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Topics for Today

� Logistic Regression/Maximum Entropy 

Models
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Final Project

� Intermediate Report I Grades sent out

� Intermediate Report II Oral

� Final Project Presentation Day

� December 12th, 9:30 AM to 2pm

� Wednesday

� Each team 12 min talk

� 3 min for Q&A

� CS Conference room
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Final Project Grading

� Final Project Remaining Grade – 85%

� Intermediate Report II

� 20% of 55 = 11 points 

� Final Project : Report+Presentation+Demo

� 65% of 55 = 35.75 points

� Final Project Report (30%)

� Demo (15%)

� Final Presentation (20%) 
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Intermediate Report II

� Grading based on
� Demo

� Is it working?  

� Approach 
� Is your approach well thought through

� Results
� Is the model accuracy real low?

� Discussion
� Have you thought about ways to improve the model

� Q&A
� Theory behind algorithms you have used
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HW3

� HW3 is out

� Due Nov 30th (11:59pm)

� Q1 : implementing simple example from the 

class is ok as well

� Q2 : Look at previous slides, Python code is 

already in one of the slides

� Modify to do n-gram counts

� Compute bigram probabilities
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Alignments to Phrases

� Once we get the alignments we can extract phrase pairs

� Phrase pairs are then used to compute relative frequencies 
that gives us P(e|f) and P(f|e)

1            2             3         4       5          6

La chambre bleue est très petite 

The blue room is very small
1        2          3       4       5          6

la || the

chambre bleue || blue room

bleue || blue

est tres petite || is very small

est tres || very small

chambre bleue est tres petite || blue room is very small

la chambre bleue est tres petite || the blue room is very small

Phrase Table
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Translation Features

the small house || klein haus
small house || klein haus
very small house || klein haus

How do you compute phrase translation features?
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Translation Features

� P(e|f) and P(f|e) can be estimated using Maximum 
Likelihood Estimate

� P(e|f) = count(e,f)/count(e)

� P(f|e) = count(f,e)/count(e)
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Translation Features

P(small house || klein haus)

the small house || klein haus
small house || klein haus
very small house || klein haus

count(klein haus, small house)
count(klein haus) =

= 1/3 = 0.33

0.33



11

Translation Features

� Besides P(e|f) and P(f|e) we can add many 

different features in similar framework

the small house || klein haus
small house || klein haus
very small house || klein haus
the small house || haus

0.33    1     3/2      1     1

f1, f2, f3, f4, f5

f1 = p(e|f)

f2 = p(f|e)

f3 = len(e)/len(f)

..

f5 = #(noun in e)/ #(noun in f)
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Features and Machine Translation

Find me best English translation e(1..I) for

foreign sentence f(1..J)
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Source Channel Approach
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Maximum Entropy Based Machine 

Translation

Maximum Entropy Modeling 
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Maximum Entropy Method for 

Translation
Translation probability for foreign word sequence f1 to fj is given by

above equation

We are still find argmax of e(1..I) but not using source channel approach
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Log-Linear Model
� If x is any data point and y is the label, general log-

linear linear model can be described as follows

Feature

Functions

Weight for

Given feature functions

Normalization Term 

(Partition Function)

Makes Positive



17

Understanding the Equation Form

� Linear combination of features and weights
� Can be any real value

� Numerator always positive (exponential of any number is 
+ve)

� Denominator normalizes the output making it valid 
probability between 0 and 1

� Ranking of output same as ranking of linear values
� i.e. exponentials magnify the ranking difference but ranking still 

stay the same
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Log-linear Models

Log-linear Models

Logistic Regression

/Max Ent

Maximum Entropy 

Markov Models

Conditional

Random Fields

All of these models are a type of log-linear models, there are more of them
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Direct Translation Probability
Translation probability for foreign word sequence f1 to fj is given by

above equation

The above equation is same as a general equation that defines a type

of classifiers generally known as log linear models

Look similar?

