
Statistical NLP for the Web

Neural Networks, Deep Belief Networks

Sameer Maskey

Week 8, October 24, 2012

*some slides from Andrew Rosenberg

Announcements

� Please ask HW2 related questions in courseworks

� HW2 due date has been moved to Oct 30 (next

Tuesday)

� HW3 will be released next week

Student Projects

� Hashtag Recommendation for Twitter

� Reviews: How can the reviews help the restaurants improve more
efficiently?

� Question Answering System dealing with factual questions in the field
of Classical Music

� Automatic Summarization of Video Content

� Mood Sync: Text Mining for Mood Classification of Songs
� Web app for fashion item recognition

� TCoG

� Twitter Dedupe
� Unsupervised Medical Entity Recognition

� A Web App for Personalized Health News
� Twitter movie tweets sentiment analysis

� An intelligent newsreader service
� Legal Auto Assist

HW2

� How to do well in HW2?
� Understand the concept clearly

� Go through the animation of forward backward in the slides

� Make sure you understand where each numbers are
coming from

� Also, take a look at Jason Eisner’s excel sheet

� You can make sure your algorithm is correct by first trying
Eisner’s example in the code

� Make sure you do things in log probabilities

Topics for Today

� Neural Networks

� Deep Belief Networks

Neurons

� Neurons

� accept information from multiple inputs,

� transmit information to other neurons.

� Multiply inputs by weights along edges

� Apply some function to the set of inputs at each node

6

Types of Neurons

Linear Neuron

Logistic Neuron

Perceptron

Potentially more. Require a convex

loss function for gradient descent training.

7

Multilayer Networks

� Cascade Neurons together

� The output from one layer is the input to the next

� Each Layer has its own sets of weights

8

Linear Regression Neural Networks

� What happens when we arrange linear

neurons in a multilayer network?

9

Linear Regression Neural Networks

10

� Nothing special happens.
� The product of two linear transformations is itself a linear

transformation.

Neural Networks

� We want to introduce non-linearities to the network.
� Non-linearities allow a network to identify complex regions

in space

11

Linear Separability

� 1-layer cannot handle XOR

� More layers can handle more complicated spaces –
but require more parameters

� Each node splits the feature space with a hyperplane

� If the second layer is AND a 2-layer network can
represent any convex hull.

12

XOR Problem and Neural Net Solution

Picture from [1]

Neural Net

Picture from [1]

Feed-Forward Networks

� Predictions are fed forward through the

network to classify

15

Feed-Forward Networks

� Predictions are fed forward through the

network to classify

16

Feed-Forward Networks

� Predictions are fed forward through the

network to classify

17

Feed-Forward Networks

� Predictions are fed forward through the

network to classify

18

Feed-Forward Networks

� Predictions are fed forward through the

network to classify

19

Feed-Forward Networks

� Predictions are fed forward through the

network to classify

20

Error Backpropagation

� We will do gradient descent on the whole

network.

� Training will proceed from the last layer to the

first.

21

Error Backpropagation

� Introduce variables over the neural network

22

Error Backpropagation

� Introduce variables over the neural network

� Distinguish the input and output of each node

23

Error Backpropagation

24

Error Backpropagation

25

Training: Take the gradient of the last component and iterate backwards

Error Backpropagation

26

Empirical Risk Function

Error Backpropagation

27

Optimize last layer weights wkl

Calculus chain rule

Chain Rule

� What is chain rule saying?

� If we want to know how error changes when the
weights change we can think of it as

� See how error changes when the input to the weight
changes

� Multiply it with a factor that shows how the input

changes when the weight changes

Error Backpropagation

29

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

30

Optimize last layer weights wkl

Calculus chain rule

� Remember

±
±wik

(tk −
∑

j wjkxj) = −xi when i=j

Only part of the sum that is function of wik is when i = j

Error Backpropagation

32

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

33

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

34

Optimize last hidden weights wjk

Error Backpropagation

35

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

36

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

37

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

38

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

39

Repeat for all previous layers

Error Backpropagation

40

Now that we have well defined gradients for each parameter, update using Gradient Descent

Error Back-propagation

� Error backprop unravels the multivariate chain rule and solves
the gradient for each partial component separately.

� The target values for each layer come from the next layer.

� This feeds the errors back along the network.

41

Neural Net Algorithm : Forward Phase

aj = g(hj) = 1/(1 + e
−βhj)

hj =
∑
i xiwij

yk = g(hk) = 1/(1 + e
−βhk)

hk =
∑
j ajwjk

ykhkajhj

wij
wjk

Neural Networks : Backward Phase
ykhkajhj

wij
wjk

δok = (tk − yk)yk(1− yk)

δhj = aj(1− aj)
∑

k wjkδok

wjk ← wjk + ηδokaj

wij ← +ηδhjxi

Deriving Backprop Again

� Remember

when i=j

Only part of the sum that is function of wik is when i = j

δ
δwik

(tk −
∑

j wjkxj) = −xi

Also Derivative of Activation Function

g(h) = 1

1+e−βh

dg

dh
= d

dh
1

1+e−βh

= βg(h)(1− g(h))

Backpropagation of Error

yk(1− yk) aj(yk − tk)

δE
δwjk

= δE
δhk

δhk
δwjk

δE
δwjk

= (δE
δyk

δyk
δhk
) δhk
δwjk

δhk
δwjk

=
δ
∑

l
wlkal

δwjk

δ
δyk

1

2

∑
k(yk − tk)

2

=
∑
l
δwlkal
δwjk

wjk ← wjk + ηδokaj

Problems with Neural Networks

� Neural Networks can easily overfit

� Many parameters to estimate

� It’s hard to interpret the numbers produced by

hidden layer

47

Types of Neural Networks

� Convolutional Networks

� Multiple Outputs

� Skip Layer Network

� Recurrent Neural Networks

48

What is wrong with back-propagation?

� It requires labeled training data.

� Almost all data is unlabeled.

� The learning time does not scale well

� It is very slow in networks with multiple

hidden layers.

� It can get stuck in poor local optima.

Backpropagation Problems

� Backpropagation does not scale well with many

hidden layer

� Requires a lot of data

� Easily stuck in poor local minima

� Use similar gradient method to adjust weights but

maximize the likelihood of data given the model

� Deep Belief Networks

Deep Belief Network in NLP and Speech

� Deep Networks used in variety of NLP and Speech
processing tasks

� [Colbert and Weston, 2008] Tagging, Chunking

� Words into features

� [Mohamed et. al, 2009] ASR

� Phone recognition

� [Dealaers et. al, 2007] Machine Transliteration

Deep Networks

Visible Nodes

Hidden

Nodes
join distribution factored into conditionals

across layers such as p(h1|h2)

p(v, h1, h2, h3, ..., hl)

Conditional Distributions of Layers

� Conditionals are given by

p(hki |h
k + 1) = sig(bki +

∑
jW

k
ijh

k+1
j)

p(hk|hk+1) =
∏
i p(h

k
i |h

k + 1)

where

Conditional Distribution per Node

� This is basically saying

p(hki |h
k + 1) = sig(bki +

∑
jW

k
ijh

k+1
j)

Wik

Weight matrix if NXM size

Sigmoid function

Reference

� [1] Duda, Hart, and Stock, “Pattern Classification”

