponds to a cluster,
that puts two users together in the same cluster with prob-
ability equal to their item-set overlap similarity S(ui, uj).
Similar to [16], we can always concatenate p hash-keys for
users, where p ≥ 1, so the probability that any two users
ui, uj will agree on the concatenated hash-key is equal to
S(ui, uj)

p. In other words, by concatenating the hash-keys
we make the underlying clusters more refined so that there
are more of these clusters and the average similarity of the
users within a cluster is greater. From the perspective of
finding near neighbors for a given user, these refined clus-
ters have high precision but low recall. We can improve the
recall by repeating this step in parallel multiple times, i.e.
we will hash each user to q clusters where each cluster is
defined by the concatenation of p MinHash keys. Typical
values for p and q that we have tried lie in the ranges 2 − 4
and 10 − 20 respectively.

Clearly, generating random permutations over millions of
items and storing them to compute MinHash values is not
feasible. Instead, what we do is generate a set of indepen-
dent, random seed values, one for each MinHash function (as
per the discussion above, p × q), and map each news-story
to a hash-value computed using the Id of the news story and
the seed value. The hash-value thus computed serves as a
proxy for the index in the random permutation. By choosing
the range of the hash-value to be 0 . . . 264 − 1 (unsigned 64
bit integer) we ensure that we do not encounter the “birth-
day paradox” [18] as long as the item set is less than 232

in size, thereby having a small chance of collision. The (ap-

proximate) MinHash values thus computed have properties
similar to the ideal MinHash values [15]. Next, we describe
how we can compute the MinHash values in a scalable man-
ner, over millions of users and items, using the Mapreduce
computation framework.

4.1.2 MinHash clustering using MapReduce
MapReduce [12] is a very simple model of computation

over large clusters of machines that can handle processing
of large amounts of data in relatively short periods of time
and scales well with the number of machines. Tens or hun-
dreds of Terabytes of data can be processed with thousands
of machines within hours. The computation works in the
following three phases:
Map inputs to key-value pairs: In the Map phase, we
read the input records independently, in parallel, on different
machines and map each input to a set of zero or more key-
value pairs. In our case, each input record (one for every
user ui) is a user’s click history Cui . We iterate over the
user’s click history and compute p × q MinHash values for
this user. Computing a single MinHash value is very easy:
we hash each item in the history using the item’s Id and
the random seed corresponding to the hash function 4 and
maintain the minimum over these hash values. Finally, we
bunch the MinHash values in q groups of p MinHash values
each. For each group, we concatenate the MinHash values to
obtain the cluster-id corresponding to this group. The key-
value pair that is output (one for each cluster that the user
belongs to) is the cluster-id (key) and the user-id (value).
Partition and Shuffle the key-value pairs: In this phase,
the key-value pairs output at the end of the Map phase are
split into partitions (shards), typically based on the hash
value of the keys. Each shard is sorted on the keys so that
all the key-value pairs for the same key (in our case the
cluster-id) appear together.
Reduce key-value pairs: In the reduce phase, we obtain
for each cluster-id the list of user-ids that belong to this
cluster (membership list) and prune away clusters with low
membership.In a separate process, we also invert the clus-
ter membership and maintain for each user the list of clus-
ters that she belongs to, along with her click history. The
user information (cluster-ids and click history) is stored in a
Bigtable [10] keyed by the user-id. (See description of User
Table UT in section 5.2 for more details).

4.2 PLSI
PLSI was introduced in [14], where Hofmann developed

probabilistic latent semantic models for performing collab-
orative filtering. It models users (u ∈ U) and items (s ∈ S)
as random variables, taking values from the space of all pos-
sible users and items respectively. The relationship between
users and items is learned by modeling the joint distribu-
tion of users and items as a mixture distribution. A hidden
variable Z (taking values from z ∈ Z, and ‖Z‖ = L) is in-
troduced to capture this relationship, which can be thought
of as representing user communities (like-minded users) and
item communities (genres). Formally, the model can be writ-
ten in the form of a mixture model given by the equation:

p(s|u; θ) =

L�

z=1

p(z|u)p(s|z). (2)

4Each mapper machine has an identical copy of the random
seed values.

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

274

The model is completely specified by parameters θ repre-
senting conditional probability distributions (CPDs) p(z|u)
and p(s|z). The key contribution of the model is the in-
troduction of the latent variable Z, which makes users and
items conditionally independent. The model can also be
thought of as a generative model in which state z of the la-
tent variable Z is chosen for an arbitrary user u based on
the CPD p(z|u). Next, an item s is sampled based on the
chosen z from the CPD p(s|z).