Log Linear Model
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Training Weights for Features

� How do we know the values of those 

lambdas in previous equation

� We train them in Maximum Entropy 

Framework
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Maximum Entropy Model

� Maximum Entropy Models are a type of log-linear 
models

� Maximum Entropy Model has shown to perform well 
in many NLP tasks

� POS tagging [Ratnaparkhi, A., 1996]

� Text Categorization [Nigam, K., et. al, 1999]

� Named Entity Detection [Borthwick, A, 1999]

� Parser [Charniak, E., 2000]

� Discriminative classifier

� Conditional model P(c|d) 

� Maximize conditional likelihood

� Can handle variety of features
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Naïve Bayes vs. Maximum Entropy Models

� Trained by maximizing 
likelihood of data and class

� Features are assumed 
independent

� Feature weights set 
independently

� Trained by maximizing 
conditional likelihood of 
classes

� Dependency on features taken 
account by feature weights

� Feature weights are set 
mutually

Naïve Bayes Model Maximum Entropy Model
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Entropy

� Measure of uncertainty of a distribution

� Higher uncertainty equals higher entropy

� Degree of surprise of an event

� If I see something that is highly unlikely (very low 

p(x) e.g. event that doesn’t happen a lot) then that 
carries lot more information so lower entropy

H(p) = −
∑

x

p(x)log2 p(x)

Probability
Surprise

x
px
log(1/px)

Event
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Entropy

� p(x) log p(x) � 0 as p(x)�0

� p(x) log p(x) � 0 as p(x)� 1

0 1

log(x)
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Exploring Entropy Formulation

� How much information received when observing a random 

variable ‘x’ ?

� Highly improbable event = received more information

� Highly probable event = received less information

� Need h(x) that express information content of p(x); we want

1. Monotonic function of p(x)

2. If p(x,y) = p(x). p(y) when x and y are unrelated, i.e. statistically 
independent then we want h(x,y) = h(x) + h(y) such that 
information gain by observing two unrelated events is their sum
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Exploring Entropy Formulation (cont.)

h(x) = - log2 p(x)

� What kind of h(x) satisfies two conditions mentioned 

previously

Remember logarithm function
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Entropy Example

� If X ={1, 2, 3} and p = (1/2, ¼, ¼)

= 3/2

= 1
21 +

1
42 +

1
42

= − 1
2 log

1
2 −

1
4 log

1
4 −

1
4 log

1
4

H(p) = −
∑

x

p(x)log2 p(x)
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Comparing Entropy Across Distributions

[1] Uniform distribution has higher entropy
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Maximizing Entropy

� Maximizing Entropy subject to constraints
� Lowers maximum entropy of the distribution

� Raises maximum likelihood

� Brings distribution is further away from uniform 
distribution

� Brings distribution is closer to the data 

0                0.5                  1

1

0.5

0

0                0.5                  1

Constraint P(head) = 0.3

1

0.5

0
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Maximizing Entropy

� How can we find a distribution with maximum 
entropy?

� What about maximizing entropy of a distribution with 
a set of constraints?

� What does maximizing entropy has to do with 
classification task anyway?

� Let us first look at logistic regression to understand 
this
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Remember Linear Regression

� We estimated theta by setting square loss function’s 
derivative to zero

yj = θ0 + θ1xj

yj =
∑N

i=0 θixij

N is the number of dimensions where
each input lives in 



32

Regression to Classification

� We also looked at why linear regression may not work well if ‘y’ are 
binary

� Output (-infinity to +infinity) is not limited to class labels (0 and 1)

� Assumption of noise (errors) normally distributed

� Train Regression and threshold the output

� If f(x) >= 0.7 CLASS1

� If f(x) < 0.7 CLASS2

� f(x) >= 0.5 ?

f(x)>=0.5?

Happy/Good/ClassA

Sad/Not Good/ClassB

1

Problems : 

Not robust

output –inf to +ve inf
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Ratio

� Instead of thresholding the output we can take the ratio of two 

predicted output

� Ratio is odds of predicting y=1 or y=0

� E.g. for given ‘x’ if p(y=1) = 0.8 and p(y=0) = 0.2

� Odds = 0.8/0.2 = 4

� Better?

