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Announcements

� Please ask HW2 related questions in courseworks

� HW2 due date has been moved to Oct 30 (next 

Tuesday)

� HW3 will be released next week 



Student Projects

� Hashtag Recommendation for Twitter

� Reviews: How can the reviews help the restaurants improve more 
efficiently?

� Question Answering System dealing with factual questions in the field 
of Classical Music

� Automatic Summarization of Video Content

� Mood Sync: Text Mining for Mood Classification of Songs
� Web app for fashion item recognition

� TCoG

� Twitter Dedupe
� Unsupervised Medical Entity Recognition

� A Web App for Personalized Health News 
� Twitter movie tweets sentiment analysis

� An intelligent newsreader service
� Legal Auto Assist



HW2

� How to do well in HW2?
� Understand the concept clearly

� Go through the animation of forward backward in the slides

� Make sure you understand where each numbers are 
coming from

� Also, take a look at Jason Eisner’s excel sheet

� You can make sure your algorithm is correct by first trying 
Eisner’s example in the code

� Make sure you do things in log probabilities



Topics for Today

� Neural Networks

� Deep Belief Networks 



Neurons

� Neurons

� accept information from multiple inputs, 

� transmit information to other neurons.

� Multiply inputs by weights along edges

� Apply some function to the set of inputs at each node
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Types of Neurons

Linear Neuron

Logistic Neuron

Perceptron

Potentially more.  Require a convex 

loss function for gradient descent training.
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Multilayer Networks

� Cascade Neurons together

� The output from one layer is the input to the next

� Each Layer has its own sets of weights

8



Linear Regression Neural Networks

� What happens when we arrange linear 

neurons in a multilayer network?
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Linear Regression Neural Networks
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� Nothing special happens.
� The product of two linear transformations is itself a linear 

transformation.



Neural Networks

� We want to introduce non-linearities to the network.
� Non-linearities allow a network to identify complex regions 

in space
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Linear Separability

� 1-layer cannot handle XOR

� More layers can handle more complicated spaces –
but require more parameters

� Each node splits the feature space with a hyperplane

� If the second layer is AND a 2-layer network can 
represent any convex hull.
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XOR Problem and Neural Net Solution

Picture from [1]



Neural Net

Picture from [1]



Feed-Forward Networks

� Predictions are fed forward through the 

network to classify
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Feed-Forward Networks

� Predictions are fed forward through the 
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Feed-Forward Networks

� Predictions are fed forward through the 

network to classify
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Feed-Forward Networks
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Feed-Forward Networks

� Predictions are fed forward through the 

network to classify
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Feed-Forward Networks

� Predictions are fed forward through the 

network to classify

20



Error Backpropagation

� We will do gradient descent on the whole 

network.

� Training will proceed from the last layer to the 

first.
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Error Backpropagation

� Introduce variables over the neural network
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Error Backpropagation

� Introduce variables over the neural network

� Distinguish the input and output of each node
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Error Backpropagation
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Error Backpropagation
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Training: Take the gradient of the last component and iterate backwards



Error Backpropagation
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Empirical Risk Function



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Chain Rule

� What is chain rule saying?

� If we want to know how error changes when the 
weights change we can think of it as 

� See how error changes when the input to the weight 
changes 

� Multiply it with a factor that shows how the input 

changes when the weight  changes



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation

30

Optimize last layer weights wkl

Calculus chain rule



� Remember

±
±wik

(tk −
∑

j wjkxj) = −xi when i=j

Only part of the sum that is function of wik is when i = j



Error Backpropagation

32

Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last hidden weights wjk



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Repeat for all previous layers



Error Backpropagation
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Now that we have well defined gradients for each parameter, update using Gradient Descent



Error Back-propagation

� Error backprop unravels the multivariate chain rule and solves 
the gradient for each partial component separately.

� The target values for each layer come from the next layer.

� This feeds the errors back along the network.
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Neural Net Algorithm : Forward Phase

aj = g(hj) = 1/(1 + e
−βhj )

hj =
∑
i xiwij

yk = g(hk) = 1/(1 + e
−βhk)

hk =
∑
j ajwjk

ykhkajhj

wij
wjk



Neural Networks : Backward Phase
ykhkajhj

wij
wjk

δok = (tk − yk)yk(1− yk)

δhj = aj(1− aj)
∑

k wjkδok

wjk ← wjk + ηδokaj

wij ← +ηδhjxi



Deriving Backprop Again

� Remember

when i=j

Only part of the sum that is function of wik is when i = j

δ
δwik

(tk −
∑

j wjkxj) = −xi



Also Derivative of Activation Function

g(h) = 1

1+e−βh

dg

dh
= d

dh
1

1+e−βh

= βg(h)(1− g(h))



Backpropagation of Error

yk(1− yk) aj(yk − tk)

δE
δwjk

= δE
δhk

δhk
δwjk

δE
δwjk

= ( δE
δyk

δyk
δhk
) δhk
δwjk

δhk
δwjk

=
δ
∑

l
wlkal

δwjk

δ
δyk

1

2

∑
k(yk − tk)

2

=
∑
l
δwlkal
δwjk

wjk ← wjk + ηδokaj



Problems with Neural Networks

� Neural Networks can easily overfit

� Many parameters to estimate

� It’s hard to interpret the numbers produced by 

hidden layer
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Types of Neural Networks

� Convolutional Networks

� Multiple Outputs

� Skip Layer Network

� Recurrent Neural Networks
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What is wrong with back-propagation?

� It requires labeled training data.

� Almost all data is unlabeled.

� The learning time does not scale well

� It is very slow in networks with multiple 

hidden layers.

� It can get stuck in poor local optima.



Backpropagation Problems

� Backpropagation does not scale well with many 

hidden layer

� Requires a lot of data

� Easily stuck in poor local minima

� Use similar gradient method to adjust weights but 

maximize the likelihood of data given the model

� Deep Belief Networks



Deep Belief Network in NLP and Speech

� Deep Networks used in variety of NLP and Speech 
processing tasks

� [Colbert and Weston, 2008] Tagging, Chunking

� Words into features

� [Mohamed et. al, 2009] ASR

� Phone recognition

� [Dealaers et. al, 2007] Machine Transliteration



Deep Networks

Visible Nodes

Hidden 

Nodes
join distribution factored into conditionals

across layers such as p(h1|h2)

p(v, h1, h2, h3, ..., hl)



Conditional Distributions of Layers

� Conditionals are given by

p(hki |h
k + 1) = sig(bki +

∑
jW

k
ijh

k+1
j )

p(hk|hk+1) =
∏
i p(h

k
i |h

k + 1)

where



Conditional Distribution per Node

� This is basically saying 

p(hki |h
k + 1) = sig(bki +

∑
jW

k
ijh

k+1
j )

Wik

Weight matrix if NXM size

Sigmoid function
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