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Abstract

This paper presents the theoretical foundation of a new type of constraint-based grammars,
Lexicalized Well-Founded Grammars, which are adequate for modeling human language and
are learnable. These features make the grammars suitable for developing robust and scalable
natural language understanding systems. Our grammars capture both syntax and semantics
and have two types of constraints at the rule level: one for semantic composition and one for
ontology-based semantic interpretation. We prove that these grammars can always be learned
from a small set of semantically annotated, ordered representative examples, using a relational
learning algorithm. We introduce a new semantic representation for natural language, which
is suitable for an ontology-based interpretation and allows us to learn the compositional con-
straints together with the grammar rules. Besides the learnability results, we give a principle for
grammar merging. The experiments presented in this paper show promising results for the ade-
quacy of these grammars in learning natural language. Relatively simple linguistic knowledge
is needed to build the small set of semantically annotated examples required for the grammar
induction.

Keywords Constraint-based grammar induction, inductive logic programming, ontology-based
semantic representation, natural language understanding.

1. Introduction

Computer-understanding of human language has been for a long time one of the main challenges of
artificial intelligence. Research in the area of natural language understanding has usually followed
two mutually exclusive paths: deep, rule-based, linguistically motivated approaches and shallower,
machine learning approaches. The former has focused on developing broad coverage grammars able
to capture both syntax and semantics, complex lexicons, and complex modules for deep semantic
interpretation. However, these lexicons and grammars have been hand-crafted, very hard to scale-
up, and involved long time effort by large teams of linguists and computational linguists (e.g., LKB
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(Copestake, 1999), ALE (Carpenter & Penn, 1999), XTAG (Paroubek, Schabes, & Joshi, 1992)).
Machine learning approaches, on the other hand, have been applied to restricted domains (e.g., air
travel domain (Miller, Bobrow, Ingria, & Schwartz, 1994; Macherey, Och, & Ney, 2001)) or tasks
(e.g., information extraction (Cardie, 1997; Jones, Ghani, Mitchell, & Riloff, 2003), and acquisition
of semantic lexicons (Siskind, 2000; Thompson & Mooney, 2003)).

In order to bridge the gap between deep language processing and machine learning, current
research focuses on building large, richer treebanks, annotated with both syntactic and semantic
information. On the one hand, there are PropBank (Kingsbury, Palmer, & Marcus, 2002), and
FrameNet (Baker, Fillmore, & Lowe, 1998). These resources have led to advances in applying
machine learning methods for the task of semantic role labeling, which can be regarded as a first step
towards deeper language understanding (Gildea & Jurafsky, 2002; Chen & Rambow, 2003; Carreras
& Marquez, 2004). On the other hand, there are resources such as Redwoods (Oepen, Flickinger,
Toutanova, & Manning, 2002), whose goal is to build treebanks for deep linguistics frameworks
like Head-Driven Phrase Structure Grammars (Pollard & Sag, 1994). The HPSG formalism has
been widely used in deep, linguistically motivated language understanding systems. The Redwoods
treebank has been used for stochastic modeling of a hand-built HPSG grammar, English Resource
Grammar (Flickinger, 2000), to reduce its ambiguity. However, when applied to real corpora, the
coverage of these hand-built grammars is low.

Even though building such large, complex annotated corpora implies arguably less work than
building the grammar, it is not a simple task. Moreover, the complex representations of exist-
ing grammar formalisms used in language understanding (e.g., HPSG, LFG) pose challenges to
learning methods. Thus, research on grammar learning has focused mainly on syntax, using both
supervised and unsupervised methods (Klein & Manning, 2001; Collins, 1999; Osborne, 1999).
Few efforts have been made for inducing grammars that capture both form and meaning, such as
Attribute Grammars (Starkie, 2002), and Categorial Grammars (Retore & Bonato, 2001; Dudau-
Sofronie, Tellier, & Tommasi, 2001). However, the semantics of Categorial Grammars adheres to
the truth-conditional theory of semantics based onλ− calculus, which has been recently argued to
be unsuitable both from linguistic and computational considerations (Dalrymple, 1999; Copestake,
Lascarides, & Flickinger, 2001).

In this paper we discuss a type of constraint-based grammars,Lexicalized Well-Founded Gram-
mars, and present several new theoretical properties for their learnability and a principle for their
merging. These grammars facilitate a new approach to natural language understanding, which inte-
grates deep semantic analysis and relational learning.

Lexicalized Well-Founded Grammars, introduced in our previous work (Muresan, Muresan,
& Klavans, 2004; Muresan, 2004), are constraint-based grammars, which associate a syntactic-
semantic representation to each string, and have two types of constraints at the rule level — one for
semantic composition and one for ontology-based interpretation. The presence of the ontology at
the grammar rule level provides access to meaning during parsing and during grammar rule learning.
This design follows theories of human language acquisition, which argue that access to meaning is
needed for language learning (Pinker, 1989; Culicover & Nowak, 2003). Lexicalized Well-Founded
Grammars allow a deep semantic analysis of natural language.

Relational rule learning was discouraged by Cohen’s negative results regarding the PAC-learnability
of recursive logic programs (Cohen, 1995). Cohen showed that even two-clause linear recursive
logic programs are not PAC-learnable from random examples, in the absence of an oracle. In (Mure-
san, Muresan, & Potolea, 2002) we showed that introducing an order among examples makes the
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learning process tractable. Thus, complex logic programs can be learned bottom-up from ordered
representative examples, based only on the declaration of predicate calling graph and the predicate
arguments data flow. Using this relational learning method, in (Muresan et al., 2004) we presented
a framework for inducing Lexicalized Well-Founded Grammars from a small set of ordered repre-
sentative examples. These examples are the simplest pairs of strings and their syntactic-semantic
representations, which are generated by the grammar. The ordering of examples allows for an
efficient bottom-up relational learning of the grammar rules and their compositional semantic con-
straints, simulating child language learning from simple constructions to complex ones (Pinker,
1989). The small size of the representative example set is an important practical advantage, since
semantic annotations are not readily available and are hard to build for a variety of domains.

In this paper, we define a new type of Lexicalized Well-Founded Grammars, calledNormal-
ized Lexicalized Well-Founded Grammarsthat are conform to a sublanguage. We report two major
theoretical results. First, we show that for these grammars the sublanguage mediates the recipro-
cal generation of representative examples and grammar rules. Thus, on the one hand, given the
grammar and the sublanguage, the representative examples are generated. On the other hand, we
prove a learnability theorem, which states that a Normalized Lexicalized Well-Founded Grammar
can always be learned from the set of representative examples and a sublanguage that is conform
to the grammar. The sublanguage is used to reduce the grammar semantics, which is used as per-
formance criterion in the Inverse Entailment learning method (Muggleton, 1995; Muresan et al.,
2002). Second, we give a grammar merging principle that shows how several grammars can be
merged in a sound way, by the union of their representative examples, their sublanguages and the
subsequent use of the grammar learning algorithm. We also show that grammar merging does not
consist merely in the union of their production rules. This theoretical result addresses one of the
major concerns regarding grammar development and engineering: how can grammar modularity be
defined formally, so that different fragments of grammars can be combined together in a sound way
(Wintner, 2002).

The experiments presented in this paper show promising results for these grammars’ adequacy
in learning natural language. At the same time, relatively simple linguistic knowledge is required to
build the small set of semantically annotated examples.

The rest of the paper is organized as follows. In Section 2, we define formally the Well-Founded
Grammars (WFGs). In Section 3, we present the Lexicalized Well-Founded Grammars that aug-
ment the WFGs with semantics. Here, we first describe a new semantic representation — semantic
molecule – and our approach for semantic composition and semantic interpretation modeled as con-
straints at the grammar rule level. Then, we define this new type of constraint-based grammars,
including the notion of derivation in LWFGs, grammar semantics and reversible, robust parsing.
In Section 4, we introduce the notion of representative examples associated with a grammar and a
sublanguage, and we present an efficient algorithm for their generation. In Section 5, we discuss
the learnability of Normalized Lexicalized Well-Founded Grammars, including the impact of their
properties for learnability, several assumptions of these grammars, the relational learning algorithm
for grammar induction and the learnability theorem. We also present an iterative algorithm for
grammar revision. In Section 6, we present the grammar merging principle, and in Section 7 we
describe our results and the discussion of linguistic relevance. We conclude with a summary of the
paper, and future work.
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2. Well-Founded Grammars

Well-Founded Grammars were introduced by Muresan, Muresan and Klavans (2004). These gram-
mars extend Context-Free Grammars by introducing a partial ordering relation among the nonter-
minals. This allows the ordering of the strings derived from the grammar and thus an ordering of
the grammar rules. This property is meant to facilitate the bottom-up induction of these grammars.

Definition 1. A Well-Founded Grammar (WFG)is a 5-tupleG = 〈Σ,NG, RG, PG, S〉 where

(i) Σ is a finite set of terminal symbols.

(ii) NG is a finite set of nonterminal symbols,NG ∩ Σ = ∅.1

(iii) RG is a partial ordering relation,�, among the nonterminals.

(iv) PG is a set of production rules, where each rule is an element ofNG × {NG ∪ Σ}+ . The
rule (A, (B1, . . . , Bn)) is written A → B1, . . . , Bn. Sometimes, for brevity, we denote a
rule by A → β, whereβ = B1, . . . , Bn . The set of production rules has the following
characteristics:

• There are three types of rules: ordered non-recursive rules, ordered recursive rules, and
non-ordered rules. We call a rule(A→ B1, . . . , Bn) ∈ PG, anordered rule, if ∀Bi, we
haveA � Bi.

• Every nonterminal symbol is a left-hand side in at least one ordered non-recursive rule.

• The empty string cannot be derived from any nonterminal symbol.

(v) S ∈ NG is the start nonterminal symbol and∀A ∈ NG, S � A 2.

Definition 2. Given a Well-Founded GrammarG = 〈Σ,NG, RG, PG, S〉, theground derivation3,
∗⇒, is defined as:A→w

A
∗⇒w

(if A is a grammar preterminal, i.e.,w ∈ Σ), andBi
∗⇒wi, i=1,...,n, A→B1,...,Bn

A
∗⇒w

,

wherew = w1 · · ·wn.

Thelanguageof a grammarG isL(G) = {w|w ∈ Σ+, S
∗⇒ w}. The set of all strings generated

by a grammarG is Ls(G) = {w|w ∈ Σ+,∃A ∈ NG, A
∗⇒ w}. We have thatL(G) ⊆ Ls(G).

Extending the notation, given a grammarG, the set of strings generated bya nonterminalA of the
grammarG is Ls(A) = {w|w ∈ Σ+, A ∈ NG, A

∗⇒ w}, and the set of strings generated bya rule
A→ β of the grammarG is Ls(A→ β) = {w|w ∈ Σ+, (A→ β) ∗⇒ w}4 .

Every Context-Free Grammar,G = 〈Σ,NG, PG, S〉 can be efficiently tested to see whether it
is a Well-Founded Grammar, by Algorithm 1. This algorithm assigns one and only one levell to
every nonterminalA, A ∈ N l

G, and returns the set of partial ordered pairs of nonterminals,RG. We

1. We use lower-case letters for terminal symbols and upper-case letters for nonterminal symbols.
2. We used the same notation for the reflexive, transitive closure of�.
3. The ground derivation (“reduction” in (Wintner, 1999)) can be viewed as the bottom-up counterpart of the usual

derivation.

4. We use the notation(A → β)
∗⇒ w to denote the derivationA

∗⇒ w obtained using the ruleA → β in the last
derivation step.
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denote byN l
G the set of nonterminals assigned to the levell, with l ≥ 1. The set of terminals are

assigned to level0, denoted byN0
G to keep an analogous notation. The efficiency of the algorithm

is O(|PG|2 ∗ |β|) 5.

Algorithm 1 : Well FoundedGrammar(G = 〈Σ,NG, PG, S〉)
RG ← ∅, N0

G ← Σ, P ← PG, V ← ∅, l← 0
while P 6= ∅ andN l

G 6= ∅ do
V ← V ∪N l

G, l ← l + 1, N l
G ← ∅

foreach (A→ β) ∈ P andβ ∈ V + do
P ← P − {A→ β}
if A 6∈ V then

N l
G ← N l

G ∪ {A}
foreach (B ∈ NG andB ∈ β) do

RG ← RG ∪ {A � B}
else

foreach (B ∈ NG andB ∈ β) and not(A � B or B � A) do
if A ∈ N i

G andB ∈ N j
G andi ≥ j then

RG ← RG ∪ {A � B}
else

RG ← RG ∪ {B � A}

if P = ∅ then returnRG elsereturn∅

A nonterminal is assigned to a level, when it appears on the left-hand side of an ordered non-
recursive rule (Figure 1). The algorithm guarantees that ifA ∈ N i

G, B ∈ N j
G, i ≥ j, and if there

exists a direct relation betweenA andB, then this relation isA � B. This property states that if
a direct relation exists, the nonterminals on the “upper” levels are bigger than the nonterminals on
the “lower” levels. For the nonterminals on the same leveli, A,B,C ∈ N i

G, the partial ordering
relation, if it exists, depends on the order of processing the grammar rules.

Lemma 1. A Context-Free GrammarG = 〈Σ,NG, PG, S〉 is a Well-Founded GrammarG =
〈Σ,NG, RG, PG, S〉 iff RG 6= ∅ is returned by Algorithm 1.

Proof. The proof is immediate.

Example. Figure 1 gives an example of a small grammar for noun phrases and the iterative steps
of Algorithm 1. As can be seen, in this grammar,A1 → Adj, N1 → Noun, N2 → Det N1
are examples of ordered non-recursive rules;N1 → A1 N1 is an example of an ordered recursive
rule, whileN2 → N2 Rc1 is a non-ordered rule, sinceRc1 is a bigger nonterminal thanN2, i.e.,
Rc1 � N2 (see Figure 1(b)). We useRc to denote relative clauses.

By introducing a partial ordering relation among nonterminals, the Well-Founded Grammars
can provide a partial ordering among the strings derived by these grammars (see Section 4).

5. We use the same notation| · | for the number of set elements and for the string length.
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A1→ Adj
N1→ Noun
N1→ A1 N1
N2→ Det N1
N2→ N2 Rc1
V 1→ Tv
Rc1→ Rpro V 1 N2

PG l N l
G RG

(grammar rules) (level) (nonterminal sets) (partial ordering relation)
1 {Adj, Noun, T v,

Det, Rpro}
A1→ Adj A1 � Adj
N1→ Noun 2 {A1, N1, V 1} N1 � Noun
V 1→ Tv V 1 � Tv
N1→ A1 N1 N1 � A1, N1 � N1
N2→ Det N1 3 {N2} N2 � Det, N2 � N1
Rc1→ Rpro V 1 N2 4 {Rc1} Rc1 � Rpro,

Rc1 � V 1, Rc1 � N2
N2→ N2 Rc1 N2 � N2

(a) (b)

Figure 1: (a) Grammar,G; (b) Iterative steps for the WellFoundedGrammar(G) algorithm

3. Augmenting Well-Founded Grammars with Semantics

Augmenting a grammar with semantics requires an adequate semantic representation, and an ad-
equate grammar formalism that allows us to associates structures to nonterminals and to add con-
straints at the grammar rule level.

