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Announcements

� Next lecture is the last lecture

� Wrap up of the semester



3

Final Project

� Final Project Presentation Day

� December 12th, 10:00 AM to 2pm

� Wednesday

� Each team 8 min talk

� 2 min for Q&A

� CS Conference room
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Final Project Grading

� Final Project : Report+Presentation+Demo

� 65% of 55 = 35.75 points

� Final Project Report (30%)

� Demo (15%)

� Final Presentation (20%) 
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Final Project Report

� Same length as your Intermediate report

� Similar to your Intermediate Report I

� The final report instructions will be available  

through the course website
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HW3

� Due Nov 30th (11:59pm)

� Q1 : implementing simple example from the 

class is ok as well

� Q2 : Look at previous slides, Python code is 

already in one of the slides

� Modify to do n-gram counts

� Compute bigram probabilities
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Topics for Today

� Log-linear Models

� Maximum Entropy Markov Models

� Conditional Random Fields 

� Applications of CRF for NLP
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Naïve Bayes vs. Conditional Random Field

� Trained by maximizing likelihood 
of data and class

� Features are assumed 
independent

� Feature weights set 
independently

� Trained by maximizing conditional 
likelihood of classes

� Dependency on features taken account 
by feature weights

� Feature weights are set mutually

� Good for sequence prediction

Naïve Bayes Model CRF Model
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Max Ent Model vs. CRF Model

� Both are types of log-linear models

� Max Ent variation called Max Ent Markov Model is more 
similar to CRF Model addresses some deficiencies with 
MEMM

� Training method is different
� normalization is over all possible state sequence and labels

� This makes the training bit more complicated

� Can train both models with Iterative Scaling, though 
stochastic gradient method and other numerical 
optimization methods are preferred
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HMM vs. CRF

� Both have efficient inference algorithms to find the best 
sequence

� Some differences:

� maximizing p(y|x)

� No need to model p(x)

� Allows much more set 
of features to be used

� Normalization over 
the whole sequence 

� maximizing p(x,y)

� Models p(x) as well

� Limited on types of features 
that can be used

� Per State Normalization

HMM CRF
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Relating CRF with Other Models

Figure from [1]
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Relating CRF with Other Models

Figure from [1]



13

Applications of Conditional Random Fields

� Many uses in NLP

� Noun phrase segmentation [Sha and Pereira, 2003]

� Named Entity Recognition [McCallum and Li, 2003]

� Semantic Roles [Roth and Yih, 2005]

� RNA structure alignment [Liu et. al, 2005]

� Protein structure [Liu et. al, 2005]
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Log-linear Models

Log-linear Models

Logistic Regression

/Max Ent

Maximum Entropy 

Markov Models

Conditional

Random Fields

All of these models are a type of log-linear models, there are more of them
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Log-Linear Model

� If x is any data point and y is the label, general log-
linear linear model can be described as follows

Feature

Functions

Weight for

Given feature functions

Normalization Term 

(Partition Function)
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Understanding the Equation Form

� Linear combination of features and weights
� Can be any real value

� Numerator always positive (exponential of any number is 
+ve)

� Denominator normalizes the output making it valid 
probability between 0 and 1

� Ranking of output same as ranking of linear values
� i.e. exponentials magnify the ranking difference but ranking still 

stay the same

� Why is it called log-linear?
� Remember the logistic regression derivation?
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Inference in Log-Linear Model

� Best labels for the data given the model

� Basically saying we can find the best predicted label by 

doing linear combination of features and their weights 
and searching over the all label space
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Inference in Log-Linear Model

� Best labels for the data given the model

� Basically saying we can find the best predicted label by 

doing linear combination of features and their weights 
and searching over the all label space
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Feature Functions

� Feature function can take account of relations 
between both data and label space

� Can be any real value

� Often feature functions are indicator functions such 
that they are 0 or 1 depending on absence or 

presence of the feature

� Weight of feature function captures how closely the 

given feature function is related with the given label

� f1(c,d) = { c=NN Λ curword(d)=book Λ prevword(d)=to}

� f3(c,d) = { c=VB Λ curword(d)=book Λ prevClass(d)=ADJ}
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Remember Maximum Entropy Model

� We predicted the class label given a set of features for the 

given data point

� Inference was just taking the trained weights, doing linear 

combination and finding the class with highest probability

� Find probability score for each class

� What if we have to predict a sequence of classes?

