Statistical Methods for NLP

Information Extraction, Hidden
Markov Models

Sameer Maskey

Week 5, Oct 3, 2012

*many slides provided by Bhuvana Ramabhadran, Stanley Chen, Michael Picheny

‘ Announcement

Homework 1 Due Thursday Oct 4
(11:59pm)

Project Intermediate Report | Due Oct 17
Wednesday (11:59pm)

Homework 2 will be out Friday Oct 5.
Homework 2 Due Oct 25 Thursday
(11:59pm)

| Topics for Today

= Information Extraction
= Hidden Markov Models

Information Extraction

Extract relevant information from large
amount of unstructured text
Extracted information can be in structured

form

Can be used to populate databases for
example

We can define the kind of information we
want to extract

Examples of Information Extraction

Tasks

= Named Entity |dentification
= Relation Extraction

= Coreference resolution

= Term Extraction

= Lexical Disambiguation

= Event Detection and Classification

Classifiers for Information Extraction

= Sometimes exiracted information can be a sequence

= Extract Parts of Speech for the given sentence

DET VB AA ADJ NN

= What kind of classifier may work well for this kind of
sequence classification?

‘ Classification without Memory

CLASS1 CLASS2 CLASS1CLASS2 CLASS1CLASS2

B I

[PREDICT } [PREDICT } [PREDICT }

X X X
E Features Features Features

CLASS1CLASS2

5

[PREDICT }

X

Featu res}

‘ Classification without Memory

P(NN|book) = 0.62
P(VB|book) = 0.14
P(ADV|book) = 0.004

t

()

C(t) (class) is dependent on current observations X(t)

C(t) can be POS tags, document class, word class, X(t) can be text based
features

Perceptron is an example of classifier without memory

Probability Sequence Computation for
Models without Memory

= A coin has probability of “heads” = p , probability of “tails” = 1-p

= Flip the coin 10 times. Assume I.1.D. random sequence. There are 210
possible sequences.

= Sequence: 1 010 0 O 10 O f
Probability: p(1-p)p(1-p)(1-p)(1-p) p(1-p)(1-p)p = p*1-p)°

. Models without memory: Observations are Independent. Probability is the same
for all sequences with 4 heads & 6 tails. Order of heads & tails does not matter in
assigning a probability to the sequence, only the number of heads & number of
tails

= Probability of
. 0heads (1-p)10

- 1 head p(1-p)°®

10 heads p'0

Models without Memory: Learning Model
Parameters

If p is known, then it is easy to compute the probability of the sequence. Now
suppose p is unknown.

We toss the coin N times, obtaining H heads and T tails, where H+T=N
We want to estimate p

A “reasonable” estimate is p=H/N. Is this actually the “best” choice for p?
What is “best”? Consider the probability of the observed sequence.

Prob(seq)=pH(1-p)T

Prob(seq)

pmle

The value of p for which Prob(seq) is maximized is the
of p. (Denote p,e)

| Models without Memory: Example,

>
cont’d
Assertion: p.,.= H/N

Proof: Prob(seq)=pH(1-p)T
Maximizing Prob is equivalent to maximizing log(Prob)

$_L=Iog(Prob(seq)) =Hlogp + Tlog (1-p)
— =H/p+T/(1-p)

op oL

L maximized when p = 0

HPme - T/(1-pre) =0

H-H Pmie = T Prmie

H=T Pmie + H Pmie = Prmie (T+H) = Pmie N

Prmie = H/N

| Models without Memory Example,
cont’d

= We showed that in this case
MLE = Relative Frequency = H/N

= We will use this idea many times.

= Often, parameter estimation reduces to
counting and normalizing.

‘ Models with Memory: Markov Models

Flipping a coin was memory-less. The outcome of
each flip did not depend on the outcome of the
other flips.

Adding memory to a memory-less model gives us a
Markov Model. Useful for modeling sequences of
events.

