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Abstract In order to model the lexicalized well-founded grammar,

we propose a constraint-based grammar formalism which
augments a context free grammar with: 1) a semantic repre-
sentation, calledemantic molecujeand 2) two constraints:

We present a relational learning framework for grammar
induction that is able to learn meaning as well as syn-
tax. We introduce a type of constraint-based grammar,

lexicalized well-founded grammar (wfgnd we prove one for semantic composition and one for ontological vali-
that it can always be learned from a small set of seman- dation. This constraint-based grammar allows an interleaved
tically annotated examples, given a set of assumptions. treatment of syntax and semantics. Tamnantic molecule
The semantic representation chosen allows us to learn encodes both the semantic representation of a natural lan-
the constraints together with the grammar rules, as well guage expression (given as a flat representation) and the in-
as an ontology-based semantic interpretation. We per- formation necessary for semantic composition (given as a
formed a set of experiments showing that several frag- one level feature structure). This reduced representation,

ments of natural language can be covered hyfg, and
that it is possible to choose the representative examples
heuristically, based on linguistic knowledge.

while expressive enough to model syntactic/semantic as-
pects of natural language, is simple enough to be effectively
used in our relational learning framework. Given this, our

grammar formalism allows both the grammar and the com-

Introduction positionality constraints to be learned. Another feature of
In this paper we introduce a theoretic type of grammar, our formalism is that ontological constraints are applied at
called lexicalized well-founded grammawhich facilitates the rule level, so that the semantic interpretation is limited

the learning of both meaning and syntax, starting with sim- not by the grammar, as in general linguistic frameworks,
ple rules in a bottom-up fashion. This approach to learn- but by the complexity of the domain ontology. Thus, we
ing follows the argument that language acquisition is an in- have an ontology-based semantic interpretation of natural
cremental process, in which simpler rules are acquired be- language expressions, which refrains from full logical anal-
fore complex ones (Pinker 1989). Moreover, using semantic YSis of meaning. Our framework is suitable for domain spe-
information during acquisition can facilitate learning only ~ cific texts that have a domain ontology as semantic model.
from positi\/e data for some classes of grammars (Oa][es This is applicable for domains with large ontologies (e.g. the
al. 2003). Grammar induction is achieved using a relational medical domain). The ontology will guide the grammar ac-
learning framework based on a setrepresentative exam-  quisition. This follows the argument that, during language
ples (Muresan, Muresan, & Potolea 2002). There are two acquisition, in order for syntax to be acquired properly, se-
key features of this set: 1) the examples are ordered, allow- Mantic distinctions and conceptual information should be
ing the bottom-up learning of the grammar; and 2) the size known (Pinker 1989).

of the set is small, which is essential because large semanti-

cally annotated treebanks are hard to build. The paper is organized as follows. First, we introduce
Learning meaning as well as syntax from a small number ne theoretical concepts téxicalized well-founded gram-
of training examples is useful for rapid text-to-knowledge marandrepresentative exampless well as the assumptions
acquisition, replacing the process of rewriting grammars by e consider for the grammar induction problem. Second, we
hand for each specific domain. This is especially suited present the constraint-based grammar formalism that mod-
for domains that are not well-covered by existing syntac- g|s the lexicalized well-founded grammar, describingste
tic and semantic parsers, such as the medical domain. Themantic moleculand the constraint rules. Next we describe
knowledge base in that domain. Another application for this  stating that given the assumptions mentioned above, the in-
framework is a tool for linguists, who will be able to build  gyction of a lexicalized well-founded grammar, from a small
and test their own models of language learning. unambiguous set of representative examples, can always be
Copyright © 2005, American Association for Atrtificial Intelli- done. We conclude with a set of experiments and results of
gence (www.aaai.org). All rights reserved. our grammar induction framework.
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Figure 1: (a) Grammacy; (b) Iterative steps for the WeFoundedGrammar() algorithm

Theoretical Concepts

A context-free grammar is a 4-tupte = (N, Pg, S)
where N is an alphabet of nonterminal symbols,is an
alphabet of terminal symbols witth N X = (), Pg is a
set of production rules, where every production is a pair
(A,B) with A € N andg3 € {N U X}* (also denoted
A = p),andS € N is the start nonterminal symbol.
Let's consider the ground derivation rufe =* w with

* . A=>w [=Bi...Bn Bi="w;, i=1,...,n
w € X* such that: 7=, EST— ,
and A:>'3A;5*£:> Y We haved = 3 =* w. The lan-

guage generated by the gramn@Gris L(G) = {w €
¥*: § =* w} and the set of substrings generated®y
is Ly(G) = {w € ¥*: A € N, A =* w}. The set of sub-
strings generated by the rule= gis L (A = 8) = {w €
¥>: (A = p) € P, A = § =* w}. We consider that
the set of nonterminaly’ is a well-founded set based on the
partial ordering relatior- among the nonterminals. Thus
VA € N andvt € ¥, we haveS = A > t, where we used
the same notation for the reflexive, transitive closure of

Definition 1. A rule (A = ) € Pg is called anordered
rule,if V(Be N)C 3: A = B.