� Is this method optimal?  

p(c|x) =
exp(

∑N
i=0 λcifi)∑

c′∈C exp(
∑

N
i=0 λc′ifi)
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Thinking of Classification as Search in 

Label Space

� We can think of classification as searching the feature and 

label space to find the correct sequence of labels

� Think about binary classifier for finding the right segmentation

of a word

� Can treat as a binary classifier for individual letter

� If we believe that there is dependency between labels then 

the output label is in fact vector sequence of 0 and 1

� 2^N possible label vectors

� Cannot infer using brute force, need to search the label space 
given the features

Seg-men-tation or segment-ation ?
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HMM to Maximum Entropy Markov 

Model

� We have already seen a modeling technique which exploits 

markov assumption to search over label space : HMM

� Issue with HMM was restrictions on types of features

� We can marry the good things of both HMM and Maximum 

Entropy models

� Use Viterbi and Forward-Backward styled algorithm we learned in 
HMM

� But use the framework of Maximum Entropy for features and 
normalization

Maximum Entropy Markov Models
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MEMM

HMM

Figures from [2]
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Maximum Entropy Markov Model 

T̂ = argmaxTP (W |T )P (T )

T̂ = argmaxTP (T |W ) HMM Inference

T̂ = argmaxTP (T |W )
MEMM Inference

= argmaxT
∏
i P (ti|ti−1, wi)

= argmaxT
∏
i P (wi|ti)p(ti|ti−1)
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Transition Matrix Estimation

P (qi|qi−1, oi) = 1
Z(o,q′)exp(

∑
i wifi(o, q))

T̂ = argmaxTP (T |W )
MEMM Inference

= argmaxT
∏
i P (ti|ti−1, wi)

� Transition is dependent on the state and the feature

� These features do not have to be just word id, it can be any 
features functions 

� If q are states and o are observations we get
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Viterbi in HMM vs. MEMM

� HMM decoding:

� MEMM decoding: 

This computed in maximum entropy framework

but has markov assumption in states thus its name MEMM

vt(j) = maxNi=1vt−1(i)P (sj |si)P (ot|sj) 1 ≤ j ≤ N, 1 < t ≤ T

vt(j) = maxNi=1vt−1(i)P (sj |si, ot) 1 ≤ j ≤ N, 1 < t ≤ T
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Viterbi in MEMM

Figure from [2]
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Label Bias Problem in MEMM

� We saw that with markov assumption but with transitions 
conditioned on both state and observation where transitions 
are computed based on exponential model on state allowed 
us to do Viterbi Inference in MEMM

� There is a weakness in MEMM though

� “Label Bias Problem”

� Transitions from a given state are competing against each other 
only

� Per state normalization, i.e. sum of transition probability for any 
state has to sum to 1

� Causes bias: states with fewer arcs are preferred

� What happens if there is only one outgoing arc? Does it matter 
what the observation is?
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Label Bias Example

Even if the training data may have seen

a lot more ri example vs ro example state 1

and state 4 passes all probability mass to next state

In generative model we could have learned

state 1 generates i lot more and state 4 generates

o lot less thus preferring 1-2 path more



30

MEMMs to Conditional Random Fields

� MEMM

� We have exponential model for each state to tell us the 

conditional probability of the next states

� CRF

� No per state normalization

� Per sequence normalization
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CRF, MEMM, HMM

y1 y2

X1 X2

y3

X3

y1 y2

X1 X2

y3

X3

y1 y2

X1 X2

y3

X3

CRF MEMM

HMM

y

X1 X2 X3

Naïve Bayes



32

Conditional Random Field

Feature

Functions

Weight for

given feature function

Observation sequence

Sum over

all feature function

Sum over

all possible label sequence

Model log linear on Feature functions

Label Sequence

P (y|x;w) =

exp(

∑

j

wjFj(x, y))

∑

y′∈Y

exp(
∑

j

wjFj(x, y′)
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Feature Function

� Entire sequence of observation and label are paired

� Each feature function Fj is sum along the sentence i = 1 to n 
where n is length of the sentence

� Assuming binary class labels and a training example of length n
� sequence y can be any of the 2^n possible sequence (state space

huge)

� Computing denominator is worse as sum is across all 2^n state 
space

� How to address this?

Fj(x, y)
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Feature Function

Costly operation in CRF

We get p(y|x;w) = 1
Z(x,w)exp

∑

j

wjFj(x, y)

whereZ(x,w) =
∑

y′∈Y

exp
∑

j

wjFj(x, y′)
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Feature Function Markov Assumption

Let Fj(x, y) =
∑

i

fj(yi−1, yi, x, i)

We get p(y|x;w) = 1
Z(x,w)exp

∑

j

wjFj(x, y)

whereZ(x,w) =
∑

y′∈Y

exp
∑

j

wjFj(x, y′)
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Feature Function Markov Assumption

Let Fj(x, y) =
∑

i

fj(yi−1, yi, x, i)

We get p(y|x;w) = 1
Z(x,w)exp(

∑

i

∑

j

wjfj(yi−1, yi, x, i))

whereZ(x,w) =
∑

y′∈Y

exp(
∑

i

∑

j

wjfj(y
′
i−1, y

′
i, x, i)))
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Conditional Random Field

Feature

Functions

Weight for

given feature function

Feature function can 

access all of observation

Length of sequence 

x

Sum over

all feature function

Sum over

all possible label sequence

Model log linear on Feature functions

P (y|x;w) =

exp(

∑

i

∑

j

wjfj(yi−1, yi, x, i))

∑

y′∈Y

exp(
∑

i

∑

j

wjfj(y
′
i−1, y

′
i, x, i))
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Hyphenation Feature Function Example

� Example for hyphenation

� Two consecutive tags are not hyphens and letters are ‘th’

� If 0 means no hyphen after the letter, Positive weight means 

no hyphen after t and after h

� Can you look at multiple y beyond 2?