4.2.1 Mapreducing EM Algorithm
Learning the co-occurrence model from training data of

size T involves estimating the CPDs p(z|u) and p(s|z) such
that the product of conditional likelihood over all data points
is maximized, equivalently minimizing the empirical loga-
rithmic loss given by the following equation:

L(θ) = − 1

T

T�

t=1

log(p(st|ut; θ))

Expectation Maximization (EM) is used to learn the maxi-
mum likelihood parameters of this model. The details of the
actual EM algorithm and its derivation can be found in [14].
The algorithm is an iterative one with each iteration con-
sisting of two steps: The E-Step involves the computation of
Q variables (i.e. the a-posteriori latent class probabilities)
given by the following equation:

q∗(z; u, s; θ̂) := p(z|u, s; θ̂) =
p̂(s|z)p̂(z|u)�

z∈Z p̂(s|z)p̂(z|u)

and the M-step uses the above computed Q function to com-
pute the following distributions:

p(s|z) =

�
u q∗(z; u, s; θ̂)

�
s

�
u q∗(z; u, s; θ̂)

, (3)

p(z|u) =

�
s q∗(z; u, s; θ̂)

�
z

�
s q∗(z; u, s; θ̂)

. (4)

Note, in the equations above, p̂ values stand for the pa-
rameter estimates from the previous iteration of the EM
algorithm5. Executing the EM algorithm on a single ma-
chine becomes infeasible when dealing with our large scale:
To get an idea on the space requirements of loading the
model into main memory, let M = N = 10 million and
L = 1000. In this case, the memory requirement for the
CPDs is (M+N)×L×4 ∼ 80GB (with 4 bytes to represent a
double value). Next, we demonstrate how the EM algorithm
for computing PLSI parameters can be parallelized, using
the Mapreduce [12] framework, to make it scalable. The
insight into using mapreduce for the EM algorithm comes
from rewriting the equations as

q∗(z; u, s; θ̂) = p(z|u, s; θ̂) =

N(z,s)
N(z)

p̂(z|u)
�

z∈Z
N(z,s)
N(z)

p̂(z|u)
, where

N(z, s) =
�

u

q∗(z; u, s; θ̂)

5For the first iteration, we set p̂ to appropriately normalized
random values that form a probability distribution.

C11 C12 C13 C1K

C21 C22 C23 C2K

CR1 CR2 CR3 CRK

S1 S2 SN

U1

U2

UM

(U1,S1)

Figure 1: Sharding of users and items for mapre-
ducing EM algorithm

N(z) =
�

s

�

u

q∗(z; u, s; θ̂)

p̂(z|u) =

�
s q∗(z; u, s; θ̂)

�
z

�
s q∗(z; u, s; θ̂)

Given a user-story pair (u, s) the sufficient statistics from

the previous iteration that are needed to compute q∗(z; u, s; θ̂)
include: p̂(z|u), N(z, s) and N(z). Lets assume that these
statistics are available for every user u and story s at the
begining of a new EM iteration. The important observa-
tion is that given the sufficient statistics, the computation
of the q∗(z; u, s; θ̂) can be done independently and paral-
lely for every (u, s) pair observed in the click logs. We will
describe how a single iteration (next iteration) can be exe-
cuted as a Mapreduce computation. Consider a grid of size
R × K of mapper computers (Figure 1). Users and items
are sharded into R, K groups respectively (as a function of
their Ids) and click data corresponding to the (u, s) pair is
sent to the appropriate (i, j)th machine from the grid where
i is the shard that u belongs to and j is the shard that s
belongs6. Note that the (i, j)th machine only needs to load
CPDs and sufficient statistics corresponding to the users in
ith shard and items in jth shard respectively. This dras-
tically reduces the memory requirement for each machine
since it has to load 1/Rth of the user CPDs and 1/Kth of

the item CPDs. Having computed q∗(z; u, s; θ̂), we output
three (key, value) pairs in the Mapper: (u, q∗), (s, q∗), and
(z, q∗).

The reducer shard that receives the key-value pairs corre-
sponding to the item s computes N(z, s) (for all z values)
for the next iteration. The reducer shard that receives the
key-value pairs corresponding to the user u computes p(z|u).
N(z) is computed by the reduce shard that receives the key-
value pairs corresponding to z7. Note that the computation
in all the reduce shards is a simple addition.