Definition 2. A Context Free Grammafj, is called avell-
founded grammar (wfgj:

1. The set of nonterminal symbols is well founded.

2. Every nonterminal symbol is a left-hand side in at least
one ordered non-recursive rule.

The empty string cannot be derived from any nontermi-
nal symbol.

In a well-founded grammar, there are three types of rules
in which a nonterminal can appear: ordered non-recursive
rules, ordered recursive rules or non-ordered rules. The or-
dered non-recursive rules ensure a termination condition for
the ground derivation, essential to the inductive process.

Proposition 1. Every context-free grammar can be effi-
ciently tested to see whether it is a well-founded grammar,
by Algorithm 1. This algorithm assigns a levito every
nonterminal4, A € N, and returns the sdts of partial
ordering relation among the nonterminals. The efficiency of
the algorithm is Qg2 * | 3)).

Lemma 1. A context-free gramma® = (N, X, P, S) is a
well-founded gramma&’ = (N, X, Pg, S, Rg) iff Rg # 0
is returned by Algorithm 1.

3.

Algorithm 1. Well_FoundedGrammar(s)

Rg+— 0, No—X,P«— Pg, V<010
while P # @ and N, # () do
V—VUN,l—I+1, N «—0
foreach (A = 3) € Pandg C V do
P—P-{A=p3}

if A&V then

Nl<—NlU{A}

foreach (B € N) C gdo

|_ RG%RGU{AEB}

Ise
foreach (B € N) C gand—(A > Bor B =
A) do
if A€ N;andB € N; andi > j then
|_ RG%RGU{AEB}

else
| Ro— RcU{B > A}

[¢]

if P=0ande ¢ X thenreturnR¢ elsereturn{)

Example. Figure 1 gives an example of a partial gram-
mar for noun phrases with relative clauses and the itera-
tive steps of Algorithm 1. As can be seen, in this grammatr,
Al — Adj, N1 — Noun, N2 — Det N1 are examples

of ordered non-recursive ruled1 — A1 N1 is an exam-

ple of an ordered recursive rule, whilé2 — N2 Rcl is

a non-ordered rule, sincBcl is a bigger nonterminal than
N2, i.e. Rel = N2 (see Figure 1(b)). We usBc to de-
note relative clauses. The last rule means that there can be
other alternatives for relative clauses (e.g. reduced relative
clauses).

A well-founded grammar(, induces a partial ordering
relation on any generated sublangudgeC L(G). For
each stringe € E (S =* ¢e) and for each substring; of
e, we choose (if it exists) the smallest nonterming| so
thatA; =* e;. In other terms, ifS is the root of the syntac-
tic tree for stringe, A; is the root of the subtree ef. Let C;
be the biggest nonterminal of the subtree rooted affor
ordered non-recursive rule§; < A;, for ordered recursive
rules: C; = A;, andC; = A; otherwise). The equivalence
class of substring; is (4;) for an ordered non-recursive
rule, (A;") for an ordered recursive rule, an@;( A;) for
a non-ordered rule, respectively. A lexicographic ordering
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Figure 2: (a) Parse tree ; (b) Results of Algorithm 3

is assumed. Thus the equivalence classes introduce a partialogically sorted setE; (generated using Algorithm 2), Al-
ordering relation among the substrings of the sublanguage gorithm 3 generates in polynomial time the representative

E:e; = €; iff (Ci;Ai)ilez(CjﬁAj)-

Algorithm 2, given below, returns the topologically sorted
setF; of substrings:; based on the partial ordering relation
and the substring length;|: e,, > ... > e; > ... > eg. The
algorithm is polynomial in|E| and |e|. Find_-Min_Rule
and Max_Nonterminal are efficiently performed by a
bottom-up active chart parser (Kay 1973). This parser also
computes the set of rules,,, from which the substringg
can be ground derived (see Algorithm 3).

