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Topics for Today

� Text Clustering

� Gaussian Mixture Models

� K-Means

� Expectation Maximization

� Hierarchical Clustering
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Announcement

� Proposal Due tonight (11:59pm) – not graded

� Feedback by Friday

� Final Proposal due (11:59pm) next Wednesday

� 5% of the project grade

� Email me the proposal with the title

� “Project Proposal : Statistical NLP for the Web”

� Homework 1 is out

� Due October 4th (11:59pm) Thursday

� Please use courseworks
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Perceptron Algorithm

We are given (xi, yi)
Initialize w

Do until converged
if error(yi, sign(w.xi)) == TRUE

w ← w + yixi
end if

End do

If predicted class is wrong, subtract or add that point to weight vector
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Perceptron (cont.) 
Y is prediction based on

weights and it’s either 0 or 1

in this case

Error is either 1, 0 or -1

Example from Wikipedia

wi(t + 1) = wi(t) + α(dj − yj(t))xi,j

yj(t) = f [w(t).xj ]
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Naïve Bayes Classifier for Text

P (Y = yk|X1, X2, ..., XN ) =
P (Y =yk)P (X1,X2,..,XN |Y =yk)∑
j P (Y =yj )P (X1,X2,..,XN |Y =yj)

Y ← argmaxykP (Y = yk)ΠiP (Xi|Y = yk)

= P (Y=yk)ΠiP (Xi|Y=yk)∑
j P (Y=yj)ΠiP (Xi|Y=yj)
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Naïve Bayes Classifier for Text

� Given the training data what are the parameters to 
be estimated?

P (X|Y2)P (X|Y1)P (Y )

Diabetes : 0.8

Hepatitis : 0.2

the: 0.001

diabetic : 0.02

blood : 0.0015

sugar : 0.02

weight : 0.018

…

the: 0.001

diabetic : 0.0001

water : 0.0118

fever : 0.01

weight : 0.008

…

Y ← argmaxykP (Y = yk)ΠiP (Xi|Y = yk)
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Data without Labels

SAD

SAD

HAPPY

� “…is writing a paper”

� “… has flu �”

� “… is happy, yankees won!”

0.5

0.1

0.87

� “…is writing a paper”

� “… has flu �”

� “… is happy, yankees won!”

-

-

-

� “…is writing a paper”

� “… has flu �”

� “… is happy, yankees won!”

Data with corresponding Human Scores

Data with corresponding Human Class Labels

Data with NO corresponding Labels

Regression

Perceptron

Naïve Bayes

Fisher’s Linear Discriminant

?
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Document Clustering

� Previously we classified Documents into Two Classes

� Diabetes (Class1) and Hepatitis (Class2)

� We had human labeled data

� Supervised learning

� What if we do not have manually tagged documents

� Can we still classify documents?

� Document clustering

� Unsupervised Learning
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Classification vs. Clustering

Supervised Training

of Classification Algorithm

Unsupervised Training 

of Clustering Algorithm
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Clusters for Classification

Automatically Found Clusters

can be used for Classification
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Document Clustering

?Baseball Docs

Hockey Docs

Which cluster does the new document

belong to? 
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Document Clustering

� Cluster the documents in ‘N’ clusters/categories

� For classification we were able to estimate parameters using 
labeled data

� Perceptrons – find the parameters that decide the separating 
hyperplane

� Naïve Bayes – count the number of times word occurs in the 
given class and normalize

� Not evident on how to find separating hyperplane when no 
labeled data available

� Not evident how many classes we have for data when we do 
not have labels
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Document Clustering Application
� Even though we do not know human labels automatically 

induced clusters could be useful
News Clusters
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Document Clustering Application

A Map of Yahoo!, Mappa.Mundi

Magazine, February 2000.

Map of the Market with Headlines

Smartmoney [2]
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How to Cluster Documents with No 

Labeled Data?