� We can make the linear model predict odds of y=1 instead of ‘y’
itself

p(y=true|x)
p(y=false|x) =

∑N

i=0 θi xi

Not predicted y, predicting odds of y
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Log Ratio

� LHS Range?

� LHS is between 0 and infinity, we want to be able to handle –
infinity to +infinity which RHS can produce

� If we take log of LHS, it can also range between –infinity and 

+ve infinity
log( p(y=true|x)

p(y=false|x) )

log( p(y=true|x)
(1−p(y=true|x) )

p(y=true|x)
p(y=false|x) =

∑N

i=0 θi xi

logit(p(x)) = log p(x)
1−p(x)
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Logistic Regression

� Logistic Regression: A Linear Model in which we 
predict logit of probability instead of probability

log( p(y=true|x)
(1−p(y=true|x) ) =

∑N

i=0 θi × xi

log( p(y=true|x)
(1−p(y=true|x) ) = w · f
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Logistic Regression Derivation

log( p(y=true|x)
(1−p(y=true|x) ) = w · f

p(y = true|x) = exp(w · f)−p(y = true|x)exp(w · f)

p(y= true|x)+p(y= true|x)exp(w · f) = exp(w · f)

p(y = true|x) = exp(w·f)
1+exp(w·f)

p(y = true|x) = (1− p(y = true|x)exp(w · f)

p(y=true|x)
(1−p(y=true|x)) = exp(w · f)
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Logistic Regression

p(y = true|x) =
exp(

∑N
i=0 θixi)

1+exp(
∑

N
i=0 θixi)

p(y = false|x) = 1
1+exp(

∑
N
i=0

θixi)

For notation convenience for later part of the lecture replace theta 

with lambda and x with f where f is an indicator function

p(y = true|x) =
exp(

∑N
i=0 λifi)

1+exp(
∑

N
i=0 λifi)

p(y = false|x) = 1
1+exp(

∑
N
i=0

λifi)
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Logistic Regression

Dividing Numerators and denominator by exp(−
∑N

i=0 λifi)

p(y = true|x) = 1
1+exp(−

∑
N
i=0

λifi)

p(y = false|x) =
exp(−

∑N
i=0 λifi)

1+exp(−
∑

N
i=0 λifi)
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Logistic Regression

We have seen this before, remember?

Sigmoid functions we used for our Neural Networks!

Also known as logistic function, thus the name 

logistic regression

p(y = true|x) = 1
1+exp(−

∑
N
i=0

λifi)

g(x) = 1
1+e−βx

hλ(x)Let’s call                 represent p(y=true|x)
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Decision Boundary of Logistic Regression

If we predict y = 1 when hλ(x) ≥ 0.5

i.e. when λT f ≥ 0

This is saying that we will predict y=1 when logit function outputs more 

than 0.5

which happens when the linear combination of weights and features is 

greater than zero
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Example of Decision Boundary

hλ(x) = λ0 + λ1x1 + λ2x2

Assume we get lambdas to be [-3 1 1]

Y=1 if −3 + x1 + x2 ≥ 0

x1 + x2 ≥ 3

3

3

y=1

hλ(x) ≥ 0.5
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Logistic Regression Based Classification

� If we estimate the weights (Lambdas) we can classify 

between 2 classes

� How to estimate weights (Lambdas)

� We can estimate weights by maximizing (conditional) 

likelihood of data according to the model

So why did we talk all about logistic regression when 

we were trying to learn Maximum Entropy Models?

Let’s find out
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Logistic Regression for Multiple Classes

� We can also have logistic regression for multiple 
classes

� Normalization has to take account of all classes

p(c|x) =
exp(

∑N
i=0 λcifi)∑

c′∈C exp(
∑

N
i=0 λc′ifi)
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Logistic Regression for Multiple Classes

� We can also have logistic regression for multiple 
classes

� Normalization has to take account of all classes

p(c|x) =
exp(

∑N
i=0 λcifi)∑

c′∈C exp(
∑

N
i=0 λc′ifi)

This equation looks 

familiar? 
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Maximum Entropy and Logistic Regression

“Exponential Model for Multinomial Logistic Regression, when trained
according to the maximum likelihood criterion, also finds the 

Maximum Entropy Distribution subject to the constraints
from the feature function” [2]

Turns out logistic regression models also finds maximum entropy distribution!

