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Specialized medical ontologies and terminologies, such
as SNOMED CT and the Unified Medical Language
System (UMLS), have been successfully leveraged in
medical information systems to provide a standard web-
accessible medium for interoperability, access, and
reuse. However, these clinically oriented terminologies
and ontologies cannot provide sufficient support when
integrated into consumer-oriented applications, because
these applications must “understand” both technical
and lay vocabulary. The latter is not part of these spe-
cialized terminologies and ontologies. In this article, we
propose a two-step approach for building consumer
health terminologies from text: 1) automatic extraction of
definitions from consumer-oriented articles and web
documents, which reflects language in use, rather than
relying solely on dictionaries, and 2) learning to map
definitions expressed in natural language to termino-
logical knowledge by inducing a syntactic-semantic
grammar rather than using hand-written patterns or
grammars. We present quantitative and qualitative evalu-
ations of our two-step approach, which show that our
framework could be used to induce consumer health
terminologies from text.

Introduction

The purpose of medical ontologies and terminologies is
to facilitate the development of information systems that can
“understand” the meaning of language in the biomedical
domain. To that end, there has been a constant effort
to develop biomedical ontologies, such as the Unified
Medical Language System (UMLS) (Bodenreider, 2004),
OpenGALEN (Nowlan, Rector, Rush, & Solomon, 1994),
and Foundational Model Anatomy (FMA) (Rosse & Mejino,
2003), to name just a few. These ontologies have been used

to build or enhance electronic information systems that
create, process, retrieve, and integrate biomedical data and
information.

However, these resources cannot be used in consumer-
oriented applications, because consumer-oriented informa-
tion systems must be able to “understand” lay vocabulary
used by consumers of health information. Studies have
shown that currently there is a mismatch between general
terminologies, such as WordNet (Miller, 1990), and techni-
cal medical terminologies, such as the UMLS (Burgun &
Bodenreider, 2001). Recent work has been proposed to
address this issue by developing methods for building con-
sumer health vocabularies (Cardillo, 2011; Elhadad, 2006;
Elhadad & Sutaria, 2007; Smith & Fellbaum, 2004; Zeng &
Tony, 2006). One of the recent largest initiatives is the Con-
sumer Health Vocabulary Initiative at the Harvard Medical
School, which has developed the Open Source Collaborative
Consumer Health Vocabulary (OSC CHV), and which aims
to link lay medical terms to their corresponding technical
concepts from the UMLS Metathesaurus (Keselman, Logan,
Smith, Leroy, Zeng-Treitler, Q., 2008a, Keselman, Smith,
Divita, Kim, Browne, Leroy, Zeng-Treitler, 2008b; Zeng &
Tony, 2006). This approach leverages existing medical ter-
minologies, such as the UMLS, by mapping lay vocabulary
to their technical equivalents.

In this article, we present a complementary approach for
creating consumer health terminologies—automatically
building terminologies from consumer-oriented text. When
talking about terminologies in this article, we mean entities
(concepts) and relations among entities (concepts). We talk
about terminologies and not ontologies, because ontologies
would require a stricter formalization, as discussed by
Bodenreider (2006) and Ceusters, Capolupo, Moor, Devlies,
and Smith (2011).

In our approach, we rely on the assumption that a key
source for terminological knowledge is the definition of a
term, an assumption that has been used by a large body of
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research on processing dictionary/glossary definitions
(Chodorow, et al., 1985; Klavans, Chodorow, & Wacholder,
1992; Moldovan & Rus, 2001; Navigli & Velardi, 2008;
Richardson, Dollan, & Vanderwende, 1998; Rus, 2002;
Wilks, Slator, & Guthrie, 1996). However, dictionaries are
inherently incomplete in rapidly evolving scientific and
technical domains, such as the medical domain. Thus, unlike
this previous work, we present a method for automatically
extracting definitions from consumer-oriented medical text,
which consists of medical articles or manuals written by
medical specialists for a general audience, where medical
terminology must be defined. Then, we automatically map
the definitions extracted from text to terminological knowl-
edge, by learning a syntactic-semantic grammar, rather than
using hand-written patterns or grammars. In this article, we
present our grammar learning framework together with a
semantic interpreter targeted for terminological knowledge.
We show that our method is suitable for direct acquisition of
terminological knowledge from natural language definitions
automatically extracted from text as well as for querying this
knowledge using both precise and vague questions, obtain-
ing precise answers at the concept level.