Algorithm 2: SubstringequivalenceClassest, GG)

foreach j do
| Eq.cClass(j)«— 0

foreache € F do

foreache; C e do

FindMin_Rule A; = 8 =" e;

if (A; = B) # 0 then
Max_Nonterminal@d; = 3, C;)
elseifA; = C; thenj «— (A;")

elsej — (Ci, A;)

Eq.Classf) < Eq.Classf) U {e;}

TopologicalSort(EqClass(), Es)
| returnEs

Definition 3. We callrepresentative example s#te setb'r
obtained through Algorithm 3.

Algorithm 3: Find_RepresentativExampleF, )

E, «— SubstringEquivalenceClassest/, G)
Er—0,Pg. —0
repeat
eg <« ExtractMin(Es)
Py —{(A=p)€EPz:eg € L;(A= )}
Pa, «— Pg, UP,,
Es — BEs — L@(GT‘)
Er — ErU {60}

until Es =0
return Er, Pc,.)

Theorem 1 (Representative Examples Theorem)Given a
well-founded gramma¢, a subsetr of L(G), and a topo-

example setfr, together with the associated gramn@Giy,
suchthate C L(G,) C L(G) and|ER| < |Pg,

Proof. Given the grammaé, Ve € E, we haveS =* e.
Algorithm 2 assures that for every substriaigof e, which
has a syntactic subtree rooted4n belonging to the syntac-
tic tree ofe rooted inS, we havee; € E,. But Algorithm
3 assures that every time a substringis removed from
the setE,, the associated ruled; = 3 are added to the
grammar setP; . ThusG, contains all the rules used to
obtain the syntactic tree rooted$h In other words we have
S =* e in grammarG,., for eachS =* e in grammarG.
ThusE C L(G,) C L(G). Itis straightforward that the al-
gorithmis polynomial inE| and|e|, and|Eg| < |Pg,|. O

The above theorem states that if a well-founded grammar
G covers a set of representative examples the grammar
covers the sublanguade and the size oE'i is small.

Example. Figure 2(b) shows the results of Algorithm 3
given the sublanguage of the noun phrase “the smart stu-
dent who solved the quiz” and the grammar in Figure 1(a),
while Figure 2(a) shows the corresponding parse tree.

Both in formal and linguistic theories of grammars, lex-
icalization is an important factor. Lexicalized grammars
are finitely ambiguous and thus decidable (Joshi & Sch-
abes 1997). In our framework, we consitixicalized well-
founded grammarswhere the stringw is paired with a
semantic representation, calledmantic moleculand de-
notedw’. The semantic molecule encodes both the semantic
representation of the string, given as a flat representation,
and the information connected to the semantic head, neces-
sary for composition.

Definition 4. Let G be a well-founded grammar. We call
G alexicalized well-founded grammadirall substringsw,
derived from a nonterminafl have the same category of
their semantic moleculess. That is, there exists a map-
ping from the nonterminal selV to the category seC,

c¢: N — C, such that(wy,w/), (we,we!) € Ls(A) —
hi.cat = ha.cat = ¢(A) (see the next section for the defini-
tion of semantic molecule).

deriva-
that:

For
tion

these  grammars,
rule becomes( =*

the  ground
(w,wr), such



A= (w,w!)
A= (w,wr)!

B=B;...B, Bi="(w;,w;/), i=1,....,n

X B=*(w1...wp,w1/0:-0Wy!) ’
Az’ﬁA;&*(‘f:’w,()w’“”), wherew = wy...w, is the con-
catenation of strings, and’ = w/ o --- o w,/ is the
composition of semantic molecules. The semantic molecule
composition requires the enhancement of grammar rules
with compositional semantic constraints.

and

Grammar Induction Problem. GivenE C L(G) of an un-
known lexicalized well-founded gramm@i, together with
its set of representative examplé%, Fr C FE,, learn a
grammarG, such thatt? C L(G,) N L(G).

Considering the following three assumptions, we prove
that the induction can always be done (see Theorem 2).

Assumption 1. We assume that the gramm@ris not re-
dundant, i.e. it does not contain equivalent nonterminals
orrules: A; # A; iff Ls(A) # Ls(4;), and
A= 0 #A= 0, iff Ls(A= 3) # LA = 05))
respectively.