For POS tagging adding memory to classifier could
be useful

‘ Classification with Memory

CLASS1 CLASS2 CLASS1CLASS2 CLASS1CLASS2 CLASS1CLASS2

i i S M R M
[PREDICT M PREDICT M PREDICT }X{ PREDICT }

— \

X X X X
E Features Features Features Featu res}

Current Prediction depends only previous predictions and current observation

‘ Classification without Memory

P(NN|book) = 0.62
P(VB|book) = 0.14
P(ADV|book) = 0.004

t

&

C(t) (class) is dependent on current observations X(t)

C(t) can be POS tags, document class, word class, X(t) can be text based
features

Perceptron is an example of classifier without memory

‘ Classification with Memory

P(NN|book, prevADJ) = 0.80
P(VB|book, prevADJ) = 0.04
P(VB|book, prevADV) = 0.10

C C ADJ C @

@@@@ @

C(t) (class) is dependent on current observations X(t) and previous state of
classification (C(t-1))

C(t) can be POS tags, document class, word class, X(t) can be text based
features

Sequential Stochastic Models

We can add memory to learning model by adding
dependencies across classification labels over time
Probabilistic models that can model such dependencies
across time is useful for many tasks

Information Extraction
Speech Recognition

Computational Biology

We can build Markov model for underlying sequence of labels
and associate the observations with each state

Adding Memory to Coin Example

= Consider 2 coins.

Coin1: py=09 , p;y=0.1
Coin2: py=0.2 , p;y=0.8
‘ ADDING MEMORY ‘
= Experiment:
Flip Coin 1.
ford =2 ;J<=4; J++
if (previous flip == “H”) flip Coin 1;
else flip Coin 2;
= Consider the following 2 sequences:
HHTT prob=
0.9x0.9x0.1x0.8=.0648 what would be probability if no
HTHT prob= memory was added?
0.9x0.1x0.2x0.1=.0018

Sequences with consecutive heads or tails are more likely.
The sequence has memory - order matters.
Order matters for language.

- Adjective noun probably more common than adjective adjective

| Markov Models — State Space

Representation

Consider 2 coins.
Coin1: py=09 , p;y=0.1
Coin2: py=0.2 , p;=0.8

State-space representation of previous example

H0.9 T0.8
TO0.1

N\

HO0.2

'Markov Models — State Space

Representation (Con’t)

State sequence can be uniquely determined from
the outcome sequence, given the initial state.
Output probability is easy to compute. It is the
product of the transition probs for state sequence.

HO0.9 T0.8
T0.1

7\

HO0.2

Example: O: H T T T
S: 1(given) 1 2 2
Prob: 09 x 0.1 x 0.8 x0.8

| Back to Memory-Less Models: Hidden

Information

Let’s return to the memory-less coin flip model

Consider 3 coins. Coin 0: py=0.7
Coin1: p,=0.9
Coin 2 py=0.2
Experiment:
Ford=1.4
Flip coin 0. If outcome ==*

ADDING HIDDEN
VARIABLE

Flip coin 1 and record.

else

Flip coin 2 and record.

| Hiding Information (cont.)

Coin 0: p,=0.7 Coin1:p,=0.9 Coin2:p,=0.2

We cannot uniquely determine the output of the
Coin O flips. This is hidden.

Consider the sequence HT T T.
What is the probability of the sequence?

Order doesn’t matter (memory-less)
p(head)=p(head|coin0=H)p(coin0=H)+
p(head|coin0=T)p(coin0=T)= 0.9x0.7 + 0.2x0.3 = 0.69
p(tail) = 0.1 x0.7+0.8x0.3=0.31

P(HTTT) = .69 x .31 3

‘ Hidden Information + Markov Model

We added
Memory

We introduced
Hidden Variable

' Hidden Markov Model

The state sequence is hidden.

Unlike Markov Models, the state sequence cannot be uniquely deduced from
the output sequence.

Experiment:
Flip the same two coins. This time, flip each coin twice. The first flip gets

recorded as the output sequence. The second flip determines which coin
gets flipped next.

'’

Unllkepre
HHTTTHT 9x 9x A x.1x.8x.2x.1=.0001296
TTTHTTH =1x.1x.8x.2x.1x.1x.2=.0000032

Even worse, same output sequence corresponds to multiple probabilities!
HTTHTTT =9x.1x.8x.2x.1x.1x.8=.0001152

‘Hidden Markov Model

The state sequence is hidden. Unlike Markov Models, the state sequence cannot
be uniquely deduced from the output sequence.

0.2

0.8

[01 } [0 }
0.9 V\ 0.8

0.1
0.2
0.8

‘ Is 2 Markov Model Hidden or Not?