In the remainder of this section we present our new syntactic-semantic representation, our ap-
proach for encoding the semantic composition and the semantic interpretation as constraints at the
grammar rule level, and our new type of constraint-based grammars,Lexicalized Well-Founded
Grammars.

3.1 Semantic Molecule

The underlying design criteria for our representation are the need to: 1) explicitly encode the infor-
mation for semantic composition (i.e., how the meaning of the whole is derived from the meaning
of its parts), 2) capture the semantics of a natural language expression, so that it is suitable for an
ontology-based interpretation, 3) use simple representation devices so that they can be integrated in
a relational learning algorithm, and 4) link the semantic construction to other grammatical aspects,
most notably syntax. We introduce a new representation, calledsemantic molecule, which satisfies
the above considerations.

Definition 3. A semantic moleculeassociated with a natural language stringw, is a syntactic-
semantic representation,w′ = h ./ b, where:

• h (head) encodes syntactic/compositional information, acting as valence for molecule com-
position.

• b (body) is the actual semantic representation of the stringw.

Figure 2 shows examples of semantic molecules for an adjective (I-1), a noun (I-2) and a noun
phrase (II). The representations associated with the lexical itemsw ∈ Σ are calledelementary se-
mantic molecules(I), while the representations built by the combination of others are calledderived
semantic molecules(II). We will describe the composition operation,◦, which combines several
semantic molecules to form a derived semantic molecule in the next section.
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I. Elementary Semantic Molecules

I− 1 (tall/adj)′ = h1 ./ b1

=


 cat adj
head X1

mod X2


 ./ [X1.isa = tall, X2.Y = X1]

h1.cat = adj

h1.head = X1

h1.mod = X2

Ah1 = {cat, head, mod}
var(h1) = {X1, X2}
var(b1) = {X1, X2, Y }

I− 2 (man/n)′ = h2 ./ b2

=


 cat n

nr sg
head X3


 ./ [X3.isa = man]

h2.cat = n

h2.nr = sg

h2.head = X3

Ah2 = {cat, nr, head}
var(h2) = {X3}, var(b2) = {X3}

II. Derived Semantic Molecule

(tall man)′ = h ./ b = (tall)′ ◦ (man)′

=


 cat n

nr sg
head X


 ./ [X1.isa = tall, X.Y = X1, X.isa = man]

h.cat = n

h.nr = sg

h.head = X

Ah = {cat, nr, head}
var(h) = {X},
var(b) = {X1, X, Y }

III. Constraint Grammar Rule Associated with the Derived Semantic Molecule

N(w, h ./ b)→ Adj(w1, h1 ./ b1), N(w2, h2 ./ b2) :
w = w1w2, b = [b1, b2]ν, Φcomp(h, h1, h2), Φonto(b)

Φcomp(h, h1, h2) = (h ∪ h1 ∪ h2)µν =




h.cat = n,
h.head = h1.mod,
h.head = h2.head,
h.nr = h2.nr,
h1.cat = adj,
h2.cat = n




ν = {X2/X, X3/X}

µ = {h.nr = sg/h.nr = X4, h2.nr = sg/h2.nr = X4}

Figure 2: Augmenting grammars with semantics. Examples of two elementary semantic molecules for an adjective
(I-1: (tall)′) and a noun (I-2:(man)′), and a derived semantic molecule obtained by combining them (II:
(tall man)′). In (III) is given the constraint grammar rule used to derive the stringw = tall man together
with its semantic representationw′ = (tall man)′. The compositional semantic constraint,Φcomp, together
with the variable and contextual constant substitutions,ν, andµ, are also shown. TheXs andY s denote
logical variables, while lower-case letters denote constants. In the case of semantic molecules,w′ = h ./ b,
the lower-case letters indicate they are grounded (i.e., they are directly associated with a ground string,w),
even if they contain logical variables.
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The head,h, of a semantic molecule is represented as a one level feature structure (i.e., feature
values are atomic). In Figure 2 the heads are shown as attribute-value matrices (AVMs). LetAh be
the set of attributes of a molecule head,h. Each molecule has at least two attributes encoding the
syntactic category of the associated string,cat, and the head of the string,head. For adjectives, for
example, besides these two attributes, there is an attribute,mod, which specifies the index of the
modified noun (I-1). This information is necessary for combining an adjective and a noun to obtain
a noun phrase (e.g., “tall man”). For nouns, we can have other syntactic information (e.g.,nr) that
will be used for agreement (e.g., number agreement between the subject and the main verb of a
sentence). All these sets of attributes are finite and are known a priori for each syntactic category.
The elements ofh are denoted ash.a = val, wherea ∈ Ah andval is either a constant or a logical
variable (see I-1 and I-2). For exampleh.cat = adj, andh.cat = n denote the syntactic categories
of the semantic molecules for “tall” (adjective) and “man” (noun), respectively. The set of logical
variables of the head,h, is denoted byvar(h).

The body,b, of a semantic molecule is a flat representation (i.e., no embedding of predicates is
allowed, as in Minimal Recursion Semantics (Copestake, Flickinger, & Sag, 1999)), called Canon-
ical Logical Form (CLF). It is built using a set of atomic predicates (APs) based on the concept of
attribute-value pair:

〈CLF〉 −→ 〈AP〉(1)

| 〈CLF〉 lop 〈CLF〉
〈AP〉 −→ 〈concept〉 . 〈attr〉= 〈concept〉

The lop is a logical operator, whileconceptis a frame in the ontology andattr is a slot of the
frame, encoding either a property or a relation. As seen in Figure 2 (I-1 and I-2), our semantic
representation is influenced by the ontology-based approach to semantic interpretation. Thus, CLF
can be seen as an Ontology Query Language. For example, in our framework, the meaning of a noun
is the corresponding basic concept in the ontology (X3.isa = man). The meaning of an adjective
is the concept corresponding to a value of a property (slot) of another concept denoted by a noun
(X1.isa = tall,X2.Y = X1). The set of logical variables of the body,b, are denoted byvar(b).
For adjective,var(b) = {X1,X2, Y }, whereX2 will be bound to the head of the modified noun
after the composition operation (e.g.,X2 will be the same as the headX3 of the noun “man” after
the composition that derives “tall man”), while the variableY will be instantiated after the semantic
interpretation on the ontology (e.g., for the noun phrase “tall man”,Y = height). The semantic
composition and the semantic interpretation are discussed in the next section.

3.2 Semantic Composition and Semantic Interpretation as Grammar Constraints

A requirement for computational semantic frameworks, besides linguistic adequacy and computa-
tional tractability, is grammar compatibility (Copestake et al., 1999). This refers to the ability of
the semantic construction to be connected to other grammatical aspects, mainly syntax. Constraint-
based grammar frameworks have been widely use to capture both aspects of syntax and seman-
tics. In particular, the Definite Clause Grammar formalism (Pereira & Warren, 1980) extends the
Context-Free Grammars in three important ways: 1) it allows for context-dependency in a grammar;
2) it allows us to build arbitrary structures during parsing, in a way that is not constrained by the
recursive structure of the grammar (such structures can provide themeaningof the string); and 3)
it allows extra conditions to be included in the grammar rules, that can be seen as constraints for
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parsing. The first and second mechanism are provided in the DCG formalism by augmenting the
nonterminals with extra arguments. Thus, DCG is a suitable formalism for our purpose, since it
allows us to augment the nonterminals with pairs of strings and theirsemantic molecules, and to
introduce two types of constraints at the grammar rule level — one for semantic composition (de-
fines how the meaning of a natural language expression is composed from the meaning of its parts)
and one for ontology-based semantic interpretation (validates the semantic constructions at the rule
level).

Definition 4. A generalized syntagma, σ = (w,w′), is a pair of a natural language string and its
semantic molecule, and represents any unit that can be derived from a grammar. It refers to words,
phrases, clauses and sentences.

Thus, the nonterminals of a constraint grammar rule are augmented with generalized syntagmas,
the grammar rules having the following form:6

A(w,

w′︷ ︸︸ ︷
h ./ b )→ B1(w1,

w′
1︷ ︸︸ ︷

h1 ./ b1 ), ..., Bn(wn,

w′
n︷ ︸︸ ︷

hn ./ bn ) :
w = w1 · · ·wn, b = [b1, . . . , bn]ν, Φcomp(h, h1, ..., hn)︸ ︷︷ ︸

w′=w′
1◦···◦w′

n

, Φonto(b)

where:

• A,B1, . . . , Bn - grammar nonterminals, which represent syntactic categories (A = h.cat, Bi =
hi.cat).

• w,w1, . . . , wn - natural language strings.

• w′ = h ./ b,w′
1 = h1 ./ b1, . . . , w

′
n = hn ./ bn - semantic molecules corresponding to the

natural language stringsw,w1, ..., andwn, respectively.

• : - delimiter for constraints.

• ◦ - composition of semantic molecules:b = [b1, . . . , bn]ν,Φcomp(h, h1, ..., hn), where
Φcomp(h, h1, . . . , hn) = [(h ∪ ⋃

1≤i≤n
hi)µ]ν (see Section 3.2.1).

• ν, µ - variable and contextual constant substitutions (see Section 3.2.1).

• Φonto(b) - ontology-based semantic interpretation constraint applied only to the body of the
semantic molecule corresponding to the left-hand side nonterminal (see Section 3.2.2).

As can be seen, both the strings and their semantic molecules are attached to nonterminals and
each grammar rule is enhanced with the following constraints: the string composition as concate-
nation of strings (w = w1 · · ·wn), the semantic composition of molecules given by “◦” (w′ =
w′

1 ◦ · · · ◦ w′
n = [b = [b1, . . . , bn]ν,Φcomp(h, h1, ..., hn)]) and the ontology-based semantic inter-

pretation constraint,Φonto(b). An example of a grammar rule for noun phrases that contain nouns
modified by adjectives is given in Figure 2.

6. For the clarity of the presentation we keep the below notation and not the DCG notation. In our implementation, both
the concatenation of strings,w = w1 · · ·wn, and the concatenation of their semantic representations,b = b1 · · · bn

are implemented as Prolog difference lists (see examples of grammar rules given in Appendix A and B).
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3.2.1 SEMANTIC COMPOSITION CONSTRAINTS

The semantic composition,◦, defines how the representation of a natural language expression (cor-
responding to the left-hand side nonterminal,A) is composed from the representations of its parts:

(2) w′ = h ./ b = (w1 · · ·wn)′ = w′
1 ◦ · · · ◦ w′

n

= (h1 ./ b1) ◦ · · · ◦ (hn ./ bn)
= h1 ◦ · · · ◦ hn ./ b1, . . . , bn

The composition affects only the molecule heads and it is realized by a set of constraints denoted
by Φcomp(h, h1, ..., hn). The body parts are connected through conjunction (b = b1, . . . , bn). From
now on, when referring to semantic composition we mean bothΦcomp and the body conjunction,
while when referring tocompositional semantic constraintswe mean justΦcomp.

This set of constraints,Φcomp(h, h1, ..., hn), is encoded as a system of equations, (3a), (3b) and
will be learned together with the grammar rule during the induction process.

(3a)

{
h.a = constant
h.a = hi.ai

}
where

1 ≤i ≤ n

a ∈ Ah, ai ∈ Ahi

(3b)

{
hi.ai = constant
hi.ai = hj .aj

}
where

1 ≤ i, j ≤ n, i 6= j

ai ∈ Ahi
, aj ∈ Ahj

In Figure 2 (II), we give an example of semantic composition for the noun phrase “tall man”,
obtained by composing the semantic molecules of the adjective “tall” (I-1) and the noun “man” (I-2).
The grammar rule associated with this derived molecule, together with the compositional semantic
constraints,Φcomp(h, h1, h2), are also given (III). As a consequence of variable bindings due to
head composition, some variables from the bodies of the semantic molecules are bound as well
(e.g., the variablesX2 andX3 are bound). It can be seen in this example that in the representation
of “tall man” the variableY is still uninstantiated. This variable will become instantiated after the
ontology-based interpretation, performed byΦonto.

The semantic composition operation has four properties:

P1. Body variable specialization: b = (b1, . . . , bn)ν. This means thatb is the concatenation of
b1, . . . bn after the application of theν substitution, which is a variable substitution{X1/X, . . . }
embedded inΦcomp (see Figure 2). All variables inν are also inh or hi, 1 ≤ i ≤ n.

P2. Head constant generalization:Φcomp = [(h ∪ ⋃
1≤i≤n

hi)µ]ν. This means thatΦcomp is

the union of the semantic molecule heads to which a substitutionµ for contextual general-
ization of constants{ci/Y, . . . } is applied, followed by the substitutionν. The contextual
substitution,µ, is specific toAh, which is dependent on the nonterminal category7. The
global substitutionθ = µν is given as a subsystem of equations included in the constraint

7. Using theµ substitution for contextual constant generalization, the need of multiple examples forΦcomp generaliza-
tion can be reduced or even avoided (e.g., for cases such as syntactic agreement).
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Φcomp(h, h1, . . . , hn), which is the system of equations given in (3a) and (3b). In the exam-
ple presented in Figure 2 we have that:

θ = µν =




h.head = h1.mod = X,
h.head = h2.head = X,
h.nr = h2.nr = X4




P3. The Determinacy of the compositional semantic constraints:On the one hand,Φcomp and
the generalized syntagmas corresponding to the nonterminals from the right-hand side of the
grammar rule,(wi, hi ./ bi), completely determine the generalized syntagma corresponding
to the left-hand side nonterminal,(w, h ./ b). On the other hand,(w, h ./ b) and(wi, hi ./ bi)
completely determineΦcomp. The latter is relevant when learningΦcomp together with the
grammar rule. Besides,Φcomp allows for parsing reversibility (see Section 3.3.3).

P4. Rule generalization: If Φa′ ,Φb,Φa are compositional constraints that obey the above three
properties and useθa′ , θb, θa as the corresponding substitutions, then the generalization rule:
A→α β γ : Φa′ B→β : Φb

A→α B γ : Φa
, guarantees thatθa′ ⊆ θbθa andLσ(A→ α Bγ : Φa) ⊇ Lσ(A→

αβγ : Φa′).

3.2.2 ONTOLOGY-BASED SEMANTIC INTERPRETATION CONSTRAINT

The Φonto(b) constraint is applied only to the body of the semantic molecule corresponding to
the left-hand side nonterminal, and provides an ontology-based semantic interpretation at the rule
level. This constraint is used both during learning and during language analysis. It is built using
a meta-interpreter withfreeze(Saraswat, 1989) (Muresan, Potolea, & Muresan, 1998). This meta-
interpreter assures that the atomic predicates, APs, (see Eq. (1)), of the molecule body are not
evaluated (i.e., they are postponed) until at least one variable becomes instantiated. This technique
allows a nondeterministic efficient search in the ontology. The meta-interpreter search strategy is
independent of the actual representation of the ontology, and therefore behaves as an interface to
any ontology at the level of atomic predicates. The ontology-based interpretation is not done during
the composition operation, but afterwards. Thus, for example, the head of the noun phrase “tall
man” (Figure 2) does not need to store the slotY , a fact that allows us to use flat feature structures
to represent the head of the semantic molecule. At this point, whenΦonto is called, the variable
Y becomes instantiated with values taken from the ontology (e.g.,height). The ontology-based
semantic interpretation constraint is important for the disambiguation required for some linguistic
phenomena (e.g., prepositional phrase attachment, coordinations), and for semantic interpretation,
including challenging phenomena, such as prepositions and noun-noun compounds.