� How about adjacency on y?

Let Fj(x, y) =
∑

i

fj(yi−1, yi, x, i)

f18(yi−1, yi, x, i) = yi−1, yi = 00&xi−1xi = th

Sum of low level feature

function becomes a real value
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3 Problems

� Inference

� Need to compute normalization constant to 

compute probabilities

� Parameter Estimation

y∗ = argmaxyp(y|x;w)
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Inference Problem

� Inference

y∗ = argmaxyp(y|x;w)

P (y|x;w) =

exp(

∑

i

∑

j

wjfj(yi−1, yi, x, i))

∑

y′∈Y

exp(
∑

i

∑

j

wjfj(y
′
i−1, y

′
i, x, i))
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Inference in Linear Chain CRF

� We saw how to do inference in HMM and  MEMM

� We can still do Viterbi dynamic programming 

based inference
y∗ = argmaxyp(y|x;w)

= argmaxy
∑
j wjFj(x, y)

= argmaxy
∑
i gi(yi−1, yi)

wheregi(yi−1, yi) =
∑
j wjfj(yi−1, yi, x, i)

= argmaxy
∑
j wj

∑
i fj(yi−1, yi, x, i)

g function is still dependent on y(i-1) and y(i)

i as a subscript, specific g function for specific i

Maximization for specific x and w, so dropped from notation

Denominator?

What data structure to 

represent gi ?
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Score of Tag Sequence

score(y1, , yn) =
∑n
i gi(yi−1, yi)

Score of tag sequence of length n

U(k) = score of best sequence y1.. Yk
U(k,v) = score of best sequence y1 .. Yk

and yk= v
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Recurrence Relation for CRF

U(k, v) = maxy1,y2,...,yk−1 [
k−1∑

i=1

gi(yi−1, yi) + gk(yk−1, v)]

U(k, v) = maxyk−1
[U(k − 1, yk−1) + gk(yk−1, v)]

Runtime? What was runtime for

HMM viterbi?

LetU(k, v)score of best sequence from tags position 1 to K

Where tag number K needs to be v

With this definition maximization of U(k,v) is maximization over k-1 
tags because tag K is already fixed as v

U(k, v) =

maxy1,y2,...,yk−2 [
k−2∑

i=1

gi(yi−1, yi) + gk−1(yk−2, yk−1) + gk(yk−1, v)]
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Inference in CRF

� Our inference algorithm is again based on Viterbi 
algorithm

� Output transition and observation probabilities are 
not modeled separately

� Output transition dependent on the state and the 

observation as one conditional probability

� Build lattice like we did before for decoding
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Parameter Estimation for CRF

� Mostly supervised learning

� No EM like we have for HMM

� Introduction of hidden variable makes the problem 
very hard

� Can be interpreted in maximum entropy framework
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Conditional Likelihood

� Given the data we want to maximize the 
conditional likelihood 

� Like we have done previously we can set the 
derivative of the conditional likelihood function to 
zero

L(w,D) = log(
∏m
k=1 p(y

k|xk, w))

p(y|x;w) = 1
Z(x,w)exp

∑

j

wjFj(x, y)
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Taking the Gradient

Derivative w.r.t to the weight wi = ( value of feature 
function i for true y) – (average value  of feature function 
for all possible y’)

= Fj(x, y)−
1

Z(x,w)

∑
y′

∂
∂wj
exp

∑
j′ wj′Fj′(x, y

′)

= Fj(x, y)−
∑
y′ Fj(x, y

′)p(y′|x;w)

= Fj(x, y)−Ey′∼p(y′|x;w)[Fj(x, y
′)]
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Maximum Entropy Interpretation

Empirical count Predicted count

Fj(x, y)−Ey′∼p(y′|x;w)[Fj(x, y
′)]



49

Optimization: Stochastic Gradient Ascent

For all training (x,y)
For all j

Compute

End For

End For Most computationally 

expensive part

Ey′∼p(y′|x;w)[Fj(x, y
′)]

wj := wj + α(Fj(x, y)−Ey′∼p(y′|x;w)[Fj(x, y
′)])
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Optimization Methods

� Iterative Scaling 

� Gradient Descent

� Newton’s Method

� Many optimization packages are available that can 

treated as blackbox replacement

� Second order methods have shown to be faster
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General CRF

� We just showed how to do inference and training of 
linear structure CRF

� But we can add varying level of dependencies 
across states

� Training more complicated if we add more 

dependencies

� We can use more general graphical model 

approximate algorithms such as belief propagation
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General CRF

y1 y2

X1 X2

y3

X3

Linear Chain CRF
y1 y2

X1 X2

y3

X3

More General CRF

CRF can be used trees, graphs, etc but can be expensive to train the model
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CRF for Shallow Parsing

� [Sha and Pereira, 2004]

� NP chunking

� Used many overlapping 
features that took 
account of word 

interaction
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