Multinomial Logistic Regression is also known as Maximum Entropy Model 

in NLP and Speech 
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Why Maximum Entropy for NLP?

� Maximum Entropy Modeling technique is particularly very 

useful for NLP problems where we want to extract all sorts of 

features

� Distribution can be spiked for certain features for which we 

have more information

� Assume nothing for features we have not seen

� What kind of features?
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Maximum Entropy Features for NLP 

Problems

� We have seen many different types of features

� Count of words, length of docs, etc

� We can think of features as indicator functions that 
represent co-occurrence relation between input 

phenomenon and the class we are trying to predict

fi(cd) = φ(d) ∧ cd = ci
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Example: Features for POS Tagging

� f1(c,d) = { c=NN Λ curword(d)=book Λ
prevword(d)=to}

� f2(c,d) = { c=VB Λ curword(d)=book Λ
prevword(d)=to}

� f3(c,d) = { c=VB Λ curword(d)=book Λ

Λ prevClass(d)=ADJ}
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Maximum Entropy Example

NN JJ NNS VB

1/4 1/4 1/4 1/4

Add a constraint P(NN) + P(JJ) + P(NNS)  = 1

1/3 1/3 1/3 0

Add another constraint P(NN) + P(NNS)  = 8/10

4/10 2/10 4/10 0

Given Event space

Maximum Entropy Distribution
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Another Example

Example from  [2]
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Training MaxEnt

� We saw that given the features and weights 

we just need to plug them in our equation and 

we get classification probability

� Previous example:

� Given “to race” our model correctly predicted race 

is Verb with 0.8 probability

� But how do we train these weights?
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Training Weights for MaxEnt Model

� Joint Generative Models
� P(c,d) – Naïve Bayes

� Maximize joint likelihood

� Maximum Likelihood Estimation – Relative 
Frequencies

� Discriminative Models
� P(c|d) – MaxEnt

� Maximize conditional likelihood

� Conditional Maximum Likelihood Estimation – not 
as simple as relative frequencies
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Conditional Likelihood

P (C|D,λ) =
∏

(c,d)∈(C,D)

p(c|d, λ)

logP (C|D,λ) =
∑

(c,d)∈(C,D)

logp(c|d, λ)

logP (C|D, λ) =
∑

(c,d)∈(C,D)

log
exp

∑
i λifi(c, d)∑

c′ exp
∑

i λifi(c
′, d)
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Maximizing Conditional Log Likelihood

−
∑
(c,d)∈(C,D) log

∑
c′ exp

∑
i λifi(c

′, d)

logexp
∑

iλifi(c,d)logP (C|D,λ) =
∑

(c,d)∈(C,D)

Write the log likelihood in 2 separate terms
Derivative of log likelihood is sum of derivative of each term
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Maximizing Conditional Log Likelihood

−
∑
(c,d)∈(C,D) log

∑
c′ exp

∑
i λifi(c

′, d)

logexp
∑

iλifi(c,d)

∑

(c,d)∈(C,D)

fi(c, d)−
∑

(c,d)∈(C,D)

∑

c′

P (c′|d, λ)fi(c
′, d)∂log(P |C,λ)

∂λi
=

Derivative of the above term is given by

logP (C|D,λ) =
∑

(c,d)∈(C,D)
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Maximizing Conditional Log Likelihood

� Optimum parameters when empirical 

expectation equals predicted expectation

∑

(c,d)∈(C,D)

fi(c, d)−
∑

(c,d)∈(C,D)

∑

c′

P (c′|d, λ)fi(c
′, d)

Empirical count (fi, c) Predicted count (fi, λ)

∂log(P |C,λ)
∂λi

=
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Expectation of a Feature

� We can count the features from the labeled set of 
data

� Expectation of a feature given the trained model

Empirical(fi) =
∑

(c,d)∈observed(C,D) fi(c, d)