Assumption 2. We assume that the subset E is unambigu-
ous?. In this case, in Algorithm 3, we hav@,, = {4, =

B} U chr(A4o), where 49 = [ is a minimal rule and
Ch?“(A()) = {Ak = Ak,h Ce ,Al = Ao}, is a chain of
rules ended ind, from which the stringey can be ground
derived @k = Ap_q1 = e = Ao) We Ca”ChS(Ao)
{Ay, ..., Ax} the chain set. From Assumption 1 we have
LS(AQ) - Ls(Al) c---C Ls(Ak)

Lemma 2. Let G be an unambiguous, nonredundant lex-
icalized well-founded gramma¢;, and A, = [ a mini-
mal rule resulted from Algorithm 3. 1f/ is formed from

3 by substituting a nontermindB; with a nonterminal3/;

of the same chaini3;, B/; € chs(j), andB/; = B; then
Ls(Ao = 01) D Ls(Ag = B).

Assumption 3. We assume that the subset E is rich enough,
so that the ground derivation &f; covers all grammar rules.
Thus for each equivalence clals;, A;), classegA;) and
(A;") are also generated. Sin¢d;) < (4;") = (Ci, 4;),

for each nonterminall the learning algorithm will first learn

Semantic Molecule

The semantic representation we adopt in this work

bares some similarities with Minimal Recursion Semantics

(Copestake, Lascarides, & Flickinger 2001). We denote by
w! = h <1 b the semantic molecule of a string whereh is

the head acting as a valence for molecule composition, and
b is the body acting as a flat semantic representation of the
stringw.

The valencep, of the molecule includes all the neces-
sary information for molecule linking (i.e., semantic com-
position) in the form of a one level feature structure (i.e.,
feature values are atomic). In Figure 3 we present the se-
mantic molecules for one adjective and one noun. The heads
of these two molecules are given as attribute-value matrices
(AVMs). Let A;, be the set of attributes used in the head,
h, of the semantic moleculer = h > b. An element of
h has the formh.a = val, wherea € A;, andval is either
a constant or a logical variable. The set of logical variables
of the headp, is denoted byar(h). For example, Figure
(3a) shows the semantic molecule for the adjective “smart”
whose head, has three attributesut, which is the syntac-
tic categoryhead, which is the index of the head, antbd
which is the index of the modified noun.

The bodyp, of the molecule is a Canonical Logical Form
(CLF) using as semantic primitives a set of atomic pred-
icates (APs) based on the traditional concept of attribute-
value pair:

(1) (CLF) — (AP)
| (CLF) (lop) (CLF)
(AP) — (concept). (attr) = (concept)

Thelop is the general logical operator, whié®nceptcor-
responds to a frame in an ontology aattr is a slot of

the frame, encoding either a property or a relation. This
frame-based representation is motivated by our ontology-
based semantic interpretation approach, which has recently
been considered, due especially to the growing interest for
the Semantic Web (Jensen & Nilsson 2003). For example,
Figure (3a) shows the body of the semantic molecule for the
adjective “smart”. It has two predicateX’; .isa = smart,
encoding the lexical sign an8l,. Has_prop = X;, mean-

the ordered non-recursive rules, then the ordered recursive ing that the adjectiv(; is a value of a slot in a frame corre-
rules and last the non-ordered rules, unless the rules belongsponding to the noun denoted &g. The variabldHas prop

to the chain of ruleghr(A) (see Assumption 2 and the proof

of Theorem 2). In the absence of this assumption, the learn-

ing machinery might need theory revision steps.

Constraint-Based Grammar

The grammar is based on the Definite Clause Grammar
(DCG) formalism (Pereira & Warren 1980). In our model

we augment the nonterminals with a semantic representa-

tion, calledsemantic moleculallowing an interleaved treat-

ment of syntax and semantics, and we add two constraints

to the grammar rule: one for semantic compositionality and
one for ontological validation.

tUnambiguity is provided by the Iwfg constraints (even if syn-
tactically the sublanguage might be ambiguous). For learning, the
given annotated examples are disambiguated.

will be instantiated after the interpretation on the ontology.
For the composition of several semantic moleculesjsf
the semantic composition operator, we have:
(2) w=hxb=(wy...wp) =wilo---0owyl
= (h1<by)o---o(hy,xby,)
:hlo---ohnbdbl,...,bn
Thus the composition affects only the molecule head,
while the body parts are connected through the conjunctive
connector. We denote ..., (h, b1, ..., hy,) the composi-
tional semantic constraints, which are added at the grammar
rule level. They are encoded as a system of equations (Eq
(4)) given below.

h.a = constant 1<i<n
where
h.a = hqaz

ac A}m a; € -Ah,,

(42) {



(32)