A detailed description of the grammar constraints will be given in a forthcoming paper.

3.3 Lexicalized Well-Founded Grammars

Both in formal and linguistic theories of grammars, lexicalization is an important factor. Lexicalized
grammars are finitely ambiguous and thus decidable (Joshi & Schabes, 1997). In our framework,
we define a new type of constraint-based grammars, calledLexicalized Well-Founded Grammars,
which augment the Well-Founded Grammars with semantics. A sublanguage of these grammars
consists of pairs of strings and their semantic molecules, which we defined asgeneralized syntagmas
(σ = (w,w′), see Definition 4).
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Definition 5. A Lexicalized Well-Founded Grammar (LWFG)is a 6-tuple,G = 〈Σ,Σ′,NG, RG, PG, S〉,
where:

(i) Σ is a finite set of terminal symbols.

(ii) Σ′ is a finite set of elementary semantic molecules corresponding to the set of terminal sym-
bols. That is,w′ ∈ Σ′ iff w ∈ Σ, whereσ = (w,w′).

(iii) NG is a finite set of nonterminal symbols,NG ∩ Σ = ∅.
(iv) RG is a partial ordering relation,�, among the nonterminals.

(v) PG is a set of constraint production rules. A constraint rule is a triple(A, (B1, . . . , Bn),Φ),
written A(σ) → B1(σ1), . . . , Bn(σn) : Φ(σ̄), where σ̄ = (σ, σ1, ..., σn) such thatσ =
(w,w′), σi = (wi, wi

′), 1 ≤ i ≤ n,w = w1 · · ·wn, w′ = w′
1 ◦ · · · ◦ w′

n. Sometimes, for
brevity, we denote a rule byA→ β : Φ, whereβ = B1, . . . , Bn, and the arguments are vari-
ables8. For preterminals, we use either theA(σ)→, or A→ σ notation. These rules have the
following properties:9

• There are three types of rules: ordered non-recursive rules, ordered recursive rules, and
non-ordered rules.

• Every nonterminal symbol is a left-hand side in at least one ordered non-recursive rule.

• The empty string cannot be derived from any nonterminal symbol.

• The rule nonterminals are augmented with generalized syntagmas,σ, (i.e., pairs of
strings and their semantic molecules).

• The rules are enriched with constraints,Φ(σ̄). There are two types of constraints: one
for semantic composition and one for ontology-based semantic interpretation, as de-
scribed in detail in Section 3.2.

• The rules (the representation and the constraints) assure grammar reversibility (see Sec-
tion 3.3.3).

(vi) S ∈ NG is the start nonterminal symbol and∀A ∈ NG, S � A.

(vii) In a Lexicalized Well-Founded Grammar all substringsw, derived from a nonterminalA have
the same category of their semantic molecules, given by the name of the nonterminal. That
is, h.cat = A, wherew′ = h ./ b is the semantic molecule ofw.

3.3.1 DERIVATION IN LWFGS

Definition 6. Given a Lexicalized Well-Founded GrammarG, theground syntagma derivation, ’
∗⇒’

10, is defined as:A→σ

A
∗⇒σ

(if σ = (w,w′), w ∈ Σ, w′ ∈ Σ′, i.e. A is a preterminal), and

Bi
∗⇒σi, i=1,...,n, A(σ)→B1(σ1),...,Bn(σn) : Φ(σ̄), σ̄=(σ,σ1,...,σn)

A
∗⇒σ

8. When the arguments of the nonterminal are given, we understood them as being particular syntagmas attached to
nonterminals.

9. The first three are the properties of the Well-Founded Grammars, while the last three are specific to the Lexicalized
Well-Founded Grammars.

10. We use the notation
∗G⇒ when the context requires the explicit mention of the grammar.

12



As can be noticed, in our framework, the grammar derives both the strings and their semantic
molecules, i.e., the grammar derives generalized syntagmas. The ground syntagma derivation,A

∗⇒
σ, is equivalent to DCG provability, i.e.,PG ` A(σ).

The languageof a grammarG is the set of all syntagmas generated from the start symbolS,
i.e.,L(G) = {σ|σ = (w,w′), w ∈ Σ+, S

∗⇒ σ}. Theset of all syntagmasgenerated bya grammar
G is Lσ(G) = {σ|σ = (w,w′), w ∈ Σ+,∃A ∈ NG, A

∗⇒ σ}. For a grammarG, let E be a
sublanguage, such thatE ⊆ L(G), and letEσ ⊆ Lσ(G) be the set of subsyntagmas corresponding
to the sublanguageE. We have thatL(G) ⊆ Lσ(G) andE ⊆ Eσ

11.
Extending the notation, given a grammarG, the set of syntagmas generated bya nonterminal

A of the grammarG is Lσ(A) = {σ|σ = (w,w′), w ∈ Σ+, A ∈ NG, A
∗⇒ σ}, and the set

of syntagmas generated bya rule A → β : Φ of the grammarG is Lσ(A → β : Φ) = {σ|σ =
(w,w′), w ∈ Σ+, (A→ β : Φ) ∗⇒ σ}12.

3.3.2 SEMANTICS OF LWFGS

Operational Semantics. Following the insight of “parsing as deduction” (Shieber, Schabes, &
Pereira, 1995), a deductive system for parsing Context-Free Grammars can serve as a method for
defining their operational semantics. Moreover, it has been shown that the operational semantics of a
CFG corresponds to the language of the grammar (Wintner, 1999). Analogously, in our framework,
the operational semantics of a Lexicalized Well-Founded GrammarG is the set of all syntagmas
generated by the grammar,Lσ(G). That isPG ` A(σ) iff σ ∈ Lσ(G).

Denotational Semantics. As discussed in literature (Pereira & Shieber, 1984; Wintner, 1999), the
denotational semantics of a grammar is defined through a fixpoint of a transformational operator
associated with the grammar.

Definition 7. Let I ⊆ Lσ(G) be a subset of syntagmas generated by the grammarG. We define
the immediate syntagma derivation operatorTG : 2Lσ(G) → 2Lσ(G), s.t.:TG(I) = {σ ∈ Lσ(G)| if
(A(σ) → B1(σ1), . . . , Bn(σn) : Φ(σ̄)) ∈ PG ∧ Bi

∗⇒ σi ∧ σi ∈ I thenA
∗⇒ σ}. If we denote

TG ↑ 0 = ∅ andTG ↑ (i + 1) = TG(TG ↑ i), then we have that fori = 1, TG ↑ 1 = TG(∅) =
{σ ∈ Lσ(G)|A ∈ NG, A→ σ}. This corresponds to the syntagmas derived from preterminals, i.e.,
σ = (w,w′), wherew′ are elementary semantic molecules,w′ ∈ Σ′.

TG is analogous with the immediate consequence operator of definite logic programs (i.e.,
no negation) (van Emden & Kowalski, 1976; Denecker, Bruynooghe, & Marek, 2001).TG is
monotonous and hence the least fixpoint always exists (Tarski, 1955). This least fixpoint is unique,
as for definite logic programs (van Emden & Kowalski, 1976). We havelfp(TG) = TG ↑ ω, where
ω is the minimum limit ordinal. Thus, the denotational semantics of a grammarG can be seen
as the least fixpoint of the immediate syntagma derivation operator. An assumption for learning
Lexicalized-Well Founded Grammars is that the rules corresponding to grammar preterminals are
given: A→ σ, i.e.,TG(∅) is given (see assumption A3, Section 5.1).

11. In the remainder of this paper we will use the termsublanguageEσ to refer to the set of subsyntagmas corresponding
to the sublanguageE.

12. We use the notation(A → β : Φ)
∗⇒ σ to denote the derivationA

∗⇒ σ obtained using the ruleA → β : Φ in the
last derivation step.
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(wij , w
′
ij) (wkl, w

′
kl)

(w,w′)

Figure 3: Robust parsing: returns all the chunks(wij , w
′
ij), (wkl, w

′
kl) of a given syntagma(w,w′).

As in the case of definite logic programs, the denotational semantics is equivalent with the
operational one, i.e.,Lσ(G) = lfp(TG) .

Definition 8. Based on the immediate syntagma derivation operator,TG, we can define theground
derivation length (gdl)for syntagmas,gdl(σ), and theminimum ground derivation lengthfor gram-
mar rules,mgdl(A→ β : Φ):

gdl(σ) = min
σ∈TG↑i

(i)

mgdl(A→ β : Φ) = min
σ∈Lσ(A→β : Φ)

(gdl(σ))

3.3.3 REVERSIBLE ROBUST PARSING OFLWFGS

In our framework, the ground syntagma derivation is performed by a robust, bottom-up active chart
parser (Kay, 1973). We use the term “robust” to convey that the parsing mechanism returns all the
chunks, not only the full parses of a string (see Figure 3). The robust parser used in our framework
is reversible. Informally, a reversible parser is a parser that can both parse (i.e., given a natural lan-
guage string obtain its semantic representation) and generate (i.e., given the semantic representation
obtain the natural language string). The semantics of our robust, bottom-up, reversible parser is
given by the two definitions presented below.

Let’s consider(w,w′) ∈ Eσ ⊆ Lσ(G) a syntagma derived by a grammarG, such thatw =
w1 · · ·wn is a string,w′ = h ./ b is its semantic molecule, andb = b1 · · · bn is the string semantic
representation.

Definition 9. We define the set of syntagmasparsedby the robust parser by:
Lσ(w) = {σ|σ = (wij, w

′
ij), wij = wiwi+1 · · ·wj , 1 ≤ i ≤ j ≤ n, ∃A ∈ NG, A

∗⇒ σ}
Definition 10. We define the set of syntagmasgeneratedby the robust parser by:Lσ(b) = {σ|
σ = (wij , w′

ij), w′
ij = hij ./ bij, bij = bibi+1 · · · bj, 1 ≤ i ≤ j ≤ n, ∃A ∈ NG, A

∗⇒ σ}
For all syntagmas,σ ∈ Lσ(w), or σ ∈ Lσ(b), the robust parser returns all rulesA → β : Φ,

such thatA→ β : Φ ∗⇒ σ, as well as the syntagma ground derivation length,gdl(σ). In general, for
a given syntagmaσ = (w, h ./ b) we may have thatLσ(w) 6= Lσ(b), due to semantic ambiguity

14



(one string has many representations) or paraphrasing (many strings have the same representation),
even for unambiguous LWFGs, defined in the next section (some examples are given in Appendix
C).

4. Representative Examples

Any Lexicalized Well-Founded GrammarG induces a partial ordering on any generated sublan-
guage ofsyntagmas, Eσ ⊆ Lσ(G). To show this, we need to introduce the notion of syntagma
equivalence classes. The equivalence classes of syntagmas, eqclass(σ), are defined as pairs of
nonterminals,(C,A). A lexicographic ordering,�lex, is assumed for(C,A) pairs. We add two
symbolso andρ to the set of nonterminals,NG, i.e., N †

G = NG ∪ {o, ρ}, such thato ≺ ρ ≺ A,

∀A ∈ NG. Also, we denote byfN (r ∗⇒ σ) the set of nonterminals that belong to the parse tree of
r

∗⇒ σ, wherefN : PG ×Eσ → NG, r ∈ PG, σ ∈ Eσ (see Figure 4).

Definition 11. A LWFG, G, is unambiguousif ∀σ ∈ Lσ(G) there is one and only one ruleA →
β : Φ ∗⇒ σ 13.

The equivalence classes of a sublanguageEσ of an unambiguous LWFG,G, are computed by
Algorithm 2.

Algorithm 2 : SyntagmaEquivalenceClasses(Eσ , G)

foreach (Ci, Ai) ∈ NG ×N †
G do

EquivalenceClass((Ci, Ai))← ∅
foreach σi ∈ Eσ do

(k, gdl)← eq class (σi)
EquivalenceClass(k)← EquivalenceClass(k) ∪ {(σi, gdl)}

TopologicalSort(EquivalenceClass(k), Esort)
returnEsort

Procedure eq class( σi)

r ← (Ai → β : Φ) s.t.Ai → β : Φ ∗⇒ σi /*given by the robust parser */
iσ ← gdl(σi) /*given by the robust parser */
Ci ←Max Nonterminal(fN (r ∗⇒ σi)− {Ai} ) /*given by the robust parser */
if Ai � Ci andCi 6� Ai then k ← (Ai, o)1

else ifAi � Ci then k ← (Ai, ρ)
elsek ← (Ci, Ai)

k ← max{k, max
σj⊂σi

(eq class(σj))}2

return (k, iσ)

For each syntagmaσi ∈ Eσ we choose the nonterminalAi s.t. Ai → β : Φ ∗⇒ σi. The
equivalence class of each subsyntagmaσj ⊂ σi is computed. LetCi be the biggest nonterminal

13. Unambiguity is relative to syntagmas and not to language strings, which can be ambiguous. In the case of chains of
unary branching rules the equivalent syntagmas of the same string must have different categories. More details in
Section 5.1
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σi

σj

Ai

Aj

Ci

fN (Ai → β : Φ ∗⇒ σi)

Figure 4: Syntagma partial ordering:σi � σj.

of the parsing subtree rooted atAi, except the rootAi (Figure 4). For all the rules for whichσi is
minimum, i.e,gdl(σi) = mgdl(Ai → β : Φ), we have three cases: if the ruleAi → β : Φ ∗⇒ σi is
ordered, non-recursive, thenCi ≺ Ai; if the rule is ordered, recursive, thenCi = Ai; and if the rule
is non-ordered thenCi � Ai . The equivalence class of the minimum syntagmaσi, eq class(σi), is
computed at step 1 as: (Ai, o) for an ordered, non-recursive rule;(Ai, ρ) for an ordered, recursive
rule; and(Ci, Ai), for a non-ordered rule. For non-minimum syntagmas, the equivalence class may
be changed at step 2.

Thus, the equivalence classes introduce a partial ordering relation among the syntagmas of the
sublanguage:σi � σj iff eq class(σi) �lex eq class(σj). Algorithm 2 returns the topologically
sorted setEsort of syntagmasσi, based on the partial ordering relation and the syntagma’s ground
derivation length,gdl(σi) 14: σm ≥ ... ≥ σi ≥ ... ≥ σ0. The algorithm is polynomial in|Eσ|
and|σ|. The procedureeq class is efficiently performed by a bottom-up active chart parser (Kay,
1973).

Lemma 2. Algorithm 2 assures that any syntagmaσi generated by an unambiguous LWFG,G,
has the equivalence class greater than or equal with its subsyntagmasσj. That isσi � σj for all
σj ⊂ σi. Moreover, in the totally ordered setEsort returned by Algorithm 2, we have thatσi > σj .

Proof. The propertyσi � σj is guaranteed by the step 2 of Procedure eqclass, while property
σi > σj is guaranteed by the topological sorting ofEsort, wheregdl(σi) > gdl(σj).

The topologically sorted set of syntagmas enables us to compute the representative examples of
an unambiguous Lexicalized Well-Founded Grammar.