6The click data does not change between iterations and
needs to be sharded only once at the start
7The reduce shards corresponding to the z values receive a
lot of data (one entry for each click pair (u, s) and if aggre-
gating this data in a single reducer becomes a bottle neck
we can perform some preprocessing in the shuffle stage of
the Mapreduce.

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

275

4.2.2 Using PLSI with Dynamic Datasets
While the past research ([14]) shows that PLSI fairs well

in comparison to other algorithms, it suffers from the fun-
damental issue that every time new users/items are added,
the whole model needs to be retrained. By parallelizing the
model, we can learn the probability distributions quickly.
However, the model still suffers from the fact that it is not
real time. Some heurisitcs (approximations) have been pro-
vided in the literature which allow one to update the model
in the case of few additions of items and users. While the
number of new users that are added daily is a small frac-
tion, the set of stories has a big overhaul each day rendering
such update heuristics ineffective. To get around this, we
use an approxiate version of PLSI that makes use of P (z|u)
values learned from the above model. Z values are treated
as clusters and the distribution as giving the fractional clus-
ter memberships. We keep track of the activity observed
from each cluster for every story. When a user clicks on a
story, we update the counts associated with that story for
all the clusters to which the user belongs (weighted count is
updated based on the membership confidence). This weight
matrix is normalized to give the distribution P (s|z). Note,
P (s|z) thus computed can be updated in real time. How-
ever, this model still suffers from the fact that the new users
cannot be added. While there are a few heuristics which can
be employed to do this, we defer that to future work. For
new users, we rely on the story-story covisitation algorithm,
that is described next, to generate useful recommendations
based on their limited history.

4.3 Using user clustering for recommendations
Once the users are clustered, we maintain the following

statistics for each cluster at serving time: the number of
clicks, decayed by time, that were received on different sto-
ries by members of this cluster. In case of PLSI, the count of
clicks is further weighted by the fractional cluster member-
ship P (z|u). Note that since these clusters are refined, the
number of users that belong to each is limited and hence
the number of unique stories that are clicked by the clus-
ter’s members is typically small (few thousand at the most).
When evaluating a candidate news story s for possible rec-
ommendation to a user u, we compute an unnormalized
story score based on clustering as follows: fetch the clus-
ters that this user belongs to, for each cluster lookup how
many times (discounted by age) did members of this cluster
click on the story s (normalized by the total number of clicks
made by members of this cluster), finally add these numbers
to compute the recommendation score. The recommenda-
tion scores thus obtained are normalized (by simple scaling)
so that they all lie between 0 and 1. We compute these
normalized scores based on MinHash and PLSI clustering
separately.

4.4 Covisitation
Our item based technique for generating recommenda-

tions makes use of covisitation instances, where covisitation
is defined as an event in which two stories are clicked by the
same user within a certain time interval (typically set to a
few hours). Imagine a graph whose nodes represent items
(news stories) and weighted edges represent the time dis-
counted number of covisitation instances. The edges could
be directional to capture the fact that one story was clicked
after the other, or not if we do not care about the order.

We maintain this graph as an adjacency list in a Bigtable
([10]) that is keyed by the item-id (see description of Story
Table ST in section 5.2). Whenever we receive a click from
user ui on item sk, we retrieve the user’s recent click his-
tory Cui and iterate over the items in it. For all such items
sj ∈ Cui , we modify the adjacency lists for both sj and sk to
add an entry corresponding to the current click. If an entry
for this pair already exists, we update the age discounted
count. Given an item s, its near neighbors are effectively
the set of items that have been covisited with it, weighted
by the age discounted count of how often they were covis-
ited. This captures the following simple intuition: “Users
who viewed this item also viewed the following items”.

For a user ui, we generate the covisitation based recom-
mendation score for a candidate item s as follows: We fetch
the user’s recent click history Cui , limited to past few hours
or days8. For every item si in the user’s click history, we
lookup the entry for the pair si, s in the adjacency list for
si stored in the Bigtable. To the recommendation score we
add the value stored in this entry normalized by the sum
of all entries for si. Finally, all the covisitation scores are
normalized to a value between 0 and 1 by linear scaling.

4.5 Candidate generation
So far we have assumed that when asked to generate rec-

ommendations we will also be provided with a set of candi-
date items. These candidates can be generated in two ways:
The News Frontend (NFE) may generate a list of candi-
dates based on factors such as the news edition, language
preferences of the user, story freshness, customized sections
selected by the user etc. The exact scoring method used
to generate the candidate set is independent of our recom-
mender system. Alternately, candidates for a given user can
be generated as follows: consider the union of all stories that
have been clicked by the members of the clusters that this
user belongs to and the set of stories that have been covis-
ited with the set of stories in the user’s click history. As per
our algorithm, only stories from this set will get non-zero
score, and therefore this set is a sufficient candidate set.