An example of input and output for our two-step
approach is presented in Figure 1. Starting with a set of
consumer-oriented articles, we automatically extract defini-
tions and their medical terms using our system DEFINDER
(Klavans & Muresan, 2000, 2001; Muresan & Klavans,
2002), and then we apply machine-learning techniques to
map these definitions to terminological knowledge—a
graph-based representation that encodes concepts (e.g.,
#hepatitisA, #hepatitis, #blood), instances of concepts
(#virus25, #virus33, #cause24), and relations (e.g., sub,
which is the inverse of isa; loc, which is given by the
semantic role of the preposition in; and ag, th, which are
semantic roles of the verb cause). These roles can be general
or domain specific.

In the next section, we present our system architecture
and related work. In the DEFINDER: Extracting Definitions
From Consumer-Oriented Text section, we present our
system DEFINDER and the characteristics of the acquired
corpus of definitions. In the section Learning to Map
Definitions to Terminological Knowledge, we present our
grammar formalism, grammar learning model, and our
semantic parser and interpreter used to map definitions to
terminological knowledge. In Results we present our experi-
ments and results. In the Discussion section we discuss our
findings. Our conclusions and plans for future work are
given in Conclusions and Future Work.

System Architecture and Related Work

Our method for building and querying terminological
knowledge bases is a two-step approach. The architecture
of our system is given in Figure 2. The backbone of this
architecture can be seen as a standard natural language
understanding system: given an input text (corpus) and a
grammar, a parser produces syntactic/semantic representa-

tions of the input text (text-level representations), which
are then transformed into knowledge by a semantic inter-
preter. There are two key contributions of our approach: (1)
our input text is a corpus of definitions automatically
extracted from consumer-oriented articles using our system
DEFINDER and (2) the grammar is learned from a small
amount of training data (training corpus in Figure 2) rather
than hand-written, as in most traditional deep language
understanding systems. We briefly highlight these two
components of our architecture below, with pointers to
related work.

DEFINDER: Extracting Definitions From
Consumer-Oriented Medical Articles

A key source for terminological knowledge is the defini-
tion of a term. However, dictionaries are inherently incom-
plete in the rapidly evolving scientific domains, such as the
medical domain. In our work, we developed a rule-based
system DEFINDER to automatically extract definitions
from consumer-oriented medical text, which consists of
medical articles or manuals written by medical specialists
for a general audience, where terminology must be defined
(Klavans & Muresan, 2000, 2001). We give more details
in DEFINDER: Extracting Definitions From Consumer-
Oriented Text. Other studies have used alternative sources
for consumer-health vocabulary: (1) elicitation of terms
directly from lay users to build a lexi-ontological resource
for consumer healthcare for Italian (Cardillo, 2011) and (2)
combination of elicitation data and text from bulletin boards
to collect medical facts and beliefs used to enhance WordNet
with consumer health information (Smith & Fellbaum,
2004). Our choice of corpus is based on two desiderata:
scalability and presence of definitions of consumer heath
terms.

The DEFINDER system has been the building block for
research in extracting definitions from vetted web docu-
ments. Most of this subsequent work on definition extraction
has been developed since TREC-2003, which included a
track of answering definitional questions (Who is X?, What
is X?). Several lines of research on definition extraction have
enhanced and adapted our pattern matching approach for
different domains (Liu, Chin, & Ng, 2003) and also devel-
oped hybrid approaches that combine manually written pat-
terns and machine-learning techniques (Blair-Goldensohn,
McKeown, & Schlaikjer, 2004; Fahmi & Bouma, 2006).
Applications of definition extraction work range from
mining definitions for topic-specific concepts (Liu et al.,
2003) to answering definitional questions in the context of a
question-answering task.

One aspect is worth mentioning here: Even if we use full
syntactic parsers in our definition extraction system, we
only use pattern matching of limited depth over the parse
trees. Thus, we are able to extract fairly accurate definitions
(~86.95% precision and 75.47% recall), even if the deep
parse tree structure is not fully correct (see Results for a
detailed evaluation of DEFINDER). However, it is not
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Hepatitis is a disease caused by infectious or toxic agents and characterized by jaundice, fever and
liver enlargement. [...]   

Hepatitis A is an acute but benign viral hepatitis caused by a virus that does not persist in the
blood serum. [......] Hepatitis B is an acute viral hepatitis caused by a virus that tends to persist
in the blood serum. [.....]
[....]About a third of the world’s population, have been infected with the hepatitis B virus.[...] 

AUTOMATIC EXTRACTION OF DEFINITIONS
FROM TEXT (DEFINDER)  

  

Hepatitis is a disease caused by infectious or toxic agents and characterized by jaundice, fever and
liver enlargement.