Definition 12. A set of syntagmasEG
R ⊆ Lσ(G) is calledrepresentative example setof an unam-

biguous LWFG,G, iff for each rule(A → β : Φ) ∈ PG there is a unique syntagmaσ ∈ EG
R s.t.

gdl(σ) = mgdl(A→ β : Φ).

From this definition it is straightforward that|EG
R | = |PG|. EG

R contains the most simple
syntagmas ground derived from the grammarG, and covers all the grammar rules.

Definition 13. Let G be an unambiguous Lexicalized Well-Founded Grammar. A sublanguageEσ

is calledcompletew.r.t the grammarG if it covers all grammar rules. That is,∀G− with PG− ⊂ PG,

14. Inside the same equivalence class the total ordering is done based ongdl(σi). Moreover, ifσ corresponds to the
left-hand side nonterminal of a grammar rule, thenσ > σi, ∀σi on the right-hand side.
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we have thatEσ ⊆ Lσ(G) ∧ Eσ 6⊆ Lσ(G−). The grammarG is called theminimal grammarthat
coversEσ.

The representative example setEG
R of an unambiguous LWFGG is complete w.r.t the grammar

G, because it covers all grammar rules. Given a sublanguageEσ of an unambiguous LWFGG, such
thatEG

R ⊆ Eσ ⊆ Lσ(G), Algorithm 4 15 computes iteratively the totally ordered set of grammar
rulesPGr from whichEσ ground derives, together with the totally ordered representative example
set,EGr

R . At the beginning of each iteration,σ is the minimum syntagma of the totally ordered set
Esort = Eσ, which is still uncovered by the grammarGr. The robust parser returns the unique rule
r from whichσ is ground derived, in the unambiguous grammarG. At the end of each iteration,Gr

is enriched withr, while σ is added toEGr
R . The syntagmas covered byGr at this point (including

σ) are deleted fromEsort. The ordering ofEsort assures thatgdl(σ) = mgdl(r).

Algorithm 4 : Find RepresentativeExamples(Eσ , G)
Esort ← SyntagmaEquivalenceClasses(Eσ , G) /*Eσ ⊆ Lσ(G) */
EGr

R ← ∅ , PGr ← ∅
k = 0
repeat

k ← k + 1
σ ← ExtractMin(Esort)
r ← (A→ β : Φ) ∈ PG s.t.A→ β : Φ ∗G⇒ σ /*given by the robust parser */1

PGr ← PGr ∪ {(r, k)}2

EGr

R ← EGr

R ∪ {(σ, k)}
Esort ← Esort − Lσ(Gr) /*σ ∈ Lσ(Gr) */

until Esort = ∅
return (EGr

R , PGr )

Theorem 1 (Representative Examples Theorem).Given an unambiguous Lexicalized Well-Founded
GrammarG and a sublanguageEσ s.t.EG

R ⊆ Eσ ⊆ Lσ(G), the FindRepresentativeExamples al-
gorithm generates in polynomial time the totally ordered representative example set,EGr

R , together
with the associated totally ordered grammar rule setPGr that coversEσ, such thatEGr

R = EG
R and

PGr = PG. We use the notation(G,Eσ) 4−→ (EGr
R , Gr).

Proof. At step 1 the following properties hold:

(i) ∃!r ∈ PG s.t. r
∗G⇒ σ (sinceσ ∈ Eσ ⊆ Lσ(G) andG is unambiguous)

(ii) σ 6∈ Lσ(Gr) (since otherwiseσ would have been previously deleted fromEsort)

(iii) ∃!ri ∈ PGr s.t. ri
∗Gr⇒ σi for all σi ⊂ σ (from Lemma 2 it follows that for allσi ⊂ σ, σi < σ

and thus they were previously deleted fromEsort. This implies thatσi ∈ Lσ(Gr))

(iv) r 6∈ PGr (We assume the contrary. By (iii), ifr ∈ PGr , it follows thatr
∗Gr⇒ σ. This implies

thatσ ∈ Lσ(Gr) which contradicts (ii) )

15. Algorithm 4 can be also used for sublanguagesEσ that are not complete w.r.t. the grammarG. In this case,Gr,
which is the minimal grammar that coversEσ, is different fromG.
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student (N1, o) N1 → Noun
solved (V1, o) V1 → Tv
smart student (N1, ρ) N1 → A1 N1
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the student who solved the quiz(Rc1, N2) N2 → N2 Rc1

(a) (b)

Figure 5: (a) Parse tree ; (b) Results of Algorithm 4

In conclusion, at step 1,r is a new rule fromPG and thusσ is the minimum syntagma in

Esort such thatr
∗G⇒ σ. This implies thatmgdl(r) = gdl(σ), because by hypothesis we have that

EG
R ⊆ Eσ. At step 2,PGr is enhanced with the new ruler and its indexk, while EGr

R is enhanced
with the minimum syntagmaσ that ground derives from it, and the same indexk. As r ∈ PGr , it

follows thatr
∗Gr⇒ σ (by property (iii)). Therefore,σ ∈ Lσ(Gr) is deleted fromEsort. It follows

that Algorithm 4 ends withEsort = ∅, which implies thatEσ ⊆ Lσ(Gr). The returnedEGr
R is the

totally ordered representative example set of the minimal grammarGr that covers the sublanguage
Eσ, andPGr is the totally ordered set of grammar rules. SinceEσ is complete w.r.t.G it follows
thatPGr = PG andEGr

R = EG
R . It is straightforward that the algorithm is polynomial in|Eσ| and

|σ|.
The above theorem states that for a sublanguageEσ complete w.r.t. an unambiguous LWFGG,

such thatEG
R ⊆ Eσ, Algorithm 4 returns the totally ordered representative example setEGr

R of the
grammarG, together with the totally ordered grammar rule setPGr (this is a consequence of the
well-foundness of the grammar nonterminal set). The small size ofEGr

R (i.e., equal to the size of the
grammar) is an important feature, since the representative example set will be used as a semantic
treebank for the grammar induction. Moreover, the total order thatEGr

R provides to the grammar
rules is important since it allows a bottom-up induction of the grammar (see Section 5 and Table 1).

In the remainder of the paper we will use the notationER when the grammar is clearly under-

stood from context, and for Algorithm 4 the notation(G,Eσ) 4−→ (ER, G).

Example. Figure 5(b) shows the results of Algorithm 4 given the sublanguage,Eσ, of the noun
phrase “the smart student who solved the quiz”, and the grammarG in Figure 1(a). Figure 5(a)
shows the corresponding parse tree. For simplicity, we show only the strings without their semantic
molecules.

5. Learnability of Lexicalized Well-Founded Grammars

In our previous work (Muresan et al., 2004), we stated the Grammar Induction Problem as follows:
given a sublanguageEσ ⊆ Lσ(G) of an unknown Lexicalized Well-Founded GrammarG, together
with its set of representative examplesER, ER ⊆ Eσ, learn a grammarG′ such thatEσ ⊆ L(G′)∩
L(G). In this paper, we prove a much stronger theorem. We show that given certain assumptions
for both the grammarG and the sublanguageEσ we have thatG′ = G (see Theorem 2).
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5.1 Assumptions and Properties of Lexicalized Well-Founded Grammars

A 1. A property of Lexicalized Well-Founded Grammars (see Definition 5, (vii)) is that the category
of a nonterminal is the name of the nonterminal:∀A ∈ NG we havehA.cat = A. As a consequence,
for the unary branching rules,A → B : Φ, whereA,B ∈ NG, the syntagmas which are ground-
derived fromA → B : Φ ∗⇒ σA andB

∗⇒ σB have the same stringw and the same semantic
representationb, but have different valenceshA 6= hB . Thus we can define the equivalence of two
syntagmas and set of syntagmas:

(i) Two syntagmasσ1 = (w1, h1 ./ b1) andσ2 = (w2, h2 ./ b2) are equivalent,σ1 ≡ σ2, iff
w1 = w2 ∧ b1 = b2

(ii) Two sets of syntagmasLσ1 andLσ2 are equivalent,Lσ1 ≡ Lσ2, iff
(∀σ1 ∈ Lσ1 ∃σ2 ∈ Lσ2 s.t. σ1 ≡ σ2) ∧ (∀σ2 ∈ Lσ2 ∃σ1 ∈ Lσ1 s.t. σ1 ≡ σ2)

Thus for unary branching rules, we have thatLσ(A → B : Φ) ≡ Lσ(B) (i.e., they differ just by
their valence, including their categories:hA.cat 6= hB .cat).

A 2. Considering the DCG-style formalism of Lexicalized Well-Founded Grammars, we assume
that all the arguments of the nonterminals are variables, i.e., they are not instantiated with a par-
ticular value. This means that the right-hand side of all grammar rules cannot contain terminals
(except for preterminals). This gives a syntactic overgeneralization, remaining to obtain a semantic
specialization through the ontology-based interpretation,Φonto.

A 3. An assumption for learning Lexicalized-Well Founded Grammars is that the rules correspond-
ing to the grammar preterminals are given:A→ σ, i.e.,TG(∅) is given (see denotational semantics,
Section 3.3.2). This property imposes a refinement of the LWFG definition (Definition 5), requiring
thatβ ∈ N+

G , and notβ ∈ {NG ∪Σ}+, for the rules that have nonterminals other than preterminals
as their left-hand side.

As we saw in Section 4, we consider only unambiguous LWFGs. Two points should be made:

(i) Unambiguity refers to syntagmas and not to natural language expressions (strings). Two
syntagmasσ1 = (w1, h1 ./ b1) andσ2 = (w2, h2 ./ b2) are equal, (σ1 = σ2), iff w1 = w2 ∧
h1 = h2∧b1 = b2. For example the sentence “I saw the man with a telescope” is ambiguous at
the string level (PP attachment ambiguity), but it is unambiguous if we consider the syntagmas
associated with it (σ1, σ2 respectively), sinceb1 6= b2 (in b1 the PP is the adjunct of the
verb “saw”, while inb2 the PP post-modifies the noun “man”). Thus,Eσ is unambiguous
sinceσ1 is derived from a single rule, andσ2 is derived from another rule, even if the string
corresponding to these two syntagmas is ambiguous. The same reasoning stands for the
unary branching rules discussed above, since the syntagmas differ by their category (thus the
semantic molecules associated with the strings differ by their heads this time). For examples
the string “John” has two syntagmas associated with it:σ1 = (john, [cat : pn, head : X] ./
[X.name = john]) andσ2 = (john, [cat : n, head : X] ./ [X.name = john]), with
h1 6= h2, and thusσ1 6= σ2. Thus, even if the string alone would be derived from two rules,
one forPN , and another forN (we mentioned before that the category gives the name of the
nonterminal),σ1 is derived only from the rule corresponding toPN andσ2 only from the
rule corresponding toN (see also the examples given in Appendix C).
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(ii) Unambiguity refers to syntagmas (a.k.a. representations) and not to interpreted natural lan-
guage expressions. This means that a syntagma derived from a single rule can have many
interpretations. For examples(bone knife, [cat : n, ...] ./ [X1.isa = bone,X2.Y = X1,
X2.isa = knife]) has two interpretations (i.e., two values for the variableY : “made of” and
“purpose” given byΦonto). But it is unambiguous as representation, being derived from a
single rule (noun compound rule in this case). In this paper we will not consider the interpre-
tation ambiguity that is handled by theΦonto constraint, which nondeterministically returns
all interpretations.

Definition 14. A Lexicalized Well-Founded GrammarG is nonredundantiff it does not contain
equivalent nonterminals or rules, i.e.,Ai 6= Aj iff Lσ(Ai) 6= Lσ(Aj), andA→ βi : Φi 6= A→
βj : Φj iff Lσ(A→ βi : Φi) 6= Lσ(A→ βj : Φj), respectively.16

Lemma 3. An unambiguous LWFGG is nonredundant.

Proof. The proof is immediate.
A key concept for proving the grammar learnability (see Sections 5.2 and 5.3) is the reduced

grammar semantics defined below.

Definition 15. Given a LWFG,G and a sublanguageEσ ⊆ Lσ(G), we callS(G) = Lσ(G) ∩ Eσ

the semantics of the grammarG reduced to the sublanguageEσ. Given a grammar ruler ∈ PG, we
call S(r) = Lσ(r) ∩ Eσ the semantics of the grammar ruler reduced to the sublanguageEσ.

Definition 16. A chain is a set of ordered unary branching rules:{Bk → Bk−1, . . . , B2 → B1}
such thatLσ(Bk) ⊃ Lσ(Bk → Bk−1) ≡ Lσ(Bk−1) ⊃ · · · ⊃ Lσ(B2 → B1) ≡ Lσ(B1) 17.
A chain setfor a nonterminalBi, 1 ≤ i ≤ k, is chs(Bi) = {Bk, . . . , B1}. A grammar rule
r+ = (A → β+ : Φ+) is ageneralized ruleof a grammar ruler = (A → β : Φ), if β+ is formed
by substituting a nonterminalBi in β by a nonterminalBi

+ if ∃Bi
+ ∈ chs(Bi) ∧ Bi

+ � Bi. A
grammar ruler− = (A→ β− : Φ−) is aspecialized ruleof a grammar ruler = (A→ β : Φ), if β−

is formed by substituting a nonterminalBi in β by a nonterminalBi
− if ∃Bi

− ∈ chs(Bi)∧Bi
− ≺

Bi. We call a LWFG,G, general enoughw.r.t. a sublanguageEσ, if for all generalized grammar
rules we haveS(r+) = S(r). We call a sublanguageEσ rich enoughw.r.t a LWFG,G, if for all
specialized grammar rules we haveS(r−) ⊂ S(r).

The general enough property of the grammar, and the rich enough property of the sublanguage
used to reduce the grammar semantics, allow the rule generalization during grammar learning.

Definition 17 (Normalized). A Lexicalized Well-Founded GrammarG is callednormalized(NL-
WFG) if for all grammar rules we have that|β| is minim, i.e.,∀A → β : Φ, @ a ruleA′ → β′ : Φ′

with (β′ ⊂ β) ∧ (|β′| > 1).

The above mentioned definitions and assumptions allow us to introduce a new type of Normal-
ized Lexicalized Well-Founded GrammarG that isconformto a sublanguageEσ.

16. The grammar cannot contain unused rules sinceS � A,∀A ∈ NG (see Definition 5, (vi)). Also, every nonterminal
symbol is a left-hand side in at least one rule (see Definition 5, (v)).

17. For simplicity, we use the notationBk → Bk−1 for the ordered unary branching rulesBk(σk) →
Bk−1(σk−1) : Φk(σ̄), whereBk � Bk−1, and thusσk � σk−1 even if σk ≡ σk−1. We have that∀i, j, i 6=
j, Lσ(Bi) 6≡ Lσ(Bj).
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Definition 18. A Normalized Lexicalized Well-Founded GrammarG is conformw.r.t. a sublan-
guageEσ ⊆ Lσ(G) iff G is unambiguous and general enough w.r.t.Eσ, andEσ is complete and
rich enough w.r.t.G.

Lemma 4. Given a Normalized Lexicalized Well-Founded Grammar,G conform toEσ, the order
of nonterminals in any given chain maximizes the reduced grammar semanticsS(G).