(smart/adj)! = h1 > b1 where hi.cat = adj, hi.head = X1, h1.mod = X2
cat adj Ap, = {cat, head, mod},
= |head Xi| i [X1.isa = smart, Xo.Has_prop = Xi] var(h) = {X1, X2},
mod X3 var(by) = {X1, X2, Has_prop}
(3b) (student/n)! = hg < by where ha.cat = n, ha.head = X3
cat n . Ap, = {cat, head}
[head Xa] > [X3.isa = student] var(hs) = {Xa}, var(bs) = {Xs}
(3c)
(smart student)! = h><1b = (smart)! o (student)! = h1 > by 0 ha X ba = hi 0 ha XM b1,ba %(from (2))
= {hcetjztd )?2} X [X1.isa = smart, Xo.Has_prop = X1, Xs.isa = student] %((3a), (3b), Pcomp(h, h1, h2))

Deomp (b, hi, ha) = {h.cat = ha.cat, h.head = hi.mod, hi.cat = adj, hi.mod = ha.head, ha.cat = n} %(from (4a), and (4b))

Figure 3: Examples of semantic molecules and their composition

ontology. Moreover, the meta-interpreter search strategy is

h;.a; = constant 1<i,j<ni#j independent of the actual representation of the ontology, and

(4b) { ha — h where A A therefore behaves as an interface to any ontology at the level
i = My @i € Any, j € An, of atomic predicates. The ontology-based interpretation is
In Figure (3c), we give an example of semantic composi- not done during the composition operation, but afterwards.

tion for the noun phrase “smart student”, obtained by com- Thus, for example, the head of the noun phrase “smart stu-
posing the semantic molecules of the adjective “smart” (3a) dent” ((3c)) does not need to store the ditats prop, which
and the noun “student” (3b). The compositional semantic allows us to use flat feature structures for representing the
constraints® .o, (h, k1, ha), are givenas well. Asaconse- head of the semantic molecule.
quence of variable bindings due to compositional constraints  From the description of bot ..o, aNAD,,.z0, it can be
at the head level, some variables from the bodies of the se- seen that the metaphor sémantic moleculis essential to

mantic molecules (i.evar(b), var(b;)) become bound as  model and efficiently compute these two constraints asso-
well, with var(h) C var(b) for each semantic molecule. ciated with the grammar rules. The head of the semantic
molecule is used during semantic composition, while the
Grammar Rules _ body is evaluated on the ontology.

A grammar ruled = By, ..., B, =" (w,w/) is encoded |y association with this constraint-based grammar, a re-
as a constraint rule, as shown below, where the nontermi- yersiple robust parser is built, based on the bottom-up ac-
nals are augmented with an extra-argument, representing thetjye chart parsing method (Kay 1973). The parser is used
semantic molecule, and two constraints are added: one for poth during parsing/generation of natural language expres-

semantic composition? ..., and one for ontological val-  sjons after the grammar and compositional constraints are
idation, ®,,,1,. In our extended DCG formalism both the  |earned, and during grammar and constraints learning.

substringaw; and the canonical logical forma; are repre- In the first case, the grammét, and the compositional

sented as difference lists. semantic constraint®..,, are known. For direct parsing,
the stringw is given. Its substringsy; and thus their seman-

A(w, h>ab) = Bi(wi, h1 > b1), ..oy Bp(wn, by by tic molecules}; i b; result through robust parsing, while
W= wWi..Wn, b=0by,...,bn, the string semantic molecules b results through® .o,
Peomp (s b oo h)y Ponto(b) In reverse parsing (generation) the semantics of the string

The ontological constraintsb,,.;, present at the gram-  w is given, i.eb. By robust parsing;, and thush; andw;
mar rule level, render only the ontology responsible for result, whileh is obtain by®.,,, at the same time withv.
the semantic interpretation, not the gramma®,,;, is In the second case (i.e., during learning), the stringnd
based on a meta-interpreter witreeze (Saraswat 1989; its semantic molecult < b are given. After robust parsing
Muresan, Potolea, & Muresan 1998) and is applied only to the substringsv; and thus their semantic moleculks <
the body of the semantic molecule. The meta-interpreter as- b; are obtained, whilé,,,,, is learned based on them. If
sures that the atomic predicates, APs, (see Eq (1)), of the syntactic information for agreement is present, more than
molecule body are not evaluated (i.e., they are postponed) one positive example and also negative examples would be
till at least one variable becomes instantiated. This tech- needed, to control the generalization/specialization process,
nique will allow a nondeterministic efficient search in the for each®,,,,, learned .