E(fi) =
∑

(c,d)∈(C,D) p(c, d)fi(c, d)
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Optimal Parameters

� Chose parameters                        to 

maximize conditional log likelihood

� We showed how to compute partial 

derivatives with respect to different 
features

� For MaxEnt model this conditional log 

likelihood surface is convex

� Find maxima by doing gradient descent

λ1, λ2, ..., λn

logP (C|D,λ) =
∑

(c,d)∈(C,D)

logp(c|d, λ)
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Finding Optimal Parameters

� Commonly numerical optimization packages

� Gradient descent

� Stochastic gradient descent

� Quasi Newton Methods

� L-BFGS

� Generalized Iterative Scaling
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Generalized Iterative Scaling

� Empirical Expectation

� Initialize m+1 lambdas to 0

� Loop Until Converged

� End loop

Ep̃(fj) =
1
N

N∑

i=1

fj(di, ci)

Ept(fj) =
1
N

N∑

i=1

K∑

k=1

P (ck|di)fj(di, ck)

λt+1j = λtj +
1
M
log(

Ep̃(fj)
Ept (fj)

)

Other numerical methods are more common
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Maximum Entropy

� We saw what entropy is 

� We want to maximize entropy

� Maximize subject to feature-based 
constraints

� Feature based constraints help us bring 
the model distribution close to empirical 
distribution (data)

� In other words it increases maximum 
likelihood of data given the model but 
makes the distribution less uniform

H

Pheads

Fair coin has the highest

entropy

H(p) = −
∑

x p(x)log2p(x)
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Constraints on a Entropy Function 

Figure below is from Klein, D. and Manning, C., Tutorial [1]
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Convexity

f(
∑

i wixi) ≥
∑

i wif(xi),
∑

i wi = 1

picture[1]
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Maximization with Constraints

maxp(x)H(p) = −
∑

x p(x)logp(x)

∑
x p(x) = 1

s.t.
∑

x p(x)fi(x) =
∑

x
˜p(x)fi(x), i = 1...N
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Solving MaxEnt

� MaxEnt is a convex optimization problem with 

concave objective function and linear 

constraints

� Solved with Lagrange multipliers
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Constraints and Langrange Multiplers

Q = 1
2 (x

2
1 + x

2
2)

Minimize

With constraint of 

2 x1 − x2 = 5
Y=(2, -1)

Qmin = 5/2
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Lagrange Multiplers

� One way to handle constraints is to use 

Lagrange Multiplers

� Each of n constraints is multiplied by new 

variable q

L(x, q) = 1
2 (x

2
1 + x

2
2) + q1(2x1 − 2x2 − 5)

3 unknowns are then identified by setting 3 partial derivatives to zero
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Lagrange Multipliers

∂L
∂q1

= 2x1 − x2 − 5 = 0

∂L
∂x1

= x1 + 2q1 = 0

Taking partial derivatives of 3 variables and setting them to zero gives

us 3 simultaneous equation. We can solve these to get the values of x1

and x2

∂L
∂x2

= x2 − q1 = 0
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Lagrange Multipliers

Substitute x1 = −2q1 and x2 = q1 in the constraints

gives us −4q1 − q1 − 5 = 0 or −5q1 = 5

hence q1 = −1

Which gives us x1 = 2 and x2 = −1

Plugging in x1and x2 in Q

We get Q(x) = 1
2 (2

2 + (−1)2) = 5
2
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Lagrange Equation for Maximum Entropy 

Model

L(p, λ) = −
∑

x p(x)logp(x) + λ0[
∑

x p(x)− 1]+
∑N

i=1 λi[
∑

x p(x)fi(x)−
∑

x
˜p(x)fi(x)]

Lagrangian gives us unconstrained 
optimization as constraints are built into the 

equation. We can now solve it by setting 

derivatives to zero
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Maximum Entropy and Logistic Regression

� This unconstrained optimization problem is a dual 

problem equivalent to estimating maximum 
likelihood of logistic regression model we saw before