A necessary and sufficient condition for being state-observable
is that all transitions from each state produce different outputs

yaRe /\O
_O \/O

State-observable Hidden

| Three problems of general interest for
an HMM

3 problems need to be solved before we can use HMM’s:

" 1. Given an observed output sequence X=x,X,..X; , compute
P,(X) for a given model 6 (scoring)

o 2. Given X, find the most likely state sequence (Viterbi
algorithm)

3. Estimate the parameters of the model (training)

These problems are easy to solve for a state-observable Markov
model. More complicated for an HMM because we need to consider
all possible state sequences. Must develop a generalization....

‘ Problem 1

1. Given an observed output sequence X=X X,..Xt ,
compute Pe(X) for a given model o

Recall the state-observable case

HO0.9 T0.8
T0.1

7\

HO0.2

Example: O: H T T T
S: 1(given) 1 2 2
Prob: 09 x 0.1 x 0.8 x0.8

‘ Problem 1

1. Given an observed output sequence X=X X,..Xt ,
compute Pe(X) for a given model 6

Sum over all possible state sequences:
Po(X)=2 Ps(X,S)

The obvious way of calculating Pe(X) is to enumerate
all state sequences that produce X

Unfortunately, this calculation is exponential in the
length of the sequence

‘ Example for Problem 1

Compute Pe(X) for X=aabb, assuming we start in state 1

Example for Problem

b
1,cont’d
(0.8]a [0.5]
02|, 05
0.5 0.4

0.7 0.3
0.3 0.7

0.3 0.5

1 3| 2 '
A >

.0
*
4
*
0.2%.
L] 4
ansm

Let’'s enumerate all possible ways of producing X;=a, assuming we
start in state 1.

Example for Problem 1, cont’d

= Now let’s think about ways of generating x1x2=aa, for all paths from
state 2 after the first observation

N ©\§ o

> ,@

3

‘ FExample for Problem 1,cont’d

We can save computations by combining paths.

This is a result of the Markov property, that the future doesn’t depend on
the past if we know the current state

‘Problem 1: Trellis Diagram

Expand the state-transition diagram in time.
Create a 2-D lattice indexed by state and time.
Each state transition sequence is represented exactly once.

% Time: 0
® Obs: ¢
o o,

‘Problem 1: Trellis Diagram, cont’d

= Now let’'s accumulate the scores. Note that the inputs to a
node are from the left and top, so if we work to the right and
down all necessary input scores will be available.

Time: 0 1 2 3 4

RIS

21+.04+.08=.33
.5{3

1

w o) :
.033+.03=.063 ‘ .0495+.0182=.0677

‘ Problem 1: Trellis Diagram, cont’d

Boundary condition:
Score of (state 1, ¢) = 1.

Basic recursion:
Score of node i =0

For the set of predecessor nodes |:

Score of node i += score of predecessor node | X
the transition probability fromjtoi x
observation probability along

that transition if the transition is not null.

| Problem 1: Forward Pass Algorithm

Let o(s) for t € {1..T} be the probability of being in state s at time t and having
produced output X,'=X,..X;

y(8) = Xy 044(8") Py(sls) Py (xs™->8) + Xy au(s) Py(s]s))

1st term: sum over all output producing arcs 2nd term: all null arcs
This is called the algorithm.
This calculation allows us to solve Problem 1 efficiently;
N2 ' |]
P(zi,z2,...,2z7;0) = >, ar(s) NAT]

P(z1,x2,..,xzr;0) = g P(x1,%2,...;27,51,%, ..., 57)

‘ Problem 2

Given the observations X, find the most likely state sequence
This is solved using the algorithm
Preview:
The computation is similar to the forward algorithm, except we use

max() instead of +

Also, we need to remember which partial path led to the max

‘Problem 2: Viterbi algorithm

Returning to our example, let’s find the most likely path for producing
aabb. At each node, remember the max of predecessor score x
transition probability. Also store the best predecessor for each node.