Induction Algorithm

The learning algorithm for grammar induction is based on
our previous work (Muresan, Muresan, & Potolea 2002)
and belongs to the class of Inductive Logic Programming
(ILP) methods based on Inverse Entailment (Muggleton
1995). Unlike existing relational learning methods that use
randomly-selected examples and for which the class of ef-
ficiently learnable rules is limited (Cohen 1995), our algo-
rithm learns from an ordered set of representative examples,
allowing a polynomial efficiency for more complex rules.
The size of this set is small and thus our algorithm is able to
learn when no large annotated treebanks can be easily built.
In this cases, statistical methods, even if they are able to
learn from structured data needed for semantics, are of re-
duced applicability due to the large number of training ex-
amples required for learning.

ILP methods have the ability to use background knowl-
edge during learning. For our task, we use background
knowledge, K, that contains: 1) the previously learned
grammar, 2) the previously learned semantic compositional-
ity constraints, 3) the ontology, and 4) the lexicon that spec-
ifies for each word the specific syntactic knowledge, includ-
ing its preterminal (POS) as well as the semantic information
given as semantic molecule.

Algorithm 4 describes the constraint-based grammar in-
duction.

Algorithm 4: ConstraintGrammarinductionEg, F, K);
whereMSCR=Most Specific Constraint Rule
begin

Pg, — 0
repeat

e; — ExtractMin(Er)

MSCR(e;) — RobustParseG, e;, K)

A; = B < Generalizeld SCR(e;), E, K)

Pg, «— Pag, U{A; = 5}

until Er =0
return Pg,.

end

For each representative examplec Eg, a cover set al-
gorithm performs two steps: 1) the most specific constraint
rule generationM SCR(e;), and 2) the generation of the
final hypothesis ruled; = /3. The process continues itera-
tively until all the representative examples are covered.

The learning engine uses both annotated and unannotated?n

sets of examples at different stages. First, the cover set al-
gorithm is based only on the representative ggt, that

is semantically annotated (pairs of strings and their seman-
tic molecules). During the generation of the final hypothe-
sis, weakly annotated (only chunked), and optionally unan-
notated examples are used for the performance criteria in

the current positive example;, and the current grammar,
G, presentin the background knowledge. This set of triples
will allow the generation of the most specific constraint rule
of the following form:

Ae(w, h b) = Bl(wl, hl > bl), . Bn(wn, hn > bn):
W= Wy...Wy, b=by,..., by,
Diomp. (h, hi, ..., hn), Donio (b)

where:

e A. is a new nonterminal, having the syntactic category
specified in the semantic representation of the positive ex-
ample.e; (¢(Ae) = h.cat).

B; are nonterminals that belong to the already existing
grammar given in the background knowledge,and that

are parsed by the robust parser.

D comp. (R, h1, ..., hy) is the semantic compositional con-
straint learned also in step 1.

D,,10(b) is the constraint which validates the canonical
logical form on the ontology.

This most specific constraint ruld/SCR(e;), added to
the existing grammar covers the current representative ex-
ample.M SCR(e;) has the following properties:

pl The semantic molecule; < b; is generalized such that
for each maximum nontermind@/; € chs(j), no nega-
tive exampleE~ is verified byM SCR/(e;).

p2 For eachh; i b; verifying pl, B; is the minimum non-
terminal of the chain seths(j), so thatM SCR(e;) cov-
ers the same number of positive examples as does
MSCRI(e;) atpl.

The most specific rule generalization (step 2) is an iter-
ative process. A set of candidate hypotheses is generated
based onM SCR(e;), background knowledgk, and a set
of heuristics. From this set, the best candidate hypothesis
is chosen as the final hypothesi$; = (3, using the fol-
lowing performance criteria: it verifies the maximum num-
ber of positive examplesy*; it does not verify any of the
negative exampledy—; and for the same performance the
most specific hypothesis is chosen. For the latter, the follow-
ing priorities are considered: non-recursive rule (ordered or
nonordered) ; recursive rule; or a pair of one recursive and
ne non-recursive rules. For the same priority, the rule with
inimum headA; is considered as the most specific. The
set of heuristics is:

hl The new hypothesis is just/SCR(e;): A; =
..., B,, where the new nonterminal, = A; and

1,
VAJ‘,C(AJ‘) = C(AZ) 7 <1.

choosing the best rule. We denote these positive examplesh2 The new hypothesis is generated framSC R (e;) by

asEt=F,. Also negative example& ~ are used, if needed,
given as weakly annotated data.

For the most specific rule generation (step 1), a reversible
bottom-up active chart parser is used to derive all triples
(substring, semantic molecule, grammar nontermifram

substitutingA. with A;: A; = By, ..
i,¢(A4;) = c(4i).

h3 The new hypothesis
VBj, C(Bj) = C(Ae).