Hepatitis A is an acute but benign viral hepatitis caused by a virus that does not persist in the blood
serum.

Hepatitis B is an accute viral hepatitis caused by a virus that tends to persist in the blood serum.  

LEARNING TO MAP DEFINITIONS TO
TERMINOLOGICAL KNOWLEDGE 

FIG. 1. Input and output. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—April 2013 729
DOI: 10.1002/asi

 15322890, 2013, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asi.22787 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [12/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



adequate to use these parsers to acquire the semantics
of these definitions (incorrect syntactic parsing will lead
inevitably to incorrect semantics). Figure 1 shows some
definitions found in consumer-oriented text extracted by
DEFINDER. These definitions contain complex construc-
tions, which require both syntactic and semantic informa-
tion to be interpreted correctly, including noun compounds
(e.g., liver enlargement), coordinations and prepositions
(e.g., caused by infectious or toxic agents and character-
ized by jaundice, fever and liver enlargement), raising and
control constructions (e.g., virus that tends to persist),
embedded relative clauses (e.g., disease caused by a virus
that tends to persist), and negation (e.g., does not persist).
The inability of current statistical syntactic parsers trained
on the Penn Treebank (Wall Street Journal articles)
(Marcus, et al.,1994) to accurately parse medical text is one
of the motivations for our grammar learning framework
that links syntax to semantics.

Learning to Map Definitions to Terminological Knowledge

Most work on acquiring knowledge from dictionary-
based definitions has relied on hand-written patterns, gram-
mars, or semantic transfer rules used on top of syntactic
parses (Chodorow et al., 1985; Klavans et al., 1992; Moldo-
van & Rus, 2001; Richardson et al., 1998; Rus, 2002; Wilks

et al., 1996). These methods lack scalability when going
beyond the dictionary-like format or when moving to new
domains.

In this article, we present a methodology for learning to
map the definitions extracted from text to terminological
knowledge. First, we learn a grammar able to capture the
syntactic and semantic information of linguistic construc-
tions found in medical definitions (Figure 2). We rely on
our recently developed grammar formalism for deep lan-
guage understanding, Lexicalized Well-Founded Grammar
(LWFG), which captures syntax and semantics and can be
efficiently learned from data (Muresan, 2006, 2010; 2011;
Muresan & Rambow, 2007).

Unlike grammar learning for statistical syntactic parsing
(e.g., Charniak, 2000; Clark & Curran, 2007; Collins, 1999),
our grammar can be learned from a small amount of data.
The input to the grammar learning model consists of a small
set of utterances paired with their semantic representations.
Learning from a small amount of annotated data are essen-
tial for rapid domain adaptation. In Learning to Map Defi-
nitions to Terminological Knowledge, we present our
grammar formalism and grammar learning model. Our
LWFG learning belongs to recent efforts in the natural lan-
guage processing community to develop machine learning
algorithms for mapping utterances to formal representations
of their underlying meaning (Poon & Domingos, 2009;
Wong & Mooney, 2007; Zettlemoyer & Collins, 2005).

FIG. 2. System architecture.
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These techniques have been mostly applied to very specific
domains, such as GeoQuery and RoboCup events. A notable
exception is the work of Poon and Domingos (2009) who
applied their semantic parser to PubMed abstracts. In addi-
tion, our work complements efforts on adapting statistical
syntactic parsers trained on Penn Treebank to the medical
domain (Lease & Charniak, 2005).

A key property of our grammar formalism is the use of
constraints to capture grammatical aspects (e.g., agreement)
and to encode a direct link between natural language expres-
sions and a semantic model (e.g., domain context). These
constraints are important for the disambiguation required for
some phenomena (e.g., prepositional phrase attachment,
coordination), as well as for the semantic interpretation
of phenomena not usually analyzed by current syntactic
parsers (e.g., prepositions, noun-noun compounds). Con-
sider the following example: the two endocrine glands
[located above the kidney] [that secrete hormones and epi-
nephrine]. The second relative clause can be attached to the
noun kidney or the noun glands. Since using LWFGs, we can
model agreement between the head noun and the verb in the
relative clause, and we have that the relative clause is
attached to the noun glands (plural). In addition, the seman-
tic interpretation constraints will give us the semantics of the
utterance (e.g., the meaning of the preposition above is
location, the semantic roles of the verb secrete are agent and
theme).