� Treat cluster IDs or class labels as hidden variables

� Maximize the likelihood of the unlabeled data

� Cannot simply count for MLE as we do not know 
which point belongs to which class

� User Iterative Algorithm such as K-Means, EM

Hidden Variables?

What do we mean by this?
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Hidden vs. Observed Variables

How many observed variables? How many observed variables?

How many hidden variables?

Assuming our observed data is in R2
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Clustering

� If we have data with labels 

N(µ1,
∑

1)
N(µ2,

∑
2)

(30, 1)
(55, 2)
(24, 1)
(40, 1)
(35, 2)
…

Find out µi and
∑

i from data
for both classes

� If we have data with NO labels but know

data comes from 2 classes  

N(µ1,
∑

1)
N(µ2,

∑
2)

(30, ?)
(55, ?)
(24, ?)
(40, ?)
(35, ?)
…

Find out µi and
∑

i from data
for both classes

?
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K-Means in Words

� Parameters to estimate for K classes

� Let us assume we can model this data

� with mixture of two Gaussians

� Start with 2 Gaussians (initialize mu values)

� Compute distance of each point to the mu of 2 Gaussians and 
assign it to the closest Gaussian (class label (Ck))

� Use the assigned points to recompute mu for 2 Gaussians

Hockey

Baseball
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K-Means Clustering

Let us define Dataset in D dimension{x1, x2, ..., xN}

We want to cluster the data in Kclusters

Let us define rnk for each xn such that
rnk ∈ {0, 1} where k = 1, ..., K and
rnk = 1 if xn is assigned to cluster k

Let µk be D dimension vector representing clusterK
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Distortion Measure

J =
N∑

n=1

K∑

k=1

rnk||xn − µk||
2

Represents sum of squares of distances to mu_k from each data point

We want to minimize J
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Estimating Parameters

� We can estimate parameters by doing 2 step 
iterative process

� Minimize J with respect to

� Keep          fixed

� Minimize J with respect to 

� Keep           fixed

rnk
µk

µk
rnk

Step 1

Step 2
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� Optimize for each n separately by choosing          for k that 

gives minimum 

� Assign each data point to the cluster that is the closest

� Hard decision to cluster assignment

rnk

||xn − rnk||2

rnk = 1 if k = argminj ||xn − µj ||2

= 0 otherwise

rnk
µk

Step 1
� Minimize J with respect to

� Keep          fixed
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� J is quadratic in       . Minimize by setting derivative w.rt.  to 

zero 

� Take all the points assigned to cluster K and re-estimate the 

mean for cluster K

� Minimize J with respect to

� Keep           fixedrnk

µk
Step 2

µk µk

µk =

∑
n rnkxn∑
n rnk
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Document Clustering with K-means

� Assuming we have data with no labels for Hockey and 
Baseball data

� We want to be able to categorize a new document into one of 
the 2 classes (K=2)

� We can extract represent document as feature vectors

� Features can be word id or other NLP features such as POS 
tags, word context etc (D=total dimension of Feature vectors)

� N documents are available

� Randomly initialize 2 class means

� Compute square distance of each point (xn)(D dimension) to 
class means (µk)

� Assign the point to K for which µk is lowest

� Re-compute µk and re-iterate
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K-Means Example

K-means algorithm Illustration [1]
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Clusters
Number of documents

clustered together
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Hard Assignment to Clusters

� K-means algorithm assigns each point to the closest 
cluster

� Hard decision

� Each data point affects the mean computation equally

� How does the points almost equidistant from 2 
clusters affect the algorithm?

� Soft decision?

� Fractional counts?
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Gaussian Mixture Models (GMMs)
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Mixtures of 2 Gaussians

P(x)= πN (x|µ1,
∑

1) + (1− π)N (x|µ2,
∑
2)

GMM with 2 gaussians
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Mixture Models

� 1 Gaussian may not fit the data

� 2 Gaussians may fit the data better

� Each Gaussian can be a class category

� When labeled data not available we can treat class category 
as hidden variable

Mixture of Gaussians [1]
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Mixture Model Classifier

� Given a new data point find out posterior probability from each class

p(y|x) = p(x|y)p(y)
p(x)

p(y = 1|x) ∝ N (x|µ1,
∑

1)p(y = 1)
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Cluster ID/Class Label as Hidden 

Variables

� We can treat class category as hidden variable z

� Z is K-dimensional binary random variable in which zk = 1 and 0 for 
other elements

� Also, sum of priors sum to 1

� Conditional distribution of x given a particular z can be written as

p(x) =
∑
z p(x, z) =

∑
z p(z)p(x|z)

z = [00100...]