2 Time: 0 1 2 3 4
® Obs: ¢
- 1
N : . . e

042 032)] L0168

: S0

i1 P A
w) -

00588

Max(.0084].0315) .0294

 Problem 2: Vitetbi algorithm, cont’d

Starting at the end, find the node with the highest score.
Trace back the path to the beginning, following best arc
leading into each node along the best path.

| :SlEelS

Time: 0 1 2 3 4
Obs: ¢ Exe > 5y8 aa 5x.2 aab 5x.2 abb
& Lo i o
: .2 : .2 :
D Ay AX.5 "\
s o hiccl . 100336
OQ%G E S o >
! - . v .1
: : . 4
@) o
CoeE [03 | 00588
.03 0315

Hidden Markov Models

State : Q = q1929N
Transition Probabilites 1" = a11a12ann
Emission Probabilites B = b;(0;)
Observation Sequence O = 010207

Start and Final State qo0,4F

Markov Model with 5 states
with 10 possible observation
in each state will have

L T and B of what sizes?

| Three problems of general interest for
an HMM

3 problems need to be solved for HMM'’s:

= Given an observed output sequence X=x;X,..X7 , compute Pg4(X) for a given model
6 (scoring)

P(xlax% 7xT;9)

= Given X, find the most likely state sequence (Viterbi algorithm)

A

find best S1, ..., 5T using L1, ..., LT

= Estimate the parameters of the model (training) using n observed sequences of
varying length

Q(St|5t—1), bz‘(Ot\St)

Detour: Unsupervised Learning

Given the training data with class labels we saw we
can compute Maximum Likelihood estimate for
Naive Bayes by getting relative frequencies of the
word in the class

When we do not have labels we can run E-M
algorithm
E step — compute fractional counts

M step — maximize based on the fractional counts

Classification with Hidden Variables

O
0 098"
O
ofe
§%00°
elleSlctelcNe
Co

~ Do not know the class labels

~ Treat class labels as hidden variables
~ Maximize log-likelihood of unlabeled training data
~ Fractional counts can be thought of as assignment to a given class

Explaining Expectation NV

EM is like fuzzy K-means

Parameters to estimate for K classes

Let us assume we can model this data
with mixture of two Gaussians

Start with 2 Gaussians (initialize mu and sigma values{

aximization

® @
% &o o ©°
o LOGGB
QO
O
O O
2 00°
Slic Ol cYole
g °o
Expectation

Compute distance of each point to the mu of 2 Gaussians and

assign it a soft class label (Ck)

Use the assigned points to recompute mu and sigma for 2

Gaussians; but weight the updates with soft labels [

Maximization

| The Baum-Welch algorithm

The Baum-Welch algorithm is a generalized expectation-
maximization algorithm for computing maximum likelihood
estimates for the parameters of a Hidden Markov Model when
given only observations as training data.

It is a special case of the EM algorithm for HMMs.

 Problem 3

Estimate the parameters of the model. (training)

= Given a model topology and an output sequence, find the transition
and output probabilities such that the probability of the output
seqguence is maximized.

‘ Problem 3 — State Observable
Example

Assume the output sequence X=abbab, and we start in state 1.
g O . (7 O)
b

~ <

Observed counts along transitions:
)) ()
20O 0O

=

‘ Problem 3 — State Observable

Example

Observed counts along transitions:

9.9

Estimated transition probabilities. (this is of course too little data to estimate
these well.)

| O 0.67 O 1 90

Recall in the state-observable case, we
simply followed the unique path, giving a
count to each transition.

1

‘ Generalization to Hidden MM case

State-observable

= Unique path

= Give a count of 1 to each
transition along the path

Hidden states

Many paths

Assign a fractional count to each
path

For each transition on a given
path, give the fractional count for
that path

Sum of the fractional counts =1
How to assign the fractional
counts??

‘ How to assign the fractional counts to

the paths

Guess some values for the parameters
Compute the probability for each path using
these parameter values

Assign path counts in proportion to these
probabilities

Re-estimate parameter values

lterate until parameters converge

Estimating Transition and Emission
Probabilities

0 count(i—7)
o >, eq count(i—q)

Expected number of transitions from state i to |
Expected number of transitions from state |

A5 =

~ Expected number of times in state j and observing symbol xt
bj(wy)= Expecied number of time in state