Once a LWFG grammar for definitions has been learned,
we use a parser to produce semantic representations for each
definition in our corpus (Figure 2). These representations
form the text-level knowledge representation (TKR). To
build terminological knowledge we need a semantic inter-
preter that takes into account task-specific constraints (e.g.,
for terminological knowledge we do not interpret determin-
ers and the tense and aspect of verbs, but we do interpret
modals and negation). To be consistent with our previous
work (Muresan, 2006, 2008), we refer to the representation
produced by the semantic interpreter as the ontology-level
knowledge representation (OKR), which is a graph-based
representation where vertices are concepts or instances of
concepts, whereas edges represent relations among concepts
or instances of concepts. An example was given in Figure 1,
and more detail will be given below in the section Learning
to Map Definitions to Terminological Knowledge.

The framework proposed in this article allows us to start
with a weak semantic model (e.g., admissibility relations at
the level of lexical items, such as thematic roles of verbs—
agent, theme), which can be gradually enhanced to become
a stronger semantic model (e.g., hierarchy of concepts and
roles) by automatically acquiring terminological knowledge
from natural language definitions (dotted line in Figure 2).
This stronger semantic model can then be used in conjunc-
tion with our grammar and parser to interpret consumer
health text beyond just definitions. This is especially useful
for interpreting domain-specific text, such as the medical
text (Aronson, 2001; Friedman, Borlawsky, Shagina, Xing,
& Lussier, 2006; Hahn et al., 2000). Although we mention

this bootstrapping ability of our framework, this is beyond
the scope of this paper.

DEFINDER: Extracting Definitions From
Consumer-Oriented Text

The acquisition of definitions from textual corpora is a
challenging task because the structure of definitions in text is
not always similar to those in online dictionaries. The algo-
rithm for the extraction of definitions from text is a rule-
based method implemented in the DEFINDER system
(Klavans & Muresan, 2000, 2011). Our corpus consists of
consumer-oriented medical articles containing more than
one million words from different authoritative sources on
the web.

We have developed DEFINDER in the context of a
medical digital library project, PERSIVAL (McKeown, et al.
2001). First, a development set of articles was analyzed and
patterns that occur frequently and reliably in many text
genres (e.g., articles, book chapters, health newsletters) were
identified. We grouped these patterns into three categories:
cue-phrases (e.g., is the medical term for), text markers
(e.g., “—”, “(”, “)”), and syntactic patterns (e.g., syntactic
complement of the link verb to be in sentences such as Acne
is a skin disease caused by overactive oil glands, and appo-
sitional patterns in sentences such as Angina, the chest pain
that occurs when an area of your heart muscle doesn’t get
enough oxygen-rich blood, . . .). The identification of
definitions from these initial contexts was performed in two
steps: (1) shallow syntactic parsing for identification of
simple definitions and candidate complex definitions, and
(2) full syntactic parsing of these candidate definitions using
a statistical syntactic parser (Charniak, 2000).

In the first step, we use Brill’s part-of-speech tagger (Brill,
1992) and a noun phrase (NP) chunker (Ramshaw & Marcus,
1995) in conjunction with a simple finite-state grammar. We
have augmented Brill’s tagger lexicon with medical terms
from the UMLS lexicon (Lindberg, Humphreys, & McCray,
1993) to increase accuracy. An automatic filtering step is
performed to remove patterns for enumerations, or explana-
tions. As a result of shallow analysis, we have both <term>
(<definition>) and <definition> (<term>). When length was
not sufficient, a simple statistical measure based on frequency
counts was used to discriminate between the term and its
definition. This is usually the case for technical/lay pairs,
such as “tachycardia/irregular heartbeat.” In addition, we
select candidate definitions that cannot be easily identified
by shallow processing and for which full parsing is more
reliable.

In the second step, these candidate definitions are syntac-
tically parsed using a statistical parser (Charniak, 2000). We
perform a shallow-level pattern matching over full parse
trees to identify complex appositives, syntactic comple-
ments of the link verb to be, and complex definitions
found in the context of text markers. Using just shallow-
level pattern matching allows us achieve high accuracy on
extracting definitional sentences, even if the full syntactic
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parse tree was not correct. In Results we present the quan-
titative and qualitative evaluation of DEFINDER.

We analyzed a sample of the DEFINDER corpus to
observe the characteristics of definitions, both at the concep-
tual level and linguistic level. This analysis has informed our
development of training data for grammar learning as well
as our semantic interpreter for terminological knowledge.