Proof. Let’s consider the chainchs(B1) = {Bk, . . . , B1}, where∀i, j, 1 ≤ i, j ≤ k, i 6= j we have
thatBi 6= Bj . If we switch nonterminalsBj andBi, then grammarG becomes grammarG∗:

G :: Bk → . . . Bj+1 → Bj Bj → Bj−1 . . . Bi+1 → Bi Bi → Bi−1 . . . → B1

G∗ :: Bk → . . . Bj+1 → Bi Bi → Bj−1 . . . Bi+1 → Bj Bj → Bi−1 . . . → B1

with the following change of rules:

G rule G∗ rule

(4a)

{
Bj+1 → Bj

Bj → Bj−1
becomes specialized

Bj+1 → Bi

Bj → Bi−1

(4b)

{
Bi+1 → Bi

Bi → Bi−1
becomes generalized

Bi+1 → Bj

Bi → Bj−1

The first two rules (4a) are specialized rules and the last two rules (4b) are generalized rules,
sinceBj � Bi, andBj−1 � Bi−1. In the grammarG ∪ G∗, for the first two rules we have that
S(G∗ rule) ⊂ S(G rule) (Eσ is rich enough w.r.t.G), while for the last two rules we have that
S(G∗ rule) = S(G rule) (G is general enough w.r.tEσ). It follows that for the grammarG∗ we
have thatS(G∗) ⊂ S(G). This means that the original order maximizes the cardinality of the set
S(G) = Lσ(G) ∩ Eσ.

A 4. In order to prove the learnability theorem for grammar induction (see Section 5.3) we assume
our target grammar to be a NLWFG conform w.r.t a sublanguageEσ.

The NLWFGs are unambiguous, and thus, during the generation of the representative examples,
ER, of a grammarG, from a sublanguageEσ, s.t. ER ⊆ Eσ ⊆ Lσ(G) (Algorithm 4, Theorem
1), each exampleσi has a unique ruler associated with it. Moreover,mgdl(r) = gdl(σi), i.e.,σi

is the syntagma with the minimum ground derivation length, which is derived fromr. Since the
representative examples are ordered, this implies that they induce an order on the grammar rules. In
Figure 6, theith step of Algorithm 4 is given, which shows how theith representative example is
generated together with the rule from which it is derived. The ruler = Ai → β : Φ is determined
from PG andσi, and then added toPGr . SinceG is normalized and conform w.r.t.Eσ (assumption
A4), it follows that the ruler cannot be further generalized. For all nonterminalsBj ∈ β that
belongs to the chainchs(Bj), we have the following property:Bj is the minimum nonterminal in
the chainchs(Bj) that maximizes the reduced rule semanticsS(r). This means thatr is general
enough w.r.tEσ. The following must be noticed: given the assumptions A1, A2, A3, and A4, the
ith rule, having the above property, can be generated, based only on the representative exampleσi,
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Figure 6: Stepi in Algorithm 4. The lines in bold show that the rule associated with the minimum
representative exampleσi is determined byPG, and thatσi belongs toLσ(Gri), which is
deleted from the sublanguageEσ.

the firsti−1 rules ofPGr and the sublanguageEσ. This means that the grammarGr can be learned
bottom-up, i.e., theith rule can be learned after the firsti − 1 rules are learned (Figure 8). The
learning algorithm is presented in Section 5.2, and the learnability theorem in Section 5.3.

For a Normalized Lexicalized Well-Founded Grammar,G, conform to a set of syntagmas,Eσ,
we have that for each equivalence class(Ci, Ai), the class(Ai, o), as well as the class(Ai, ρ)
(when it exists) are generated using the Algorithm 2. Since(Ai, o) � (Ai, ρ) � (Ci, Ai), for each
nonterminalAi, the learning algorithm will learn first the ordered non-recursive rules (shown in
Figure 7), then the ordered recursive rules and last the non-ordered rules (see Algorithm 5). In the
absence of this ordering, the learning machinery might need theory revision steps (see Algorithm
7).

Table 1 presents a summary of the main properties of Normalized Lexicalized Well-Founded
Grammars and their consequences for learning. The first property, well-foundness of the grammar
nonterminal set, allows for the total ordering of the grammar rule set, and thus a bottom-up induc-
tion of the grammar. This implication is shown in Figure 7, where it can be seen that the rules
corresponding to preterminals are not learned (assumption A3), while all the other rules are learned
bottom-up. The second and the third properties assure the termination condition for learning. The
fourth property states that the categorycat, given in the current representative example from which
the rule is learned, provides the learner with the name of the predicate (i.e., the name of the left-hand
side nonterminal). The fifth property shows which learning paradigm is suitable: Inductive Logic
Programming based on Inverse Entailment (Muggleton, 1995), using as performance criterion the
reduced grammar semantics,S(G). The sixth property allows us to efficiently learn complex rules
(see Section 5.2, (Muresan et al., 2002)). Learning from a small number of examples has practical
importance since semantic annotations are not readily available and are hard to build for a variety
of domains. The last property allows us to learn only from positive data, which is essential, given
that negative evidence is rarely available in language learning.
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No Properties of NLWFGs Consequences for Learning
1 The set of grammar nonterminals is well

founded
Bottom-up induction of the grammar

2 Every nonterminal is a left-hand side in at
least one ordered non-recursive rule

3 The empty stringε cannot be derived from
any nonterminal symbol

Termination condition for induction18

4 All syntagmasσ, derived from a nontermi-
nal A, have the same category of their se-
mantic molecule (h.cat)

Predicate invention for induction

5 Ground syntagma derivationA
∗⇒ σ Grammar-provabilityK ∧ PG ` A(σ)

6 Ordered representative examples Small semantic treebank for grammar in-
duction

7 G conform to the sublanguageEσ Learnability only from positive examples

Table 1: Properties of NLWFGs and their implications for learning

(Algorithm 5)

Bottom−up
learned rules

Preterminal rules are not learned

l+1

l

1 A→ σ

A→ β : Φ

Σ

Σ′

...

Figure 7: Nonterminal levels. Preterminals are on level 1 and their rules are not learned.

5.2 Relational Learning Algorithm

Most commonly, research in machine learning has focused on learning classification functions from
data represented as vectors of attributes and their values (a.k.a, attribute-value representation). Even
though this research has its own merits, there are more complex problems that require more ex-
pressive representations as well as the use of background knowledge during the learning process.
Inductive Logic Programming (ILP), which is a class of relational learning, embodies both these
characteristics (Muggleton & De Raedt, 1994; De Raedt, 1996; Lloyd, 2003). ILP methods have
been used in a variety of applications for natural language processing(Cussens & Dˇzeroski, 2000)
and relational data mining, including applications for bioinformatics (Dˇzeroski & Lavrač, 2001).

Our learning algorithm for grammar induction is based on our previous work (Muresan et al.,
2002) and belongs to the class of Inductive Logic Programming methods (ILP), based on Inverse
Entailment (Muggleton, 1995). Unlike existing relational learning methods that use randomly-

18. For all the rules, ifσ corresponds to the left-hand nonterminal, thenσ > σi,∀σi in the right-hand side, including
chains (see footnote 14, 17).
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selected examples and for which the class of efficiently learnable rules is very limited (Cohen,
1995), our algorithm learns from an ordered set of representative examples, allowing a polynomial
efficiency for more complex rules. The size of this set is small and thus our algorithm is able to
learn, where no large annotated treebanks can be easily built.

ILP methods have the ability to use background knowledge during learning. For our task, we
use background knowledgeK that contains: 1) the previously learned grammar, 2) the previously
learned compositional semantic constraints, 3) the ontology, 4) the lexicon, which specifies for each
word its part of speech, as well as the semantic information given as elementary semantic molecule,
and 5) a reversible robust parser as innate inference engine.

The learning engine uses two sets of examples at different stages. First, the cover set algorithm
is based only on the representative example set,ER, which is semantically annotated (pairs of
strings and their semantic molecules; see Appendix A and B for examples). During the generation
of the final hypothesis, a second setEσ is used for reducing the grammar semantics. The reduced
grammar semantics is used in our Inverse Entailment learning method as the performance criterion
in choosing the best rule. A characteristic of this set is that the examples can be just bracketed if this
weakly annotation is enough to assure unambiguity. We denote these positive examples byE+=Eσ.

Algorithm 5 describes the constraint-based grammar induction based only on positive examples.
This algorithm is a refinement of our algorithm given in (Muresan et al., 2004), as a consequence
of the refinement of the Lexicalized Well-Founded Grammars introduced in this paper (i.e., normal-
ized, conform).

Algorithm 5 : ConstraintGrammarInduction(ER , Eσ ,K)

PG′ ← ∅
repeat

σ ← Extract Min(ER)
(A→ β : Φ, Chs)← GenerateRule(σ,G′, Eσ,K)
PG′ ← PG′ ∪ {A→ β : Φ}

until ER = ∅
returnPG′

Procedure Generate Rule( σ,G′, Eσ,K)
σ = (w, h ./ b)
w ← min(w1 . . . wn) s.tb = (b1, . . . , bn)ν, wherew = w1 . . . wn, (wj , hj ./ bj) ∈ Lσ(w),1

1 ≤ j ≤ n /*n is minimum number of chunks;Lσ(w) is generated by robust parsing */
chs(j) = {Bj|σj ≡ (wj , hj ./ bj), Bj

∗⇒ σj}, 1 ≤ j ≤ n /*by robust parsing */2

rmax ← (A→ B1
+, . . . , Bn

+ : Φ+) whereBj
+ = max(chs(j)) with generalized arguments3

r ← (A→ B1, . . . , Bn : Φ), whereBj = min(chs(j)) s.t. S(r) = S(rmax), and
Φcomp(h, h1, ..., hn) = [(h ∪ ⋃

1≤i≤n

hi)µ]ν /*determinacy property (P3) sec. 3.2.1 */

if n > 1 then return(r, ∅)
elsereturn(r, chs(1))

For each representative exampleσ ∈ ER, a cover set algorithm generates the corresponding rule
(GenerateRule) after which the rule together with the learned compositional semantic constraints
are added to the background knowledgeK, which contains the previously learned grammarG′, and

24



the process continues iteratively until all the representative examples are covered. By the assumption
A3, the rules corresponding to preterminals are not learned. They are generated from the lexicon
and are given in the background knowledgeK (see also Figure 7).

In step 1 of the GenerateRule procedure, the robust parser generates the minimum number of
chunks that coverσ (starting from the stringw of σ) 19. In step 2, for each chunkwj , the robust
parser determineschs(j), i.e., the set of nonterminals from whichσj = (wj , w

′
j) is ground-derived

(Figure 8). In step 3, the rulermax is generated such that its left-hand side nonterminal is determined
from the syntagma category,h.cat = A (see property A1) and the arguments of each nonterminal
B+

j from its right-hand side are generalized (see assumption A2). Then, the minimumBj ∈ chs(j)
is chosen for the learned ruler, such that it has the same semantics as the rulermax formed based
on the maximumB+

j ∈ chs(j) (see assumption A4). Therefore, in our Inverse Entailment learning
method, the reduced grammar semantics is used as the performance criterion for selecting the final
hypothesisr. The rulermax is the most general rule, whiler is the most specific rule that guarantees
the same reduced semantics,S(r) = S(rmax). It is guaranteed that the ruler is normalized and
general enough w.r.t.Eσ, in accord with assumption A4.

The algorithm is linear on the length of the learned hypothesis and has the complexity O(|ER| ∗
|β| ∗ |chs(j)| ∗ |Eσ| ∗ |σ|3).

5.3 Learnability theorem

Theorem 2 (The NLWFG Induction Theorem). Given a Normalized Lexicalized Well-Founded
grammar,G, conform to a sublanguageEσ, and a semantically annotated setER ⊆ Eσ of ordered

representative examples given by Algorithm 4:(G,Eσ) 4−→ (ER, G), Algorithm 5 generates a

grammarG′ s.t.G′ = G. We write(ER, Eσ) 5−→ G.

Proof. Let’s assume that after the firsti − 1 representative examplesσ1, . . . , σi−1 we have that
PG′

i−1
= PGi−1 . In Algorithm 4, at stepi, for σi we have thatAi → B1, . . . , Bn : Φ ∗⇒ σi

and the ruleAi → B1, . . . , Bn : Φ is normalized and general enough w.r.t.Eσ (n is minimum
(Figure 6)). SinceG is conform toEσ, it follows that Algorithm 5 (which guarantees that the
learned rules are normalized and general enough w.r.t.Eσ), computes forσi, exactly the same rule
Ai → B1, . . . , Bn : Φ ∗⇒ σi at stepi, and thusPG′

i
= PGi (Figure 8). By complete induction, it

follows thatG′ = G.

5.4 Iterative Learning for Grammar Revision

Algorithm 5 presented in the previous section assumes a right order for the representative examples.
However, in practice it might be difficult to provide the right order of examples, especially when
modeling complex language phenomena. Algorithm 7 is an iterative grammar induction algorithm
that starts with a random order of the representative example set,Eu

R. It scans all the representative
examples (unordered), and for each exampleσi regenerates the ruler from which it can be derived,
based on the current state of the other rules. For the unary branching rules (i.e., they belong to
a chain,Chs), the position of the nonterminal associated with the representative exampleσi is

19. Forσ with gdl(σ) = mgdl(r), the chunks with the maximum length|wi| are efficiently computed by the robust
parser, from left to right.
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assumed general enough
assumed normalized

general enough w.r.t

complete w.r.t G

robust parse

rich enough w.r.t G
(thus w.r.t 

cat

)

w.r.t. at step i

normalized

(Ai → β : Φ) ∗⇒ σi

i

iσi

PG′i−1PG′i

Eσ

Eσ

Eσ

ERG′i−1

PG′

n = min |β|

1

jBjk � · · · � Bj1

chs(j)

Figure 8: Step i in Algorithm 5. The lines in bold show that the rule rhs,β, is learned using the
previous i-1 learned rules,PG′

i−1
, the current example,σi, and the sublanguageEσ.

determined such that it maximizes the reduced semantics of the whole chain (Lemma 4). Thus the
reduced semantics of all the rules/chains relative toEσ is non-decreasing.

Algorithm 7 : Iterative GrammarInduction(Eu
R , Eσ,K)

PG′ ← ∅
repeat

OG′ ← PG′

for i← 1 to |Eu
R| do

σi ← Eu
R(i) /*unordered set of representative examples */

r = (A→ β : Φ) s.tσi ∈ Lσ(r)
if |β| > 1 then PG′ ← PG′ − {r}
(r, Chs)← GenerateRule(σi, G

′, Eσ, K) /*regenerates theith rule based on all the
other rules */

if Chs = ∅ then PG′ ← PG′ ∪ {r}
elseMaximize(r, Chs) /*maximizes the reduced semantics of the chain,Chs */

until OG′ = PG′

returnPG′

Theorem 3. Given a Normalized Lexicalized Well-Founded GrammarG conform w.r.t. a sublan-
guageEσ, and a semantic annotated setEu

R ⊆ Eσ of representative examples in random order,
Algorithm 7 learns the same grammar as Algorithm 5 would do, if provided with the representative

example setER in the right order. We write(Eu
R, Eσ) 7−→ G iff (ER, Eσ) 5−→ G.