5. SYSTEM SETUP
Putting together the above algorithms into a real time

recommendation system requires the following three main
components: An offline component that is responsible for
periodically clustering users based on their click history; a
set of online servers responsible for performing two main
types of tasks: (a) Updating user and story statistics each
time a user clicks on a news story, and (b) Generating news
story recommendations for a given user when requested; and
two types of data tables: a user table UT indexed by user-id
that stores user click history and clustering information, and
a story table ST indexed by story-id that stores real time
click counts for every story-story and story-cluster pair. We
describe each of these components in more detail below:

5.1 Offline processing
Log analysis is performed periodically as MapReduces over

user click-history stored in the user table UT. During this

8We consider covisitation based recommendations as those
that are a function of user’s short term behavior (click his-
tory in the last few hours) while user-based recommenda-
tions (MinHash and PLSI) as those that are a function of
user’s long term behavior.

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

276

NFE

news page request
view personalized

NSS UT

ST

Update

C
ache

user click

B
uffer

UserId + Clicked Story

NPS

UserId +

Ranked
Stories

User
Click
Histories

User
Clusters

UserId +
 Candidate Stories

 Statistics

Analysis

Offline
Logs

Clusters +
Click History

Clicked Story

Clusters +
Click History

Fetch
Statistics

Figure 2: System Components

step we look at the clicks made by users over a time window
consisting typically of a few months and cluster the users us-
ing the MinHash and PLSI clustering algorithms described
in sections 4.1 and 4.2. The user clusters thus computed are
then written to the UT as part of the user information that
will be used for generating recommendations.

5.2 Data tables
The user table UT and story table ST are conceptu-

ally two dimensional tables that are used for storing various
kinds of statistics on a per user and per story basis. The
rows of the user table are indexed by user-id, and for each
user-id, two kinds of information are stored in the table:
(a) Cluster information: A list of MinHash and PLSI
cluster-ids that the user belongs to, and
(b) Click history: The list of news story-id’s that the user
has clicked on.

These two sets of items collectively represent all the user-
specific information used to generate recommendations.

The rows of the story table are indexed by story-id, and
for each row corresponding to a story S, there are two main
types of statistics that are maintained in different columns:
(a) Cluster statistics: How many times (weighted by the
user’s fractional membership p(z|u) in case of PLSI) was
story S clicked on by users from each cluster C. Here C
may either be a MinHash or a PLSI cluster.
(b) Covisitation statistics: How many times was story

S co-visited with each story S′. Conceptually, the covisita-
tion statistics represent the adjacency list for the covisitation
graph described in section 4.4.

For each of the above two types of statistics, we also need
to maintain some normalization statistics: For every cluster
C we need to maintain the total number of clicks made by
users belonging to that cluster, and for every story S we
need to maintain the total number of story covisitation pairs
where this story was one of the covisited pair.

In order to emphasize more recent news story interests
expressed by users, and to discount the fact that older stories
are likely to have higher click counts simply because of their
age, the various counts described above are not maintained
as simple counts. Rather, we maintain time decayed counts
which give more weight to user clicks from the recent past.

For making the recommendation system an online one,
the data tables UT and ST need to provide a mechanism
for fast real time update and retrieval (of the order of a few
milliseconds) of the statistics corresponding to either a row

(e.g. user-id lookup in UT), or a (row , column) pair (e.g.
story-id, cluster-id lookup in ST). A suitable candidate for
storing these two data tables is the Bigtable infrastructure
(c.f. [10]) which is a distributed persistent storage system
for structured data that is designed to scale to a very large
amount of data across thousands of commodity servers.

5.3 Real time servers
We require online servers to perform two main types of

functions: Updating the various statistics and information
stored in the data tables whenever a user clicks on a news
story, and generating a ranked list of recommended news
stories for a given user-id when requested by the user.

Figure 5 gives one possible implementation, where the
news statistics server (NSS) is responsible for updating statis-
tics in the ST when informed of a user click by the news
webserver, referred to as the news front end (NFE). The
news personalization server (NPS) is responsible for gener-
ating news story recommendations when requested by the
NFE. The front end NFE serves as a proxy through which
the personalization servers interact with a user.