Problem 3: Enumerative Example —
Assigning fractional counts

= For the following model, estimate the transition probabilities and the
output probabilities for the sequence X=abaa

a4 a,

S *
«
I .
. .
4,y “
llllll

Problem 3: Enumerative Example -
Assigning fractional counts

= [Initial guess: equiprobable

‘ Problem 3: Enumerative

Example cont’d [Ve
Vz

. *
llll

\J *
00000

3.< ? pr(X,path3)=1/3x1/2x1/3x1/2x1/3x1/2x1/2x1/2=.001157

4.(>< ? or(X,path4)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2x1/2=.000868

. *
QQQQ

‘ Problem 3: Enumerative

Example cont’d Ve
Vz

>

7 paths: 1/3 12 [zz]

5. OS > pr(X,path5)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2=.001736

6. (ﬁ pr(X,path6)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.001302

\J *
00000

7. (} or(X,path7)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.002604

Pr(X) = = pr(X,path) = .008632

Problem 3: Enumerative a,
Example cont’d

Let C, be the a posteriori probability of pathi 7,
C, = pr(X,path,)/pr(X)

C,=.045 C,=.067 C,=.134 C,=.100 C,=.201 C,=.150 C.=.301

Count(a,)= 3C,+2C,+2C,+C,+C, = .838
Count(a,)=C;+C;+C, = .637
Count(a;)=C,+C,+C,+C, = .363

[a1 = C(a1)/{C(al) + C(a2) + C(al3)}]

New estimates:
a; =46 a,=.34 a;=.20

Count(a,,’a’) = 2C,+C,+C,+C,+C, = .592 Count(a,,’b’)=C,+C,+C,=.246

New estimates:

p(a,’a’)= .71 p(a,,’b)= .29 1stterm 2C1 because in abaa, last ‘a’ by

a5 so 2’a’s in aba

Problem 3: Enumerativea
1
Example cont’d

Count(a,,’a’) = C3+C, =.436 Count(a,,’b’)=Cy=.201

New estimates:
p(a,,’a’)= .68 p(a,,’b’)= .32

COUnt(a4)=C2+2C4+C5+3C6+2C7 =1.52
Count(as)=C+C,+C3+C4+Cs+C+C, =1.00

New estimates: a,=.60 a;=.40
Count(a,,’'a’) = Co+Cy+Cs5+2C4+C, = .972 Count(a,,’'b’)=C4+Cg+C,=.553

New estimates:
p(ay,’a’)= .64 p(a,,’b’)= .36

COUnt(a5,’a’) = C1+CQ+C3+C4+C5+ZC6+C7 = 10 Count(a5,’b’)=0
New estimates:
p(as,’a’)=1.0 p(as, b’)=0

‘ Problem 3: Enumerative Example

cont’d
= New parameters
46 60

e .64

.29 68 .36
34 32

.......... v 40 [1]

....... 20 0

= Recompute Pr(X) = .02438 > .008632
= Keep on repeating.....

‘ Problem 3: Enumerative Example
cont’d

Step Pr(X)
= 1 0.008632
= 2 0.02438
= 3 0.02508
= 100 0.03125004

= 600 0.037037037 converged

‘ Problem 3: Enumerative Example
cont’d

= Let’s try a different initial parameter set

change

o]
o

‘ Problem 3: Enumerative Example
cont’d

Step Pr(X)
= 1 0.00914
= 2 0.02437
= 3 0.02507
= 10 0.04341

= 16 0.0625 converged

‘ Problem 3: Parameter Estimation
Performance

= The above re-estimation algorithm converges to a
local maximum.

= The final solution depends on the starting point.

= The speed of convergence depends on the starting
point.

‘ Problem 3: Forward-Backward
Algorithm

The forward-backward algorithm improves on the
enumerative algorithm by using the trellis

Instead of computing counts for each path, we
compute counts for each transition at each time in
the trellis.

This results in the reduction from exponential
computation to linear computation.

‘Problem 3: Forward-Backward
Algorithm

Consider transition from state i to J, tr;

Let py(tr;,X) be the probability that tr; is taken at time t, and the
complete output is X.

oty (1) B.(i)

P(tr;, X) = au(i) a; by(Xxy) By(l)

‘ Problem 3: F-B algorithm cont’d
P(tr;, X) = o 4(1) &; by(x) Byl))

where:

o,_¢(i) = Pr(state=i, x;...x,{) = probability of being in
state i and having produced X;...X;;

g; = transition probability from state i to |

b; (%) = prolq_ability of output symbol x, along
transition |

Bi(]) = Pr(x,,..-Xf|state= j) = probability of producing
Xpp1---XT | |
given you are In state |

‘ Problem 3: F-B algorithm cont’d

Transition count ¢(tr;|X) = py(tr;,X) / Pr(X)

The B’'s are computed recursively in a backward
pass (analogous to the forward pass for the o's)

Bi(J) = 2 Bra(K) @y by(xi,4) (for all output producing
arcs)

+ 2 By(k) ay (for all null arcs)

‘ Problem 3: F-B algorithm cont’d

= Let’s return to our previous example, and work out the trellis calculations

0..
.....
.
....
......