∑K

k=1 πk = 1

p(z) =
∏K

k=1 πzkk

P (x|
−
z) =

∏K

k=1N (x|µk,
∑

k)
zk

P (x|zk = 1) = N (x|µk,
∑

k)
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Mixture of Gaussians with Hidden Variables

p(x) =
K∑

k=1

πkN (x|µk,
∑

k)

Component of

Mixture

Mean CovarianceMixing

Component

• Mixture models can be linear combinations of other distributions as well

• Mixture of binomial distribution for example

p(x) =
∑K

k=1 πk
1

(2π)D/2
√
(|
∑
k |
exp(− 1

2 (x−µk)T
∑−1

k (x−µk))

p(x) =
∑
z p(x, z) =

∑
z p(z)p(x|z)
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Conditional Probability of Label Given 

Data

� Mixture model with parameters mu, sigma and prior can 

represent the parameter

� We can maximize the data given the model parameters to find 

the best parameters

� If we know the best parameters we can estimate

This essentially gives us probability of class given the data

i.e label for the given data point

=
πkN (x|µk ,

∑
k)∑

K
j=1 πjN (x|µj ,

∑
j)

°(zk) ´ p(zk = 1|x) = p(zk=1)p(x|zk=1)∑
K
j=1 p(zj=1)p(x|zj=1)
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Maximizing Likelihood

� If we had labeled data we could maximize likelihood simply by 

counting and normalizing to get mean and variance of 

Gaussians for the given classes

� If we have two classes C1 and C2

� Let’s say we have a feature x

� x = number of words ‘field’

� And class label (y)

� y = 1 hockey or 2 baseball documents N(µ1,
∑

1)
N(µ2,

∑
2)

(30, 1)
(55, 2)
(24, 1)
(40, 1)
(35, 2)
…

Find out µi and
∑

i from data
for both classes

l =
∑N

n=1 log p(xn, yn|π, µ,
∑
)

l =
∑N

n=1 log πynN (xn|µyn ,
∑
yn
)
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Maximizing Likelihood for Mixture Model with 

Hidden Variables

� For a mixture model with a hidden variable 
representing 2 classes, log likelihood is 

l =
∑N

n=1 logp(xn|π, µ,
∑
)

=
∑N

n=1 log (π0N (xn|µ0,
∑

0)+π1N (xn|µ1,
∑

1))

l =
∑N

n=1 log
∑1
y=0N (xn, y|π, µ,

∑
)
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Log-likelihood for Mixture of Gaussians

� We want to find maximum likelihood of the above log-

likelihood function to find the best parameters that maximize 

the data given the model

� We can again do iterative process for estimating the log-

likelihood of the above function

� This 2-step iterative process is called Expectation-Maximization

log p(X|π, µ,
∑
) =

∑N

n=1 log (
∑k

k=1 πkN (x|µk,
∑
k))
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Explaining Expectation Maximization

� EM is like fuzzy K-means

� Parameters to estimate for K classes

� Let us assume we can model this data

with mixture of two Gaussians (K=2)

� Start with 2 Gaussians (initialize mu and sigma values)

� Compute distance of each point to the mu of 2 Gaussians and assign it a soft 

class label (Ck)

� Use the assigned points to recompute mu and sigma for 2 Gaussians; but 

weight the updates with soft labels 

Hockey

Baseball

Expectation

Maximization



41

Expectation Maximization

An expectation-maximization (EM) algorithm is used in statistics for 
finding maximum likelihood estimates of parameters in 
probabilistic models, where the model depends on unobserved 
hidden variables.