5.4 Putting the components together
The various components of the news recommendation sys-

tem described above mainly interact with each other as part
of the work-flow for handling two different kinds of requests
initiated by NFE in response to user actions: A request to
recommend stories (which the NFE forwards to an NPS),
and a request to update click statistics when a user clicks
on a news story (which the NFE forwards to an NSS). The
overall steps involved in handling each of these two types of
requests are outlined below:
1. Recommend request (solid arrows in Figure 5): When
a user requests personalized news story recommendations,
the NFE contacts an NPS with the user-id and a list of
candidate stories to be scored (see Section 4.5 on candidate
generation). On receiving this request, the NPS needs to
fetch the user information (cluster-id’s + recent click his-
tory) from the UT, followed by the click counts correspond-
ing to the (MinHash and PLSI) clusters that the user be-
longs, and the covisitation counts for the stories in her click
history. These latter statistics are fetched from ST, and
locally cached by the NPS with a suitable expiry window
to improve performance. Based on these statistics, as de-
scribed in Section 4, NPS computes three recommendation
scores (cluster-story score based on MinHash and PLSI, and
story-story covisitation score) that are linearly combined to

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

277

obtain a final score for each of the candidates that is even-
tually sent back to NFE.
2. Update statistics request (dashed arrows in Fig-
ure 5): When a user clicks on a news story, this informa-
tion is recorded in her click-history stored in UT. The NFE
also contacts an NSS with a request to update any statis-
tics that may change as result of this click. In order to
update the statistics, the NSS needs to fetch the users in-
formation (cluster-ids and click-history) from UT. For every
(MinHash and PLSI) cluster that the user belongs to, the
corresponding click count for the cluster for this story needs
to be updated, weighted by p(z|u) in case of PLSI. Addi-
tionally, we need to update the covisitation count for every
story in the user’s (recent) click-history with the story cor-
responding to the latest click. These counts, along with the
appropriate normalization counts in ST are updated by the
NSS. Again, for performance reasons, NSS may choose to
buffer these updates and write them out to ST periodically.

One advantage of separating the two functionalities listed
above into separate servers is that even if the statistics server
NSS fails, although the system will not be able to update
statistics for clicks during the downtime, the personalization
server NPS can continue to function normally and even gen-
erate recommendations using the stale statistics present in
the ST. This allows for a graceful degradation in quality of
recommendations over the duration of server downtime.

Since the click recording and statistics are updated and
retrieved in real time (e.g. via the Bigtable infrastructure
mentioned earlier), the system described above is an online
one, offering ‘instant gratification’ to users. Thus, every
click made by a user affects the scores assigned to different
candidate news stories for that user, and potentially changes
the set of recommended stories seen by the user in real time.
The online nature of the system also allows us to deal with
the high item churn associated with news stories by enabling
us to recommend relevant news stories to users shortly after
they appear in various news sources. In order to limit the
actions of “spammy” users from biasing the statistics and
possibly affecting the quality of news recommendations for
other users, clicks received from users with abnormally high
click rates can be ignored when updating statistics as well
as when clustering users based on their click history.

6. EVALUATION
In this section, we present the quality evaluation for our

individual algorithms and our overall recommendation scheme.
In the first part of this section, we compare our individual
algorithms, in particular our model-based algorithms, with
each other and with the best known memory based algo-
rithm in collaborative filtering research, using test datasets.
The purpose of this evaluation is to answer the following
question: How does our new algorithm (MinHash based
user-clustering) compare, in terms of quality of recommen-
dations, with PLSI and the best known memory based algo-
rithm? It is evident that our implementations for MinHash
and PLSI are scalable and that the memory based algo-
rithms do not scale as well.

The second part presents our success metric for the live
running system, namely presentation unbiased relative click-
through rates, as compared with a simple but competitive
recommendation strategy of simply recommending the most
popular stories. This is an implicit evaluation of our live sys-
tem by our users, measured by what they click on, and as

part of this evaluation we would like to compare the three
individual algorithms (MinHash, PLSI, Covisitation) with
each other and also compare our overall algorithm to a nat-
ural benchmark – the popular stories that are being clicked
by users at any time.