B, VA, j <

is generated as a pair
,Bj_1,4;,Bjt1,...,Bn,



(smart, [cat=a, head=A, mod=N} [A.isa=smart, N.Pn=A])
(student, [cat=n, head=M¥} [N.isa=student])

(the # quiz, [cat=n, head=Nk [N.det=the, N.isa=quiz])

(solved, [cat=v, head=V, agt=Ag, obj=0b] [V.isa=solve, V.agt=Ag, V.obj=0b])
(smart # student, [cat=n, head=Nj[A.isa=smart, N.Pn=A, N.isa=student])

(who # solved # the quiz, [cat=rc, head=Ag][Ag.isa=who, V.isa=solve, V.agt=Ag, V.obj=0b, Ob.det=the, Ob.isa=quiz])
(the student # who solved the quiz, [cat=n,head=NN.det=the, N.isa=student,
N.isa=who, V.isa=solve, V.agt=N, V.obj=0b, Ob.det=the, Ob.isa=qui

7])

(a) Representative Examples

Al(h b) = Adj(hl< bl) : Phicomp(1,h,h1), Phonto(b)

N1(he< b) = Noun(hlx bl) : Phicomp(2,h,h1), Phonto(b)

V1(h>b) = Tv(hl< bl) : Phicomp(3,h,hl), Phonto(b)

N1(he< b) = Adj(hlp< bl), N1(h2 b2) : Phicomp(4,h,h1,h2), Phonto(b)

N2(he< b) = Det(hlx bl), N1(h2 b2) : Phicomp(5,h,h1,h2), Phbnto(b)

Rcl(hx b) = Rpro(hle bl), Tv(h2ea b2), N2(h3> b3) : Phicomp(6,h,h1,h2,h3), Plinto(b)
N2(he< b) = N2(hl bl), Recl(h2x b2) : Phicomp(7,h,h1,h2), Phinto(b)

(b) Learned Grammar

Figure 4: Learning Example for noun phrases with determiners, adjectival modifiers and relative clauses

The final hypothesis4; = (5 and the semantic constraint
are added to the background knowled§e,and the cover
set algorithm continues iteratively until all the representa-

which can be generalized by the heuristick so that the
rule A;11 = Bj, belonging to the chainhr(B;) is also
learned. From the performance criteria and Lemma 2 it

tive examples are considered. The overgeneralization can becan be proved that the property of two monotonically grow-

controlled by E—, but further probabilistic refinement can
reduce the need of negative examples.

The algorithm is linear on the length of the learned hy-
pothesis and has the complexity|@g| = | 3| * |E| x |e|3).

Theorem 2 (The Iwfg Induction Theorem). Given a lexi-
calized well-founded grammag, an unambiguous sublan-
guageE C L(G), and a semantic annotated sBfz; C

E, of representative examples, together with the associ-
ated grammarG,., computed with Algorithm 3, the Con-
straint GrammarlInduction algorithm generates a lwf¢v..
such thatf C L(G/,.) N L(G,).

Proof. We prove by induction thafl.,(G.) 2 L4(G,),
given thatE~ N Ly(G,) = 0 and the Assumptions 1,
2, and 3 hold true. We assume that the above property
holds for the firsti representative examples,, . . . ¢;, that

is Ls(Gr;) 2 Ls(G;), whereG/; is the learned partial
grammar, and&; is the partial grammar associated with
e; by Algorithm 3. The next representative example;
has associated itv,., the Min-rule 4,1 = Bi,...,B,
and the chairchr(A;+1). This chain contains rules with
heads greater tha#,, that are still not learned, while the
rules with the headB; are already learned. If this rule
iS a non-recursive one, or it is not a first recursive rule
for the nonterminal4;.,, the robust parser can compute
MSCR(e;): Ac = Bh,...,Br,, with B/; = B; and
¢(A.) = c(A;41) satisfying propertiepl andp2. If Min-
rule is non-recursive}/ SC R can be generalized by heuris-
ticshl or h2, while if itis recursive M SC' R can be general-
ized by the heuristié2. If the above Min-rule is the first rule
for the nonterminal;; and it is recursive then 4., =
Bi,...,Bj_1,4i41,Bj11,..., B, and G, contains also
the ruled; 1 = B,. Inthis case the robust parser computes
]WSCR(eq) Ae = Bll; ey Blj—l; Bj7 B/j+17 ceey B,

ing grammars is preserved in the step 1: Ls(G/i41) 2
L(Gi+1), and thusL4(Gr,.) 2 L4(G,) holds by induction.
But L;(G,) D E, and thusEs; C Ls(G/,) N Ls(G,) and
the theorem is proved as consequence. O