Proof. LetLk
i = S(r) be the semantics of theith grammar rule,r, reduced toEσ, at iteration stepk.

From the property P4 of semantic composition (see Section 3.2.1), and Lemma 4 (see Section 5.1),
we have thatLk

i ⊇ Lk−1
i , for 1 ≤ i ≤ |Eu

R|. This implies thatLk
i converges (it is non-decreasing

and bounded). LetG be the grammar obtained as limit by Algorithm 7, i.e.,(Eu
R, Eσ) 7−→ G. The
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Lσ(G1)

Lσ(G2)

Lσ(G1 �G2)

Eσ1

Eσ2

ER1

ER2

Figure 9: Merging two NLWFGsG1 andG2

grammarG is conform toEσ
20, which implies that(G,Eσ) 4−→ (ER, G) (Theorem 1), and thus

(ER, Eσ) 5−→ G (Theorem 2). Proving the reciprocal is immediate, since it is sufficient to takeEu
R

in the right order in Algorithm 7.

6. Merging Normalized Lexicalized Well-Founded Grammars

In the previous sections, it could be noticed that for a Normalized Well-Founded GrammarG con-
form to a sublanguageEσ, Algorithm 4 and Algorithms 5/7 allow for the reciprocal generation of
the grammar rulesPG and the representative examplesER mediated by the sublanguageEσ. We

denote this reciprocal generationG
Eσ←→ ER. The direction→ is given by Algorithm 4 and the

direction← by Algorithm 5/7, respectively.

Definition 19 (Grammar merging). Let G1 andG2 be two Normalized Lexicalized Well-Founded
Grammars defined on two sets of nonterminals,NG1 andNG2 , respectively, such thatNG1 ⊆ NG,
NG2 ⊆ NG

G1 = 〈Σ,Σ′,NG1 , RG1 , PG1 , S1〉
G2 = 〈Σ,Σ′,NG2 , RG2 , PG2 , S2〉

whereRG1 and RG2 are consistent with each other21. The subset of nonterminals (other than
preterminals), which are common toNG1 andNG2 , is called thecut nonterminal set. Let Eσ1 and
Eσ2 be the sublanguages corresponding to the grammarG1 andG2, respectively.

The merging of the grammarsG1 andG2 is realized in three steps :

(i) From G1, G2 and the sublanguagesEσ1, Eσ2, Algorithm 4 is used to generate the sets of
representative examples corresponding to these grammars,ER1 andER2 respectively.

20. The GenerateRule procedure guarantees that the learned rules are normalized and general enough w.r.t.Eσ, while
the Maximize procedure guarantees the maximum reduced semantics for the chains.

21. Between the common nonterminals there is no contradictory partial ordering relation.
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Using chains of nonterminals Using adequate attributes for category definition
A→ αBγ : Φa A→ αBγ : Φa

B→ β1 : Φ1 B→ β1 : Φ1 (h.a = v12)
B→ β2 : Φ2 B→ β2 : Φ2 (h.a = v12)

B+ → B : Φ+ B → β3 : Φ3 (h.a = v3)
B+ → β3 : Φ3

Figure 10: Two ways of overcoming overgeneralization. The rules with the nonterminalB in bold
as their left-hand side are the only ones allowed in the ground derivation of the ruleA→
αBγ : Φa. This is obtained by introducing a new nonterminalB+, or a discriminative
attributeh.a.

(ii) The union of the sets of representative examples,ER1 ∪ ER2
22, and the union of the sublan-

guages,Eσ1 ∪ Eσ2 are performed.

(iii) Algorithm 5 or Algorithm 7 are applied to these two sets, obtaining the merged grammar
G = G1 �G2.

That is, if :

G1
Eσ1←→ ER1

G2
Eσ2←→ ER2

then:

G1 �G2
Eσ1∪Eσ2←→ ER1 ∪ ER2

Theorem 4. Merging two Normalized Lexicalized Well-Founded GrammarsG1 and G2 assures
that: Lσ(G1) ∪ Lσ(G2) ⊆ Lσ(G1 �G2) (see Figure 9).

Proof. The proof is immediate.

If the nonterminals belonging to the cut nonterminal set have different semantics in the two
grammars, then we have thatLσ(G1) ∪ Lσ(G2) ⊂ Lσ(G1 � G2) (strict subset relation). Thus,
in general, this merging method can lead to overgeneralization. However, the overgeneralization
can be avoided by using chains of nonterminals or by introducing adequate attributes to define
meaningful categories (i.e., nonterminals). An abstract example of using these two methods to avoid
overgeneralization is given in Figure 10. It can be seen that the first method implies introducing
an additional nonterminalB+, while the second method uses the same nonterminalB, but with

22. ER1 andER2 allow the automatic alignment of the nonterminals of the two grammars (including the ones belonging
to the same chain). For this, the equivalence of syntagmas is exploitedσ1 ≡ σ2 , whereb1 = b2 andh1.cat 6= h2.cat.
The alignment determines the cut nonterminal set. During merging, Algorithm 7 could iterate only the rules that
corresponds to nonterminals that belong to the cut nonterminal set, increasing the efficiency.
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G1 G2 G = G1 � G2

PG N1 → Noun : Φ1 N1 → Noun : Φ1

N1 → Adj N1 : Φ2 N1 → Adj N1 : Φ2

N2 → Det N1 : Φ3 N2 → Det N1 : Φ3

N2 → Det Noun : Φ4

N2 → Pn : Φ5 N2 → Pn : Φ5

C1 → N2 Tv N2 : Φ6 C1 → N2 Tv N2 : Φ6

Σ Noun→ [child] Noun→ [child] Noun→ [child]
Noun→ [day] Noun→ [day] Noun→ [day]
Adj → [sunny] Adj → [sunny] Adj → [sunny]
Adj → [playful] Adj → [playful] Adj → [playful]
Tv → [like] Tv→ [like] Tv→ [like]
Det→ [the] Det→ [the] Det→ [the]
Det→ [a] Det→ [a] Det→ [a]
Pn→ [john] Pn→ [john] Pn→ [john]

Lσ { the child, { sunny day, { sunny day, the child, the playful child,
john, the child, john, the child likes john,
the child likes john, the playful child, john likes a sunny day,
. . . } . . . } the playful child likes a sunny day

. . . }
(a)

Eσ1 Eσ2 Eσ1 ∪ Eσ2

child child
playful child playful child
nice playful child nice playful child

the child the child the child
the playful child the playful child

john john
john likes the child john likes the child
the child likes john the child likes john

(b)

ER1 ER2 ER1 ∪ ER2

child child
playful child playful child

the child the child the child
john john
john likes the child john likes the child

(c)

Figure 11: Merging two grammarsG1 andG2
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Nr. Rules |NG| NL fragment Number of rules involving
|PG| = |ER| nonterminals learned NP Aux Verb Core Cl Wh-clause

13 6 Aux + subj agr. 2 11
26 8 verb (iv,tv,dv) + subj agr. 26
12 4 core clause + wh-clause 3 6 3
25 10 complex NP + 25

noun-compound

76 28 Total

Figure 12: Statistics of a learned grammar

a discriminative attributeh.a. This attribute helps discriminate between the first two alternatives
and the third one (by having two different values:v12 andv3, where onlyv12 is accepted by the
constraintΦa).

In Figure 11, we show an example of merging two grammars (G1 andG2). {N2} is the cut
nonterminal set. In this example, it can be seen that merging two grammars is not the union of their
production rules, i.e.,PG1�G2 6= PG1 ∪ PG2 . The grammarG1 generates only simple sentences
(e.g., “the child likes John”), while the grammarG2 generates more complex noun phrases (e.g.,
modified by adjectives: “sunny day”, “the playful child”). The merged grammarG generates more
complex sentences: “the playful child likes a sunny day”. While this is just an illustrative exam-
ple, one can imagine a real case where a grammar that generates complex sentences is obtained
by merging several grammars (e.g., simple clauses, complex noun phrases, complex verb construc-
tions with auxiliaries). In Section 7, we present experiments done in this direction. The merging
method presented in this section shows that we model the grammar learning/development from sim-
ple to complex (which is a cognitively plausible approach, simulating the child language acquisition
process (Pinker, 1989)).

7. Linguistic Relevance and Experimental Results

In this section we discuss the linguistic relevance of our Normalized Lexicalized Well-Founded
Grammars, by presenting several grammatical aspects that can be modeled as well as the application
of the learning methodology presented in the previous sections. Our grammars can model aspects
relevant to linguistic theories and of practical use in Natural Language Processing applications (e.g.,
noun-noun compounds, prepositional phrases, coordinations).23

We follow a functional approach to syntax, similar with (van Valin & LaPolla, 1997). Figure
12 presents statistics of applying our learning framework to several fragments of natural language:
1) Auxiliary verb constructions including subject agreement, 2) Verb constructions for intransitive,
transitive and ditransitive verbs, including subject agreement, 3) Core clause (verb + its arguments)
and wh-clauses (interrogatives and relative clauses), and 4) Complex noun phrases (with determiners
and adjectival premodifiers, with prepositional phrases, genitive constructions, coordination, and
noun compounds).

23. The experiments presented in this paper are given only to illustrate the applicability of the theoretical concepts. More
experimental results and a thorough evaluation will be provided in a paper where the theoretical aspects will not be
the focus.
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The learned grammar contains 76 rules and 76 compositional semantic constraints. We used 13
preterminals (i.e., POS), 23 elementary semantic molecules∈ Σ′, 28 nonterminal names (other than
preterminals) and 76 representative examples,ER. An important thing to notice is that the number
of representative examples is the same as the number of the learned rules (see Figure 12).

During learning, an additional set of 236 examplesEσ is used for reducing the grammar se-
mantics during rule generalization. A characteristic of this set is that it does not need to be fully
annotated if a simple bracketing is enough for disambiguation. This bracketing can be seen as
“dummy semantics” (Culicover & Nowak, 2003). The full annotation is used only when the brack-
eting cannot disambiguate (e.g., for auxiliary constructions).

ConsiderGaux the learned grammar for auxiliaries,Gvb the learned grammar for verbal con-
structions,Gclwh the learned grammar for core clauses and wh-clauses, andGnp for complex noun
phrases and noun compounds. In Appendix A and B we give the representative examples, the
learned grammars and sample of learned compositional constraints forGaux and a fragment of
Gnp. We briefly describe below the phenomena covering the verbal and noun phrase constructions.

Learning auxiliary constructions. In this experiment we focused on modeling complex aux-
iliary forms that appear in complex finite verbs constructions. The learned grammarGaux deals
with modals, negation, subject-verb agreement, tense and aspect. We give the learned grammar
below. It can be noticed that we introduced the subject at this level in order to facilitate agreement
and subject-auxiliary inversion that appears in questions (AV 0). In this grammar we only have
pronouns and proper names as subject. More complex subject constructions will result after gram-
mar merging. In the learned grammar, we have 4 nonterminals for auxiliaries. For example,AV 0
models simple form of auxiliaries “be” and “have” as well as modal auxiliaries and the periphrastic
auxiliary “do”, together with subject agreement and inversion;AV 1 is used for further modeling
constructions with relative pronouns used either in questions or relative clause constructions (it can
be noticed that in this case we do not have inversion);AV 2 introduces negation;AV 3 introduces
the future tense and the perfect aspect; whileAV 4 introduces the progressive form of the auxiliary
“to be”, which will be used in conjunction with the passive constructions (e.g “she may have been
beingexamined by ...”). In this grammar we have the following chain of nonterminals{AV 4, AV 3,
AV 2, AV 1, AV 0}.

Learned Grammar, Gaux

Sbj(h ./ b) → Pro(h1 ./ b1) : Φcomp1(h, h1), Φonto(b)
Sbj(h ./ b) → PN(h1 ./ b1) : Φcomp2(h, h1), Φonto(b)
AV 0(h ./ b) → Sbj(h1 ./ b1), Aux(h2 ./ b2) : Φcomp3(h, h1, h2), Φonto(b)
AV 0(h ./ b) → Aux(h1 ./ b1), Sbj(h2 ./ b2) : Φcomp4(h, h1, h2), Φonto(b)
AV 1(h ./ b) → AV 0(h1 ./ b1) : Φcomp5(h, h1), Φonto(b)
AV 1(h ./ b) → RelPro(h1 ./ b1), Aux(h2 ./ b2) : Φcomp6(h, h1, h2), Φonto(b)
AV 2(h ./ b) → AV 1(h1 ./ b1) : Φcomp7(h, h1), Φonto(b)
AV 2(h ./ b) → AV 1(h1 ./ b1), Aux(h2 ./ b2) : Φcomp8(h, h1, h2), Φonto(b)
AV 3(h ./ b) → AV 2(h1 ./ b1) : Φcomp9(h, h1), Φonto(b))
AV 3(h ./ b) → AV 2(h1 ./ b1), Aux(h2 ./ b2) : Φcomp10(h, h1, h2), Φonto(b)
AV 3(h ./ b) → AV 3(h1 ./ b1), Aux(h2 ./ b2) : Φcomp11(h, h1, h2), Φonto(b)
AV 4(h ./ b) → AV 3(h1 ./ b1) : Φcomp12(h, h1), Φonto(b)
AV 4(h ./ b) → AV 3(h1 ./ b1), Aux(h2 ./ b2) : Φcomp13(h, h1, h2), Φonto(b)
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Sample of the learned compositional constraints
Φcomp2(h, h1) = {h.cat=sbj, h.dets=y, h.pers=h1.pers, h.nr=h1.nr, h.case=h1.case,

h.hum=h1.hum,h.head=h1.head,h1.cat=pn,h1.det=y}
Φcomp8(h, h1, h2) = {h.cat=av2, h.int=h1.int, h.dets=h1.dets, h.case=h1.case, h.hum=h1.hum,

h.aux=h1.aux, h.neg=h2.neg, h.tense=h1.tense, h.pers=h1.pers, h.nr=h1.nr,
h.pf=h1.pf, h.pg=h1.pg, h.headS=h1.headS,h.head=h1.head,h.head=h2.head,
h1.cat=av1,h1.neg=no,h2.cat=aux,h2.aux=not}

Φcomp11(h, h1, h2) = {h.cat=av3, h.int=h1.int, h.dets=h1.dets, h.case=h1.case, h.hum=h1.hum,
h.aux=h2.aux, h.neg=h1.neg, h.tense=h1.tense, h.pers=h1.pers, h.nr=h1.nr,
h.pf=h2.pf, h.pg=h1.pg, h.headS=h1.headS,h.head=h1.head,h.head=h2.head,
h1.cat=av3,h1.aux=have,h1.pf=no,h2.cat=aux,h2.vf=en}

Φcomp13(h, h1, h2) = {h.cat=av4, h.int=h1.int, h.dets=h1.dets, h.case=h1.case, h.hum=h1.hum,
h.aux=h1.aux, h.aux=h2.aux, h.neg=h1.neg,h.tense=h1.tense,h.pers=h1.pers,
h.nr=h1.nr, h.pf=h1.pf, h.pg=h2.pg, h.headS=h1.headS, h.head=h1.head,
h.head=h2.head,h1.cat=av3,h1.pg=no,h2.cat=aux,h2.vf=ing}

For learning this grammar we used a set of 13 fully annotated representative examples (see Ap-
pendix A) as well as a set of 39 additional examplesEσ which were also fully annotated because
of the high lexical ambiguity of “have” and “be”, which can have the same lexical form for several
syntactic constructions (e.g., the same lexical item for 1st and 2nd person singular “I have” and
“You have”). At this point the ontology cannot provide any disambiguation. Even if the rules of the
grammar seem simple, and someone might wonder if they could be written by hand, the complexity
of the task is emphasized in the learned constraints. An example of parsing and generation using
this grammar is given in Appendix C.