‘ Problem 3: F-B algorithm, cont’d

2 Time: 0 1 2 3 4
'C_DL Obs: ¢ 11351/ a 131/ ab 1/3%1/2 aba 1/3%1/2 abaa
N

‘ Problem 3: F-B algorithm, cont’d

Compute a's. since forced to end at state 3, o;=.008632=Pr(X)

| :SlElS

‘ Problem 3: F-B algorithm, cont’d

Compute B’s.

| :0)elS

‘ Problem 3: F-B algorithm, cont’d

Compute counts. (a posteriori probability of each transition)
C(try| X) = oy.4(i) &; by(xy) By(j)/ Pr(X)

| .167x.0625x.333x.5/.008632

2 Time: 0 1 2 3 4
® Obs: abaa
N

‘ Problem 3: F-B algorithm cont’d

=.547+.246+.045

=.302+.201+.134

=.151+.101+.067+.045
.151+.553+.821

—

[\

~

—

| | | | |
AN AN AN AN N

H YV DD
vvce./vv

()]

=.547+.045, C(at,
=.302+.134, C(a2,
151+.821, C(a4,

C(ab,

246
201
553

OO0O00 O0O00000

—

b’
b’
b’
b’

arN=
m:mmm

AV CV I AV OV

Remember our Enumeratjae
Example?

Let C. be the a posteriori probability of path i ",
C, = pr(X,path,)/pr(X)

C,=.045 C,=.067 C,=.134 C,=.100 C,=.201 C,=.150 C.=.301

Count(a,)= 3C,+2C,+2C;+C,+C; I: .838 ‘
Count(a,)=C;+C;+C, = .637
Count(a;)=C,+C,+C,+C, = .363

[a1 = C(a1)/{C(al) + C(a2) + C(al3)}]

New estimates:
a; =46 a,=.34 a;=.20

Count(a,,a’) = 2C1+C2+CS+C4+C=I =.592 |:ount(a1,’b’)=C1+Cz+CS=.246

New estimates:

p(a,,’a)= .71 o(a,,’b’)= .29 1st term 2C1 because in abaa, last ‘a’ by

a5 so 2’a’s in aba

‘ Problem 3: F-B algorithm cont’d

- C(a,)=.547+.246+.045 =0.838‘

= C(a,)=.302+.201+.134

= C(ag)=.151+.101+.067+.045

= C(a,)=.151+.553+.821

= C(a;)=1

= C(al,’a’)=.547+.045, ‘_0592‘ C(al,’b’)=.246
= C(a2,'a’)=.302+.134, C(a2,'b’)=.201
= C(a4,a’)=.151+.821, C(a4,'b’)=.553
= C(ab,/a’)=1, C(a5,'b’)=0

‘ Problem 3: F-B algorithm cont’d

Normalize counts to get new parameter values.

46 60
71 64
[.29] [.68] [-36]
34172
.......... o] 1’]
.......... 20 O

Result is the same as from the enumerative algorithm!!

‘ Summary ot Markov Modeling Basics

Markov introduced the idea of state to capture the dependence on the past
(time evolution). A state embodies all the relevant information about the past.

Each state represents an equivalence class of pasts that influence the future in
the same manner.

To compute Pr(X), sum up over all of the state sequences than can produce X
Pr(X) = X, Pr(X,S)
For a given S, it is easy to compute Pr(X,S)

The trellis representation is a clever way to enumerate all sequences. It uses
the Markov property to reduce exponential-time enumeration algorithms to
linear-time trellis algorithms.

Reference

= http://www.cs.jhu.edu/~jason/papers/#tnlp02
= http://www.ee.columbia.edu/~stanchen/fall09/e6870/