Proposition 2. If Assumptions 1, 2 and 3 hold and:

(Fr, Pg,.) «— Find_Representative_Examples(E,G)
Pegi,. «— Constraint_Grammar_Induction(Eg, E, K)
(ENtgr, Pan,) < Find_Representative_Examples(E,G/,)

we have: Eng = Egr and thusLs(Gr,) = Ls(Gn,.).
This means that under the given assumptions, the learned
grammar preserves the representative examglgs, This
property is useful when the acquired grammar is unknown,
and the representative examples were chosen heuristically,
based on linguistic knowledge. So we can verify if the sub-
languagé? is rich enough and if the sét; was well chosen.

Experiments

We conducted a set of experiments to validate different as-
pects of the induction of odexicalized well-founded gram-
mar, as applied to a small fragment of natural language.

In a first experiment, we considered the syntactic gram-
mar, G, given in Figure 1(a). As a result of Algorithm 3,
the representative examplés; and the grammafy,. were
automatically generated (see Figure 2). We then manually
annotated these examples with their semantic molecules as
shown in Figure 4(a). In addition with this set, we used a
rich enough set of examplest (see Assumption 3) that
was only weakly annotated. This set contains more com-
plex examples which are used for the generalization process.
The learned constraint-based grammar is presented in Fig-
ure 4(b). As can be seen, this grammar is equivalent to the
initial grammar. But, for the ruléV1 the nonterminalddj



appears instead od1. This is becausell is a redundant
nonterminal (see Assumption 1), thafis(A1) = Ls(Adj).

This is also the case for rulec1, where nonterminal’v ap-
pearsinstead df 1. The compositional semantic constraints
(Phi_comp predicates) were learned as well. For example,
Phi_comp(4, h, h1, h2) corresponds t@_comp(h, h1, h2)
shown in Figure 3. The first argument of the predicate rep-
resents its index. At each iteration step, the learned con-
straint is stored in the background knowledge, given it is
distinct from the already stored constraints. This experiment
was important since it shows the perspective of learning a
syntactico-semantic grammar when we have an appropriate
syntactic grammalr;, available.

A second set of experiments was done to test the gram-
mar induction framework when the grammar is not avail-
able. We started with a fragment of natural language that
partially covers complex noun phrases (adjectival premodi-
fiers, prepositional phrases, relative clauses), coordination,
simple clauses with active/passive form of verbs, and simple
wh-questions. Based on linguistic knowledge, we manually
annotated fifty representative examples. In addition a set of

less than three hundred weakly annotated examples and a
set of less than ten negative examples were used. The set of

weakly annotated examples can be partially obtained from
existing syntactic treebanks, or by using the output of ex-
isting syntactic parsers on examples of interest with appro-
priate manual correction. We used a reduced grounded lexi-
con derived from Extended WordNet (Harabagiu, Miller, &
Moldovan 1999), since as discussed in (Wintner 1999) the
lexicon does not influence the grammar semantics. The syn-
tactic categories covered are: adv, adj, det, pro, n, v, prep,
coord, rc, and cl (for simple sentences and wh-questions).
The size of the learned grammar is comparable with the size

of the representative example set. For this learned grammar

Proposition 2 was validated, meaning that the representa-
tive examples were appropriately chosen. Since only a small
fragment of language was used, a coverage test is not appli-
cable at this point. However, the framework shows potential
for building a grammar with a small annotation effort (the
size of the representative example set is small, while the
weakly annotated examples can be semi-automatically de-
rived). The learned grammar was applied to a sample text,
for which the semantic representation was obtain, in a small
guestion-answering experiment. The type of questions were
“who did what to whom?”.

Conclusion and Future Work

In this paper we focused on the theoretical aspects of learn-
ing a constraint-based grammar from a small set of exam-
ples. We have introduced the conceptdexicalized well-
founded grammar (lwfg¥s, semantic molecujeand rep-
resentative exampleBr of the sublanguag® C L(G),

and we proved the theorem of inducing such grammars from
representative examples, which constitute a small semantic
treebank (Theorem 2). Thus, if a fragment of natural lan-
guage F, can be covered by a Iwf@, and the semantically

rently applied to building a terminological knowledge base
in the medical domain and we plan to develop the frame-
work to allow bootstrapping of both the grammar and the
ontology. Another future direction will include adding prob-
abilities to the grammar rules, after the learning process.
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