Learning verbal constructions. In this experiment we modeled simple and complex finite ver-
bal constructions for intransitive, transitive and ditransitive verbs, covering subject verb agreement,
active and passive constructions, tense and aspect information. We used a set of 26 representative
examples,ER, 76 additional examples that constitute the sublanguageEσ andGaux as background
knowledge. While tense and aspect information are represented in our grammar, we have not yet
developed the interpretation module to account for temporal relations. This is part of future work.

Learning complex noun phrases.In this experiment we modeled several phenomena of com-
plex noun phrases: prepositional phrases, coordinations, noun-noun compounds, genitive construc-
tions. We used 25 representative examples and 85 additional examples that constitute the sublan-
guageEσ. Part of this additional set of examples is just bracketed. As we mentioned before, this
is a form of dummy semantics which is sufficient for disambiguation. Thus, we do not have to rely
on fully annotated data for the whole setEσ. This is important since the size ofEσ is larger than
ER. We give a fragment of our learned grammarGnp and the selected compositional constraints
(in Appendix B we also give the representative examples from which this fragment was learned).
In this grammar the noun compounds are given by the rules corresponding to the nonterminalsNa
andNc, whereNa generates constructions where nouns behave like adjectives and could be fur-
ther combined with another noun to form a full-fledged noun compound. For example “skin disease
treatment” can be a full-formed noun compound (generated byNc) or can be further combined with
the noun “effect” to obtain “skin disease treatment effect”. In this case, it is generated byNa. It can
be noticed that the learned rule forNa is both left and right recursive. In Appendix C we can see this
phenomenon by showing a parsing/generation of the noun “skin disease treatment”. It can also be
noticed that the ontology-based semantic interpretation filters spurious parses. Thus, even though
we obtain overgeneralization in syntax, the semantic interpretation at the rule level removes the
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wrong parses. In order to control overgeneralization, besides using the chain{Sbj,N,Nc,Noun},
we also used discriminative attributes for the nonterminalN . For example, the difference between
a determinate and a nondeterminate noun is given by the attributedet, which takes two values:yes
andno respectively (otherwise we should have used two nonterminalsN1 andN2). In this case,
we can also see the complexity of the learned compositional constraints. For exampleΦcomp9 will
constrain the ruleN → Det N , and thus it will not generate recursively ungrammatical phrases
such as “the the disease”. This is obtain by having the constraintsh.det = y, h2.det = no, which
say that the value of the attributedet for the noun on the left-hand side of the rule isyes, while for
the noun on the right-hand side isno. Currently we ignore individuals at the interpretation level.
We do not semantically represent plurals, while determiners even if represented, are not interpreted
24. In our future work we plan to include the interpretation of individuals.

Fragment of Learned Grammar, Gnp

A(h ./ b) → Adj(h1 ./ b1) : Φcomp1(h, h1), Φonto(b)
A(h ./ b) → Adv(h1 ./ b1), A(h2 ./ b2) : Φcomp2(h, h1, h2), Φonto(b)
Na(h ./ b) → Noun(h1 ./ b1) : Φcomp3(h, h1), Φonto(b)
Na(h ./ b) → Na(h1 ./ b1), Na(h2 ./ b2) : Φcomp4(h, h1, h2), Φonto(b)
Nc(h ./ b) → Noun(h1 ./ b1) : Φcomp5(h, h1), Φonto(b)
Nc(h ./ b) → Na(h1 ./ b1), Nc(h2 ./ b2) : Φcomp6(h, h1, h2), Φonto(b)
N(h ./ b) → Nc(h1 ./ b1) : Φcomp7(h, h1), Φonto(b)
N(h ./ b) → A(h1 ./ b1), N(h2 ./ b2) : Φcomp8(h, h1, h2), Φonto(b)
N(h ./ b) → Det(h1 ./ b1), N(h2 ./ b2) : Φcomp9(h, h1, h2), Φonto(b)
N(h ./ b) → PN(h1 ./ b1) : Φcomp10(h, h1), Φonto(b)
N(h ./ b) → Pro(h1 ./ b1) : Φcomp11(h, h1), Φonto(b)
Sbj(h ./ b) → N(h1 ./ b1) : Φcomp12(h, h1), Φonto(b)

Sample of learned compositional constraints
Φcomp4(h, h1, h2) = {h.cat=na, h.head=h1.mod, h.head=h2.head, h.mod=h2.mod, h1.cat=na,

h2.cat=na}
Φcomp7(h, h1) = {h.cat=n,h.det=no,h.pers=h1.pers,h.nr=h1.nr, h.case=h1.case,h.hum=h1.hum,

h.gen=h1.gen,h.count=h1.count,h.head=h1.head,h1.cat=nc,h1.det=no}
Φcomp9(h, h1, h2) = {h.cat=n,h.det=y,h.pers=h2.pers,h.nr=h2.nr, h.case=h2.case,h.hum=h2.hum,

h.gen=h2.gen,h.count=h2.count,h.head=h1.head,h.head=h2.head,h1.cat=det,
h2.cat=n,h2.det=no}

In the experiments of learning these grammars, we have studied all the theoretical aspects presented
in the previous sections. First, the grammarGaux was learned using Algorithm 5 , when the order of
examples was good (see Appendix A) , and Algorithm 7, when we scrambled the order of examples.
In both cases, we obtained the same grammar. The resulting grammar has 13 rules and 13 learned
compositional constraints. Samples of these constraints are given in Appendix A. Then, we applied
the learning algorithm usingGaux as background knowledge to obtain the grammarGvb. After
that, by usingGaux + Gvb as background knowledge we learnedGchwh. This incremental learning
has the practical advantage of a better running time for learning the grammars and of a modular
development of grammars. Finally, the resulted grammarGaux + Gvb + Gclwh and the grammar
Gnp learned separately were merged. During merging, the cut nonterminal set is{Sbj,Obj} (see
Appendix A and B), which means that the rules corresponding to this nonterminal set will be the

24. Our current practical application of the grammar is to build a terminological knowledge base, where there is no need
for individuals.
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ones revised (replaced by rules that have the maximum reduced semantics). This learning method
followed by grammar merging allows us to learn from simple up to complex constructions.

The grammar learning framework presented in this paper is a valuable tool for grammar de-
velopment, since it allows the refinement of the grammar by refining just the examples. Providing
the representative examples can be challenging for some more complex phenomena. We can test
whether they were properly chosen: first we learn the grammar from these examplesER and the
sublanguageEσ using Algorithm 5 / 7. Then we regenerate the representative examples from the
learned grammar and the sublanguageEσ, using Algorithm 4. If the resulting set is not the same,
it means that the examples were not adequate and might need to be revised. A way of validating
a grammar and ultimately the derived semantic constructions, consists of using a reversible parser
for parsing and generation. In Appendix C we give examples of parsing/generation for syntagmas
corresponding toGaux, Gnp andGclwh. It can be noticed that our robust parser is nondeterministic,
giving all valid solutions. However, as can be seen for the noun compound “skin disease treatment”,
the ontological constraint filters some of the parses that are not validated by the semantic interpre-
tation (in this case the attachment of the noun “skin” to the noun “treatment”). Thus, some of the
syntactic overgeneralizations are specialized by semantic constraints.

The results presented in this section show promise for the linguistic adequacy of our proposed
new type of grammars. Moreover, the theoretical foundations of the learnability and merging make
the framework appealing for developing natural language grammars.

8. Conclusions

In this paper we have presented a new type of constraint-based grammars,Normalized Lexicalized
Well-Founded Grammars (NLWFGs). Motivated by the need of learnable grammars for language
understanding, NLWFGs have been proved to have both good computational and learning proper-
ties, as well as relevant linguistic characteristics.

We have shown that for NLWFGs conform to a sublanguageEσ, this sublanguage mediates the
reciprocal generation of the grammar rules and the representative examplesER. The representative
examples are the simplest examples that can be derived from the grammar and consist of ordered
pairs of natural language strings and theirsemantic molecules. The semantic molecule is a new
representation for natural language strings, which contains information for semantic composition
and encodes the string semantic representation as an Ontology Query Language. We have pre-
sented the algorithms and the associated theorems for generating the representative examples,ER

from a grammarG and a sublanguageEσ (Theorem 1), as well as for learning grammarG, from
the set of representative examples and the sublanguageEσ used to reduce the grammar semantics
(Theorem 2). Thus, the representative example set can be seen as a small semantically annotated
treebank. From a theoretical perspective, the ordering of examples allows for an efficient bottom-
up relational learning of complex constraint-based grammar rules and their compositional semantic
constraints. However, providing the right order of examples might be difficult in practice, when
modeling complex phenomena. We have presented an iterative learning algorithm for grammar re-
vision that guarantees to obtain the same normalized grammar, regardless of the order of examples
(Theorem 3).

Besides the learnability results, we have presented a principle for grammar merging based on
the union of their representative examples and a subsequent application of the learning algorithm
(Theorem 4). We have shown that grammar merging is not the same as the union of their rules.
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All the theoretical aspects have been embedded in a relational learning framework for inducing
NLWFGs and we have presented experimental results for modeling several aspects of natural lan-
guage. One of the main conclusions of this paper is that if a fragment of natural language can be
covered by a NLWFGG, and the semantically annotated representative examplesER, as well as the
sublanguageEσ are provided based on linguistic knowledge, then the grammarG can be learned.
This implies that if natural language can be covered by NLWFGs, and there is linguistic knowledge
to buildER andEσ, then natural language can be learned. In our experiments we have shown that a
fragment and several aspects of natural language can be covered by NLWFGs, and relatively simple
linguistic knowledge is required to build the set of representative examples.

Further work is needed to use these grammars for broad coverage of natural language. An im-
portant direction would be to develop the framework to allow the bootstrapping of both the grammar
and the ontology and to add probabilities at the ontology level.
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Appendix A. Learning Auxiliary Verb Constructions

We present below the set of representative examplesER required to learn the grammar. The set size
is |ER| = 13.

Representative Examples Set,
ER = (w, w′), wherew′ = h ./ b

([he], [cat=sbj, dets=y, pers=3, nr=sg, case=n, hum=y, head=X]./[X.isa=he]).
([john], [cat=sbj, dets=y, pers=3, nr=sg, case=n, hum=y, head=X]./[X.name=john]).

([someone, is], [cat=av0, int=no, dets=y, case=n, hum=, aux=be, neg=no, tense=pr, pers=3,
nr=sg, pf=no, pg=no, headS=X, head=Y]./[X.isa=someone, Y.tense=pr]).

([is, someone], [cat=av0, int=y, dets=y, case=n, hum=, aux=be, neg=no, tense=pr, pers=3,
nr=sg, pf=no, pg=no, headS=X, head=Y]./ [Y.tense=pr, X.isa=someone]).

([is, he], [cat=av1, int=y, dets=y, case=n, hum=y, aux=be, neg=no, tense=pr, pers=3,
nr=sg, pf=no, pg=no, headS=X, head=Y]./[Y.tense=pr, X.isa=he]).

([who, is], [cat=av1, int=, dets=no, case=n, hum=y, aux=be, neg=no, tense=pr, pers=3,
nr=sg, pf=no, pg=no, headS=X, head=Y]./[X.isa=who, Y.tense=pr]).

([who, is], [cat=av2, int=, dets=no, case=n, hum=y, aux=be, neg=no, tense=pr, pers=3,
nr=sg, pf=no, pg=no, headS=X, head=Y]./[X.isa=who, Y.tense=pr]).

([someone, is, not], [cat=av2, int=no, dets=y, case=n, hum=, aux=be, neg=y, tense=pr, pers=3,
nr=sg, pf=no, pg=no, headS=X, head=Y]./[X.isa=someone, Y.tense=pr,
Y.neg=y]).

([someone, is, not], [cat=av3, int=no, dets=y, case=n, hum=, aux=be, neg=y, tense=pr, pers=3,
nr=sg, pf=no, pg=no, headS=X, head=Y]./[X.isa=someone, Y.tense=pr,
Y.neg=y]).

([someone, will, be], [cat=av3, int=no, dets=y, case=n, hum=, aux=be, neg=no, tense=mod,
pers=3, nr=sg, pf=no, pg=no, headS=X, head=Y]./[X.isa=someone,
Y.mod=will, Y.tense=mod]).

([she, has, not, been], [cat=av3, int=no, dets=y, case=n, hum=y, aux=be, neg=y, tense=pr, pers=3,
nr=sg, pf=y, pg=no, headS=X, head=Y]./[X.isa=she, Y.tense=pr, Y.neg=y,
Y.pf=y]).

([she, has, not, been]25, [cat=av4, int=no, dets=y, case=n, hum=y, aux=be, neg=y, tense=pr, pers=3,
nr=sg, pf=y, pg=no, headS=X, head=Y]./[X.isa=she, Y.tense=pr, Y.neg=y,
Y.pf=y]).

([someone, is, not, being], [cat=av4, int=no, dets=y, case=n, hum=, aux=be, neg=y, tense=pr, pers=3,
nr=sg, pf=no, pg=y, headS=X, head=Y]./[X.isa=someone, Y.tense=pr,
Y.neg=y, Y.pg=y]).

A set of 39 additional examples,E+ = Eσ, fully annotated were used as a sublanguage for the rule gen-
eralization process. Below we show the learned grammarGaux and the compositional semantic constraints.
The learned grammar has 13 rules,|PG| = 13. Thus|ER| = |PG|.

25. In order to reduce the size ofEσ needed for rule generalization we used in this experiment representative examples
that do not have minimum derivation length.
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Learned Grammar, Gaux. The rules are given in the DCG formalism26

sbj(H./B-Bo)−− >pro(H1./B-Bo),{ fi-comp1(H,H1),fi-onto(B-Bo)}.
sbj(H./B-Bo)−− >pn(H1./B-Bo),{fi-comp2(H,H1),fi-onto(B-Bo)}.
av0(H./B-Bo)−− >sbj(H1./B-B1),aux(H2./B1-Bo),{fi-comp3(H,H1,H2),fi-onto(B-Bo)}.
av0(H./B-Bo)−− >aux(H1./B-B1),sbj(H2./B1-Bo),{fi-comp4(H,H1,H2),fi-onto(B-Bo)}.
av1(H./B-Bo)−− >av0(H1./B-Bo),{fi-comp5(H,H1),fi-onto(B-Bo)}.
av1(H./B-Bo)−− >relpro(H1./B-B1),aux(H2./B1-Bo),{fi-comp6(H,H1,H2),fi-onto(B-Bo)}.
av2(H./B-Bo)−− >av1(H1./B-Bo),{fi-comp7(H,H1),fi-onto(B-Bo)}.
av2(H./B-Bo)−− >av1(H1./B-B1),aux(H2./B1-Bo),{fi-comp8(H,H1,H2),fi-onto(B-Bo)}.
av3(H./B-Bo)−− >av2(H1./B-Bo),{fi-comp9(H,H1,fi-onto(B-Bo))}.
av3(H./B-Bo)−− >av2(H1./B-B1),aux(H2./B1-Bo),{fi-comp10(H,H1,H2),fi-onto(B-Bo)}.
av3(H./B-Bo)−− >av3(H1./B-B1),aux(H2./B1-Bo),{fi-comp11(H,H1,H2),fi-onto(B-Bo)}.
av4(H./B-Bo)−− >av3(H1./B-Bo),{fi-comp12(H,H1),fi-onto(B-Bo)}.
av4(H./B-Bo)−− >av3(H1./B-B1),aux(H2./B1-Bo),{fi-comp13(H,H1,H2),fi-onto(B-Bo)}.