6.1 Test Datasets
We use three test datasets for our comparative study. The

first dataset, MovieLens dataset, consists of movie rating
data collected using a web-based research recommender sys-
tem. The dataset, after some pruning to make sure that
each user has at least a certain number of ratings, contains
943 users, 1670 movies, and about 54, 000 ratings, on a scale
from 1 to 5. The second dataset consists of a subset of clicks
received on the Google News website over a certain time pe-
riod, from the top9 5000 users (top as sorted by the number
of clicks.) There are about 40, 000 unique items that are
part of this dataset and about 370, 000 clicks. We refer to
this as the NewsSmall dataset. The third dataset, News-
Big, as the name suggests, is similar to the second one (in
fact a superset), and just contains more records: 500, 000
users, 190, 000 unique items and about 10, 000, 000 clicks.
In order to have uniformity in comparisons, we binarize the
first dataset as follows: if the rating for an item, by a user,
is larger than the average rating by this user (average com-
puted over her set of ratings) we assign it a binary rating of
1, 0 otherwise.

6.2 Evaluation methodology and metrics
Similar to most machine learning evaluation methodolo-

gies, we randomly divide the datasets into a training set and
a test set. The training set is to used to learn and predict
what other items a user would click and compare the pre-
dicted set with the actual set of clicks from the test set or
hold-out set. Note, this is done in an offline manner. The
split is in the ratio 80% − 20% (train to test) and done for
each user. The numbers reported here are average over nu-
merous such splits. The numbers that we report are the
precision (what fraction of the recommendations were actu-
ally clicked in the hold-out or test set10) and recall (what
fraction of the clicks in the hold-out set were actually rec-
ommended) fractions over the test set.

6.3 Algorithms
For the sake of clarity we briefly describe the three algo-

rithms we compare:
MinHash: In the training phase, each user is clustered
into 100 clusters based on her clicks. In the test phase, the
inferred weight of a user u for an item s is computed as�

ui
w(u, ui)I(ui,s), where the sum is over all other users

ui, the function w(u, ui) is the similarity between two users
u, ui (proportional to the number of MinHash clusters they
are together in, normalized to sum to 1 over all users for the
given user u), and the indicator function I(ui,s) is 1 if the
user ui has clicked on the item s and 0 otherwise.
Correlation: This memory based technique computes the
similarity measure between every pair of user and combines
ratings from other users weighted by similarity. The in-

9We ignore the top 1000 since they have an unusually large
number of clicks and are suspected to be bots as opposed to
real humans

10Precision is undefined when recall is zero and no items are
recommended

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

278

10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

Recall

P
re

ci
si

on

MH
PLSI
CORR

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Recall

P
re

ci
si

on

MH−NewsSmall
PLSI−NewsSmall
CORR−NewsSmall
MH−NewsBig
PLSI−NewsBig

0 20 40 60 80 100 120 140 160
0.5

1

1.5

2

2.5

3

Days

#C
lic

ks
 a

s
fr

ac
tio

n
of

 P
op

ul
ar

Popular
CSBiased
CVBiased

(a) (b) (c)

Figure 3: (a) Precision recall curves for the MovieLens dataset. (b) Precision recall curves for the GoogleNews
dataset. (c) Live traffic click ratios for different algorithms with baseline as Popular algorithm.

ferred weight of a user u for an item s, is computed as�
ui

w(u, ui)I(ui,y), where w(u, ui) is the vector similarity
measure, defined as the cosine of the angle between the vec-
tors representing the users, and the I(ui,s) is the same as
that described earlier for MinHash.
PLSI: In the case of PLSI, the inferred rating is simply the
conditional likelihood computed as p(s|u) =

�
z p(s|z)p(z|u)

(see Section 4.2)
In all of the algorithms described above, the inferred rat-

ing is a fraction between 0 and 1 that is binarized to 1 if
it exceeds a certain threshold, 0 otherwise. The threshold
is chosen from the set {10−x|x ∈ {0.1, 0.2, . . . , 4}}. Vary-
ing the threshold gives a precision vs. recall trade-off – the
higher the threshold, higher the precision and the lower the
recall.

6.4 Evaluation Results
Figures 3 (a) and (b) show the precision-recall curves for

the three datasets: MovieLens, NewsSmall and NewsBig.
For the NewsBig dataset we were unable to run the mem-
ory based algorithm as it would not scale to these numbers;
keeping the data in memory for such a large dataset was not
feasible, while keeping it on disk and making random disk
seeks would have taken a long time. One observes that the
PLSI always does the best, followed by MinHash, followed
by Correlation. This shows that our algorithms, although
more scalable, do not incur a loss in quality, and on the con-
trary do better in terms of quality. Another trend to note is
that the difference in quality reduces with growing amounts
of data.