Maximizing entropy subject to our constraints 
Is equivalent to

Maximum likelihood estimation over exponential family of        pλ(x)
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Language Modeling

� Isolated digits: implicit language model

� All other word sequences have probability zero

� Language models describe what word sequences the 

domain allows

� The better you can model acceptable/likely word 

sequences, or the fewer acceptable/likely word 
sequences in a domain, the better a bad acoustic 

model will look

� e.g. isolated digit recognition, yes/no recognition

11

1
)"(",

11

1
)"(",...,

11

1
)"(",

11

1
)"(" ==== ohpzeroptwoponep
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N-gram Models 

� It’s hard to compute 
p(“and nothing but the truth”)

� Decomposition using conditional probabilities can help

p(“and nothing but the truth”) = p(“and”) x 

p(“nothing”|“and”) x p(“but”|“and nothing”) x 
p(“the”|“and nothing but”) x 

p(“truth”|“and nothing but the”)
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The N-gram Approximation

� Q:  What’s a trigram? What’s an n-gram?
A:  Sequence of 3 words. Sequence of n words.

� Assume that each word depends only on the previous two 
words (or n-1 words for n-grams)

p(“and”) x p(“nothing”|“and”) 
x p(“but”|“and nothing”) x 
p(“the”|“nothing but”) x 
p(“truth”|“but the”)

p(“and nothing but the truth”) = 
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� Trigram assumption is clearly false

p(w | of the) vs. p(w | lord of the)

� Should we just make n larger?

can run into data sparseness problem

� N-grams have been the workhorse of language 
modeling for ASR over the last 30 years

� Uses almost no linguistic knowledge
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Bigram Model Example

JOHN READ MOBY DICK

MARY READ A DIFFERENT 
BOOK

SHE READ A BOOK BY CHER

JOHN READ A BOOK

2

1
)|(

2

1

)(

)(
)|(

3

2

)(

)(
)|(

1
)(

)(
)|(

3

1

)(

)(
)|(

=

=
⋅

=

=
⋅

=

=
⋅

=

==

BOOKp

Acount

BOOKAcount
ABOOKp

READcount

AREADcount
READAp

JOHNcount

READJOHNcount
JOHNREADp

count

JOHNcount
JOHNp

<

>

>
>

training data:

testing data / what’s the probability of:

36

2

2

1

2

1

3

2
1

3

1
)( =⋅⋅⋅⋅=wp
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Trigrams, cont’d

Q: How do we estimate the probabilities?

A: Get real text, and start counting…

Maximum likelihood estimate would say:

p(“the”|“nothing but”) = 
C(“nothing but the”) / C(“nothing but”)

where C is the count of that sequence in the data
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Data Sparseness

� Let’s say we estimate our language model from 
yesterday’s court proceedings

� Then, to estimate
p(“to”|“I swear”) we use
count (“I swear to”) / count (“I swear”)

� What about p(“to”|“I swerve”) ?

If no traffic incidents in yesterday’s hearing,

count(“I swerve to”) / count(“I swerve”)

= 0 if the denominator > 0, or else is undefined

Very bad if today’s case deals with a traffic incident!
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Language Model Smoothing

� How can we adjust the ML estimates to 
account to account for the effects of the 

prior distribution when data is sparse?

� Generally, we don’t actually come up 

with explicit priors, but we use it as 
justification for ad hoc methods
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Smoothing: Simple Attempts

� Add one: (V is vocabulary size)

Advantage: Simple

Disadvantage:  Works very badly

� What about delta smoothing:

A: Still bad…..

VxyC

xyzC
xyzp

+

+
≈

)(

1)(
)|(

δ

δ

VxyC

xyzC
xyzp

+

+
≈

)(

)(
)|(
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Summary

� Logistic Regression

� Maximize conditional log-likelihood to estimate parameters

� Maximum Entropy Model

� Maximize entropy with feature constraints

� Constrained maximization

� Solving for H(p) with maximum entropy is equivalent 

to maximizing conditional log-likelihood for our 
exponential model
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