EM alternates between performing an expectation (E) step, which 
computes an expectation of the likelihood by including the latent 
variables as if they were observed, and a maximization (M) step, 
which computes the maximum likelihood estimates of the 
parameters by maximizing the expected likelihood found on the E 
step. The parameters found on the M step are then used to begin 
another E step, and the process is repeated.

The EM algorithm was explained and given its name in a classic 
1977 paper by A. Dempster and D. Rubin in the Journal of the 
Royal Statistical Society.
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Estimating Parameters

� E-Step

°(znk) = E(znk|xn) = p(zk = 1|xn)

°(znk) =
πkN (xn|µk,

∑
k)∑

K
j=1 πjN (xn|µj ,

∑
j)
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Estimating Parameters

� M-step

� Iterate until convergence of log likelihood

π′k =
Nk

N

log p(X|π, µ,
∑
) =

∑N

n=1 log (
∑k

k=1N (x|µk,
∑
k))

µ′k =
1
Nk

∑N

n=1 °(znk)xn

∑′
k =

1
Nk

∑N

n=1 °(znk)(xn − µ′k)(xn − µ′k)
T

where Nk =
∑N

n=1 °(znk)
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EM Iterations

EM iterations [1]
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Clustering Documents with EM

� Clustering documents requires representation of 
documents in a set of features
� Set of features can be bag of words model

� Features such as POS, word similarity, number of 
sentences, etc

� Can we use mixture of Gaussians for any kind of 
features?

� How about mixture of multinomial for document 
clustering?

� How do we get EM algorithm for mixture of 
multinomial?
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Clustering Algorithms

� We just described two kinds of clustering algorithms

� K-means

� Expectation Maximization

� Expectation-Maximization is a general way to 

maximize log likelihood for distributions with hidden 
variables

� For example, EM for HMM, state sequences were hidden

� For document clustering other kinds of clustering 

algorithm exists
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Hierarchical Clustering

� Build a binary tree that groups similar data in 
iterative manner

� K-means

� distance of data point to center of the gaussian

� EM

� Posterior of data point w.r.t to the gaussian

� Hierarchical 

� Similarity : ?

� Similarity across groups of data
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Types of Hierarchical Clustering

� Agglomerative (bottom-up): 
� Assign each data point as one cluster
� Iteratively combine sub-clusters
� Eventually, all data points is a part of 1 cluster

� Divisive (top-down): 

� Assign all data points to the same cluster. 

� Eventually each data point forms its own cluster

One advantage :

Do not need to define K, number

of clusters before we begin

clustering 
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Hierarchical Clustering Algorithm

� Step 1

� Assign each data point to its own cluster

� Step 2

� Compute similarity between clusters

� Step 3

� Merge two most similar cluster to form one less cluster
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Hierarchical Clustering Demo

Animation source [4]
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Similar Clusters?

� How do we compute similar clusters?

� Distance between 2 points in the clusters?

� Distance from means of two clusters?

� Distance between two closest points in the clusters?

� Different similarity metric could produce different 
types of cluster

� Common similarity metric used

� Single Linkage

� Complete Linkage

� Average Group Linkage
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Single Linkage

Cluster
1

Cluster
2
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Complete Linkage

Cluster
1

Cluster
2
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Average Group Linkage

Cluster
1

Cluster
2
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Hierarchical Cluster for Documents

Figure : [Ho, Qirong, et. al]
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Hierarchical Document Clusters

� Highlevel multi view of the corpus

� Taxonomy useful for various purposes

� Q&A related to a subtopic

� Finding broadly important topics 

� Recursive drill down on topics

� Filter irrelevant topics
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Summary

� Unsupervised clustering algorithms

� K-means

� Expectation Maximization

� Hierarchical clustering

� EM is a general algorithm that can be used to 
estimate maximum likelihood of functions with 

hidden variables

� Similarity Metric is important when clustering 

segments of text
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