6.5 Evaluation on live traffic
The previous set of evaluations were not for a dynamic

itemset, which is one of the important distinguishing fac-
tors of our application. Moreover, the individual algorithms
that were compared are slightly different from those that
are used in our system, modified to incorporate the churn
in itemset and also to have a common framework for com-
bining different recommendation algorithms. We would like
to evaluate how the overall recommendation algorithm and
its individual components fare over the live traffic and also
compare them with a natural candidate algorithm: recom-
mending popular stories. As explained in Section 4, each al-
gorithm generates a recommendation score for the candidate

items that are linearly combined with appropriate weights
to get the overall recommendation score. Unless otherwise
specified, the weights used for combining the three individ-
ual algorithms (MinHash, PLSI, Covisit), are 1.0 for all the
algorithms. An individual algorithm, in the comparisons
below, is simply the overall algorithm with weights set to
1.0 for that algorithm and zero for the rest. The simple
Popular algorithm assigns recommendation score to candi-
dates that is equal to their age discounted click count, i.e.
recent popularity. This provides a natural but fairly high
benchmark to evaluate against.

How does one compare two or more recommendation al-
gorithms on a subset of the live traffic? This is one way in
which we do it: We generate a sorted ranked list from each
of these algorithms and then interlace their results(e.g. to
compare two algorithms A and B, we take the first result
from A, followed by first result of B, followed by second re-
sult of A, and so on, removing duplicates if required), and
present the interlaced list as the final recommended list to
the users. To account for the position bias (users are more
likely to click higher positioned stories), we cycle through
the order in which we interlace the results, i.e. which al-
gorithm goes first. The advantage of this approach is that
it removes any presentation bias or position bias. We then
measure which of the algorithms gets more clicks (i.e., clicks
on the stories recommended by this algorithm). The premise
is that users will click on stories they like and hence the ratio
of the number of clicks measures their relative quality.

The click-through numbers that we report are from run-
ning our experiments over a large user fraction of the entire
Google News traffic (millions of users) over a period of 5-6
months. Figure 3 (c) shows the ratio of the clicks for three
competing algorithms: Overall algorithm with higher weight
for covisitation (2.0 instead of 1.0) (defn. CVBiased), over-
all algorithm with higher weight for PLSI and MinHash (2.0
instead of 1.0) (defn. CSBiased), and the baseline Popu-
lar algorithm. We observe that, on an average, CVBiased
and CSBiased are better by 38% as compared with the
baseline Popular. Occasionally, when you get a popular
juicy story out of Hollywood that is irresistible to our read-
ers (e.g. Katie Holmes and Tom Cruise affair), we see that
the baseline Popular algorithm does better.

Figure 4 shows the results of comparing PLSI and Min-
Hash (MH) with the baseline that combines the scores from

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

279

both algorithms in equal ratios. We observe that the indi-
vidual algorithms are almost always better than combining
them, although there is no conclusive winner between the
individual ones.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 5 10 15 20

#C
lic

ks
 a

s
fr

ac
tio

n
of

 u
ni

fo
rm

 w
ei

gh
tin

g
(c

vw
:p

lw
:m

hw
_1

:1
:1

)

Days

BOTH (cvw:mhw:plw_1:1:1)
MH (cvw:mhw:plw_1:1:0)

PLSI (cvw:mhw:plw_1:0:1)

Figure 4: Live traffic click ratios for comparing PLSI
and MinHash algorithms

7. CONCLUSION
In this paper, we present the algorithms behind a scalable

real time recommendation engine and give the results of its
evaluation on Google News. The high item churn and mas-
sive scale of the datasets involved sets our system apart from
existing recommendation systems. We presented novel ap-
proaches to clustering over dynamic datasets using MinHash
and PLSI, both of which were adapted to scale arbitrarily
using the Mapreduce framework developed at Google. Our
experimental results on several real life datsets show that
this scalability does not come at the cost of quality. We
experimentally demonstrated the efficacy of our recommen-
dation engine via evaluation on live traffic, using user click-
throughs as a quality metric. The evaluation on live traffic
was done over a large fraction of the Google News traffic over
a period of several days. This was a clear demonstration of
the scalability of the system. Our approach, which is based
on collaborative filtering, is content agnostic and thus easily
extendible to other domains. Future directions to explore
include using suitable learning techniques to determine how
to combine scores from different algorithms, and exploring
the cost-benefit tradeoffs of using higher order (and direc-
tional) covisitation statistics.