Sample of the learned compositional constraints27

fi-comp2(h, h1) = {h.cat=sbj, h.dets=y, h.pers=h1.pers, h.nr=h1.nr, h.case=h1.case,
h.hum=h1.hum, h.head=h1.head, h1.cat=pn, h1.det=y}

fi-comp8(h, h1, h2) = {h.cat=av2, h.int=h1.int, h.dets=h1.dets, h.case=h1.case, h.hum=h1.hum,
h.aux=h1.aux, h.neg=h2.neg, h.tense=h1.tense, h.pers=h1.pers, h.nr=h1.nr,
h.pf=h1.pf, h.pg=h1.pg, h.headS=h1.headS, h.head=h1.head, h.head=h2.head,
h1.cat=av1, h1.neg=no, h2.cat=aux, h2.aux=not}

fi-comp11(h, h1, h2) = {h.cat=av3, h.int=h1.int, h.dets=h1.dets, h.case=h1.case, h.hum=h1.hum,
h.aux=h2.aux, h.neg=h1.neg, h.tense=h1.tense, h.pers=h1.pers, h.nr=h1.nr,
h.pf=h2.pf, h.pg=h1.pg, h.headS=h1.headS, h.head=h1.head, h.head=h2.head,
h1.cat=av3, h1.aux=have, h1.pf=no, h2.cat=aux, h2.vf=en}

fi-comp13(h, h1, h2) = {h.cat=av4, h.int=h1.int, h.dets=h1.dets, h.case=h1.case, h.hum=h1.hum,
h.aux=h1.aux, h.aux=h2.aux, h.neg=h1.neg, h.tense=h1.tense, h.pers=h1.pers,
h.nr=h1.nr, h.pf=h1.pf, h.pg=h2.pg, h.headS=h1.headS, h.head=h1.head,
h.head=h2.head, h1.cat=av3, h1.pg=no, h2.cat=aux, h2.vf=ing}

Appendix B. Learning Fragments of Noun Phrases

In this section we give examples of fragments of NP covering noun-noun compounds.

26. In the DCG formalism, the nonterminal names begin with lower-case letters (as Prolog predicate names) and the
logical variable names begin with capital letters. The stringsw are implicit arguments in DCG, and thus not shown.
B−Bo is the notation used for difference lists applied to the semantic representations (i.e., the bodies of the semantic
molecules) attached to each nonterminals. The constraints are enclosed in{}.

27. Given in syntactic sugaring notation used throughout the paper for better understanding. fi-comp are Prolog predi-
cates, where the arguments are variables, as can be seen in the grammar given in the DCG form.
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Representative Examples Set,
ER = (w, w′), wherew′ = h ./ b

([young], [cat=a, head=X, mod=Y]./ [X.isa=young, Y.P=X]).
([very, young], [cat=a, head=X, mod=Y]./ [X.how=very, X.isa=young, Y.P=X]).

([disease], [cat=na, head=X, mod=Y]./ [X.isa=disease, Y.P=X]).
([skin, disease], [cat=na, head=Y, mod=Z]./ [X.isa=skin, Y.P=X, Y.isa=disease, Z.P1=Y]).

([disease], [cat=nc, det=no, pers=3, nr=sg, case=na, hum=no, gen=neutr, count=y, head=X]./
[X.isa=disease]).

([skin, disease]28, [cat=nc, det=no, pers=3, nr=sg, case=na, hum=no, gen=neutr, count=y, head=Y]./
[X.isa=skin, Y.P=X, Y.isa=disease]).

([paper], [cat=n, det=no, pers=3, nr=sg, case=na, hum=no, gen=neutr, count=y, head=X]./
[X.isa=paper]).

([technical, paper], [cat=n, det=no, pers=3, nr=sg, case=na, hum=no, gen=neutr, count=y, head=Y]./
[X.isa=technical, Y.P=X, Y.isa=paper]).

([a, paper], [cat=n, det=y, pers=3, nr=sg, case=na, hum=no, gen=neutr, count=y, head=X]./
[X.det=a, X.isa=paper]).

([jody], [cat=n, det=y, pers=3, nr=sg, case=na, hum=y, gen=fem, head=X]./
[X.name=jody]).

([he], [cat=n, det=y, pers=3, nr=sg, case=n, hum=y, gen=male, head=X]./ [X.isa=he]).

([he] 29, [cat=sbj, dets=y, pers=3, nr=sg, case=n, hum=y, head=X]./[X.isa=he]).

The learned grammar is given below.

Fragment of Learned Grammar, Gnp

a(H./B-Bo)−− >adj(H1./B-Bo),{fi-comp1(H,H1),fi-onto(B-Bo)}.
a(H./B-Bo)−− >adv(H1./B-B1),a(H2./B1-Bo),{fi-comp2(H,H1,H2),fi-onto(B-Bo)}.
na(H./B-Bo)−− >noun(H1./B-Bo),{fi-comp3(H,H1),fi-onto(B-Bo)}.
na(H./B-Bo)−− >na(H1./B-B1),na(H2./B1-Bo),{fi-comp4(H,H1,H2),fi-onto(B-Bo)}.
nc(H./B-Bo)−− >noun(H1./B-Bo),{fi-comp5(H,H1),fi-onto(B-Bo)}.
nc(H./B-Bo)−− >na(H1./B-B1),nc(H2./B1-Bo),{fi-comp6(H,H1,H2),fi-onto(B-Bo)}.
n(H./B-Bo)−− >nc(H1./B-Bo),{fi-comp7(H,H1),fi-onto(B-Bo)}.
n(H./B-Bo)−− >a(H1./B-B1),n(H2./B1-Bo),{fi-comp8(H,H1,H2),fi-onto(B-Bo)}.
n(H./B-Bo)−− >det(H1./B-B1),n(H2./B1-Bo),{fi-comp9(H,H1,H2),fi-onto(B-Bo)}.
n(H./B-Bo)−− >pn(H1./B-Bo),{fi-comp10(H,H1),fi-onto(B-Bo)}.
n(H./B-Bo)−− >pro(H1./B-Bo),{fi-comp11(H,H1),fi-onto(B-Bo)}.
sbj(H./B-Bo)−− >n(H1./B-Bo),{fi-comp12(H,H1),fi-onto(B-Bo)}.

Sample of learned compositional constraints
fi-comp4(h, h1, h2) = {h.cat=na, h.head=h1.mod, h.head=h2.head, h.mod=h2.mod, h1.cat=na,

h2.cat=na}
fi-comp7(h, h1) = {h.cat=n, h.det=no, h.pers=h1.pers, h.nr=h1.nr, h.case=h1.case, h.hum=h1.hum,

h.gen=h1.gen, h.count=h1.count, h.head=h1.head, h1.cat=nc, h1.det=no}
fi-comp9(h, h1, h2) = {h.cat=n, h.det=y, h.pers=h2.pers, h.nr=h2.nr, h.case=h2.case, h.hum=h2.hum,

h.gen=h2.gen, h.count=h2.count, h.head=h1.head, h.head=h2.head, h1.cat=det,
h2.cat=n, h2.det=no}

28. We allow nondeterminism during learning. The examplesdiseaseandskin diseasecan be bothna andnc.
29. In this experiment, we intentionally did not specify thegen feature in thesubj category.
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Appendix C. Parsing and Generation

Below we give examples of parsing and generation using the learned grammars and our reversible robust
parser.

Parsing using the learned gramamrGaux
30

input: w = [what, can’t, have, been, being]
output: Lσ(w)31 = { ([what, can’t have, been, being], [cat=av4, int=y, dets=no, case=n, hum=no, aux=be,

neg=y, tense=mod, pers=3, nr=, pf=y, pg=y, headS=X, head=Y]./[X.isa=what,
Y.mod=can, Y.neg=y, Y.tense=mod, Y.pf=y, Y.pg=y])}

Generation using the learned gramamrGaux

input: b = [X.isa=what, Y.mod=can, Y.neg=y, Y.tense=mod, Y.pf=y, Y.pg=y]
output: Lσ(b)= {
([what, can, not, have, been, being], [cat=av4, int=y, dets=no, case=n, hum=no, aux=be, neg=y,
tense=mod, pers=3, nr=, pf=y, pg=y, headS= X, head= Y]./[X.isa=what, Y.mod=can, Y.neg=y,
Y.tense=mod, Y.pf=y, Y.pg=y]),

([what, can’t, have, been, being], [cat=av4, int=y, dets=no, case=n, hum=no, aux=be, neg=y, tense=mod,
pers=3, nr=, pf=y, pg=y, headS= X, head= Y]./ [X.isa=what, Y.mod=can, Y.neg=y, Y.tense=mod, Y.pf=y,
Y.pg=y]),

([what, cannot, have, been, being], [cat=av4, int=y, dets=no, case=n, hum=no, aux=be, neg=y, tense=mod,
pers=3, nr=, pf=y, pg=y, headS= X, head= Y]./ [X.isa=what, Y.mod=can, Y.neg=y, Y.tense=mod, Y.pf=y,
Y.pg=y])
}

Parsing using the learned gramamrGnp
32

input: w=[skin, disease, treatment]
output: Lσ(w) = {
([skin, disease, treatment], [cat=n, det=no, pers=3, nr=sg, case=na, hum=no, gen=neutr, count=y, head=Z]
./ [X.isa=skin, Y.Py=X, Y.isa=disease, Z.Pz=Y, Z.isa=treatment]),

([skin, disease, treatment], [cat=nc, det=no, pers=3, nr=sg, case=na, hum=no, gen=neutr, count=y,
head=Z]./ [X.isa=skin, Y.Py=X, Y.isa=disease, Z.Pz=Y, Z.isa=treatment]),

([skin,disease,treatment],[cat=n,det=no,pers=3,nr=sg,case=na,hum=no,gen=neutr,count=y,head=Z]
./ [X.isa=skin,Z.Pz1=X,Y.isa=disease,Z.Pz2=Y,Z.isa=treatment])33,

([skin, disease,treatment], [cat=nc, det=no, pers=3,nr=sg, case=na,hum=no, gen=neutr,count=y,
head=Z]./ [X.isa=skin,Z.Pz1=X,Y.isa=disease,Z.Pz2=Y,Z.isa=treatment]),

([skin, disease, treatment], [cat=na, head=Z, mod=T]./ [X.isa=skin, Y.Py=X, Y.isa=disease, Z.Pz=Y,
Z.isa=treatment, T.Pt=Z]),

([skin, disease,treatment],[cat=na,head=Z,mod=T] ./ [X.isa=skin,Z.Pz1=X,Y.isa=disease,Z.Pz2=Y,
Z.isa=treatment,T.Pt=Z])
}

30. See Appendix A
31. See definition ofLσ(w) andLσ(b) in Section 3.3.3. Here we do not show all the chunks.
32. See Appendix B
33. The cross-out examples means they are rejected by the ontological constraint
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Generation using the learned gramamrGnp

input: b1= [X.isa=skin, Y.Py=X, Y.isa=disease, Z.Pz=Y, Z.isa=treatment]
output: Lσ(b1) = {
([skin, disease, treatment], [cat=n, det=no, pers=3, nr=sg, case=na, hum=no, gen=neutr, count=y, head=Z]
./ [X.isa=skin, Y.Py=X, Y.isa=disease, Z.Pz=Y, Z.isa=treatment]),

([skin, disease, treatment], [cat=nc, det=no, pers=3, nr=sg, case=na, hum=no, gen=neutr, count=y,
head=Z]./ [X.isa=skin, Y.Py=X, Y.isa=disease, Z.Pz=Y, Z.isa=treatment])
}
input: b2=[X.isa=skin,Y.Py=X,Y.isa=disease,Z.Pz=Y,Z.isa=treatment,T.Pt=Z]
output: Lσ(b2) = {
([skin, disease, treatment], [cat=na, head=Z, mod=T]./ [X.isa=skin, Y.Py=X, Y.isa=disease, Z.Pz=Y,
Z.isa=treatment, T.Pt=Z])
}

Parsing using the learned gramamrGclwh

input: w = [who, has, been, loving, me]
output: Lσ(w) = {
([who, has, been, loving, me], [cat=wh, int=y , dets=no, hum=y, head=Y, headS=X, headC=Z]./
[X.isa=who, Y.tense=pr, Y.pf=y, Y.pg=y, Y.isa=love, Y.agt=X, Y.pnt=Z, Z.isa=me])34,

([who, has, been, loving, me], [cat=cl, int= , dets=no, hum=y, head=Y, headS=X, headC=Z]./
[X.isa=who, Y.tense=pr, Y.pf=y, Y.pg=y, Y.isa=love, Y.agt=X, Y.pnt=Z, Z.isa=me])35

}

Generation using the learned gramamrGclwh

input: b = [X.isa=who, Y.tense=pr, Y.pf=y, Y.pg=y, Y.isa=love, Y.agt=X, Y.pnt=Z, Z.isa=me]
output: Lσ(b) = {
([who, has, been, loving, me], [cat=wh, int=y, dets=no, hum=y, head=Y, headS=X, headC=Z]./
[X.isa=who, Y.tense=pr, Y.pf=y, Y.pg=y, Y.isa=love, Y.agt=X, Y.pnt=Z, Z.isa=me]),

([who, have, been, loving, me], [cat=wh, int=y, dets=no, hum=y, head=Y, headS=X, headC=Z]./
[X.isa=who, Y.tense=pr, Y.pf=y, Y.pg=y, Y.isa=love, Y.agt=X, Y.pnt=Z, Z.isa=me]),

([who, has, been, loving, me], [cat=cl, int=, dets=no, hum=y, head=Y, headS=X, headC=Z]./
[X.isa=who, Y.tense=pr, Y.pf=y, Y.pg=y, Y.isa=love, Y.agt=X, Y.pnt=Z, Z.isa=me]),

([who, have, been, loving, me], [cat=cl, int=, dets=no, hum=y, head=Y, headS=X, headC=Z]./
[X.isa=who, Y.tense=pr, Y.pf=y, Y.pg=y, Y.isa=love, Y.agt=X, Y.pnt=Z, Z.isa=me])
}

34. Corresponds to interogative clauses
35. It can be noticed that the attribute “int” is not instantiated. It will become instantiated with the value “no” for relative

clauses (i.e., relative clauses are not interrogative clauses). In this experiment we did not use the number attribute in
the clause head. This way further agreement between the relative clause and the head noun will not take place (i.e.,
the rule will overgeneralize).
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