8. ACKNOWLEDGMENTS
The authors would like to thank Jon McAlister for his

reviews and suggestions on the overall system design and
significant contributions in helping build parts of the sys-
tem. The authors also thank Megan Nance for valuable
suggestions on early drafts of this paper.

9. REFERENCES
[1] G. Adomavicius, and A. Tuzhilin Toward the Next

Generation of Recommender Systems: A Survey of the
State-of-the-Art and Possible Extensions. In IEEE
Transactions on Knowledge And Data Engineering, Vol 17,
No. 6, June 2005

[2] D. Blei, A. Ng, and M. Jordan Latent Dirichlet Allocation
In Journal of Machine Learning Research, 2003.

[3] J. Breese, D. Heckerman, and C. Kadie Empirical Analysis
of Predictive Algorithms for Collaborative Filtering. In

Proc. of the 14th Conf. on Uncertainty in Artifical
Intelligence, July 1998.

[4] A. Broder. On the resemblance and containment of
documents. In Compression and Complexity of Sequences
(SEQUENCES’97), 1998, pp. 21–29.

[5] J. Buhler Efficient large-scale sequence comparison by
locality-sensitive hashing. In Bioinformatics, Vol. 17, pp
419 –428, 2001.

[6] M. Charikar. Similarity Estimation Techniques from
Rounding Algorithms. In Proc. of the 34th Annual ACM
Symposium on Theory of Computing, STOC (2002).

[7] N. Cristianini, and J. Shawe-Taylor An Introduction to
Support Vector Machines and Other Kernel-based Learning
Methods Cambridge University Press, 1st edition (March
28, 2000).

[8] E. Cohen. Size-Estimation Framework with Applications to
Transitive Closure and Reachability. Journal of Computer
and System Sciences 55 (1997): 441–453.

[9] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. Ullman, and C. Yang. Finding Interesting
Associations without Support Pruning. In Proc. of the 16th
Intl. Conf. on Data Engineering, (ICDE 2000).

[10] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber.
Bigtable: A Distributed Storage System for Structured
Data. In Proc. of the 7th Symposium on Operating System
Design and Implementation, (OSDI 2006).

[11] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni
Locality-Sensitive Hashing Scheme Based on p-Stable
Distributions. In Proc. of the 20th ACM Annual
Symposium on Computational Geometry (SOCG 2004).

[12] J. Dean, and S. Ghemawat., ”MapReduce: Simplified Data
Processing on Large Clusters.”, In Proc. of 6th Symposium
on Operating Systems Design and Implementation (OSDI),
San Francisco, 2004.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in
High Dimensions via Hashing. In Proc. of the 25th Intl.
Conf. on Very Large Data Bases, VLDB(1999).

[14] T. Hofmann Latent Semantic Models for Collaborative
Filtering In ACM Transactions on Information Systems,
2004, Vol 22(1), pp. 89–115.

[15] P. Indyk A Small Approximately Min-Wise Independent
Family of Hash Functions. In Proc. 10th Symposium on
Discrete Algorithms, SODA (1999).

[16] P. Indyk and R. Motwani. Approximate Nearest Neighbor:
Towards Removing the Curse of Dimensionality. In Proc. of
the 30th Annual ACM Symposium on Theory of
Computing, 1998, pp. 604–613.

[17] B. Marlin, and R. Zemel The multiple multiplicative factor
model for collaborative filtering In ACM Intl. Conf.
Proceeding Series, Vol. 69, 2004.

[18] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1985.

[19] P. Resnick, N. Iakovou, M. Sushak, P. Bergstrom, and
J. Riedl. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews, In Proc. of Computer
Supported Cooperative Work Conf. , 1994.

[20] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl
Application of Dimensionality Reduction in Recommender
Systems – A Case Study In Proc. of the ACM WebKDD
Workshop, 2000.

[21] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl Item-based
collaborative filtering recommendation algorithms. In Proc.
of the 10th Intl. WWW Conf. , (WWW) 2001.

[22] G. Shani, R. Brafman, and D. Heckerman, An MDP-Based
Recommender System In Proc. of the 18th Conf.
Uncertainty in Artificial Intelligence, Aug. 2002.

[23] K. Yu, X. Xu, J. Tao, M. Ester, and H. Kriegel Instance
Selection Techniques for Memory-Based Collaborative
Filtering In Proc. of the Second Siam Intl. Conf. on Data
Mining, (SDM) 2002.

WWW 2007 / Track: Industrial Practice and Experience May 8-12, 2007. Banff, Alberta, Canada

280