Conceptual dimension. Our corpus of definitions auto-
matically extracted from text has the advantage of contain-
ing multiple definitions of the same term, which enables us
to analyze the conceptual nature of definitions. Referring to
Table 1, which presents multiple definitions of the term
acne, it can be observed that each definition has additional
properties (e.g., definition 1 specifies the symptoms
(papules and pustules) and their location (the face and
neck), whereas definition 3 specifies the cause (caused by
overactive oil glands); definition 1 specifies that acne is a
skin disease, whereas definition 4 specifies that acne is an
inflammatory disease). Thus, none of these definitions can
be considered complete. This incompleteness questions the
core assumption of the logical definition (Weisman, 1992):
the equation between the definiendum (term to be defined)
and the definiens (the definition of the term). How can we be
sure that equivalence can be obtained? How can we be sure
that there is no other definition, which contains an additional
property required to fully determine the “acne” concept? In
the lexicography literature, the issue of incompleteness has
been attributed to the educational role of definitions: they
explain the essence of a concept to different types of users,
in different contexts (Eck & Meyer, 1995). The above obser-
vation motivates our choice of interpreting copula be as
predicative-be instead of equative-be for terminological
knowledge.

Linguistic dimension. Table 2 shows several definitions
extracted by DEFINDER illustrating their complex linguis-
tic constructions (both from a syntactic and a semantic point
of view): nominalization (narrowing of arteries from
cholesterol plaque deposits) and noun compounds (e.g.,
cholesterol plaque deposits, weight loss); wh-relative and
that-relative clauses (that can appear on any part of the
body); reduced relative clauses (caused by a deficiency in
. . .), and embedded relative clauses (characterized by
pimples that can appear on any part of the body). Verbal
constructions contain active and passive voice, modals (can

appear on any part of the body), negation, and sometimes
raising and control verbs (e.g., tends). One characteristic of
the definitional corpus is the presence of prepositions and
coordinating conjunctions. An analysis of our corpus shows
that on average there are three prepositions per definition.
Regarding coordination, definition 1 in Table 1 and defini-
tion 3 in Table 2 are eloquent examples of the complexity of
coordination constructions. We can have coordination
between all categories at lexical-level (e.g., papules or pus-
tules), phrase-level (e.g., weight loss, brown pigmentation of
the skin, and low blood pressure) and clause-level (e.g.,
caused by . . . and characterized by . . .).

Learning to Map Definitions to
Terminological Knowledge

As mentioned above, our research showed that we
cannot rely on existing syntactic parsers trained on the Penn
Treebank to obtain accurate parses for the definitions in
the medical domain. Incorrect syntactic parsing inevitably
leads to incorrect semantic analysis. Moreover, from the
analysis of a sample of our corpus of definitions, we noticed
that many linguistic constructions present in definitions
require access to both syntactic and semantic information
to be analyzed correctly. To transform these definitions
into knowledge, we use our recently developed grammar
formalism that captures syntax and semantics and is
learnable from a small set of representative examples. In
this article, we summarize the description of our grammar
formalism and grammar learning model in Learning
Grammars for Deep Language Understanding and instruct
the interested reader to consult Muresan and Rambow
(2007) and Muresan (2008, 2010, 2011) for full technical
details. Below, we present our semantic parser and
semantic interpreter used in conjunction with the learned
grammar to transform definitions into terminological
knowledge.

Learning Grammars for Deep Language Understanding

In this paper, we use our recently developed grammar
formalism for deep language understanding, Lexicalized
Well-Founded Grammar (LWFG), which captures syntax
and semantics and can be learned from data (Muresan, 2006,
2010, 2011; Muresan & Rambow, 2007). In LWFG,
every word/phrase/clause/utterance is associated with a

TABLE 1. Examples of DEFINDER’s output: Multiple definitions of the
term “acne.”

1. Acne is a skin disease characterized by papules and pustules on the
face and neck.

2. Acne is an inflammatory skin disease characterized by pimples that
can appear on any part of the body.

3. Acne is a skin disease caused by overactive oil glands.
4. Acne is an inflammatory disease involving the sebaceous glands of

the skin.

TABLE 2. Examples of DEFINDER’s output: Linguistic complexity.

1. Atherosclerosis is the progressive narrowing of arteries from
cholesterol plaque deposits.

2. Acne is an inflammatory skin disease characterized by pimples that
can appear on any part of the body.

3. Addison’s disease is a degenerative disease caused by a deficiency in
adrenocortical hormones and characterized by weight loss, brown
pigmentation of the skin, and low blood pressure.
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syntactic-semantic representation, and grammar rules can
have two types of constraints: one for semantic composition
(Cc)—defines how the meaning of a natural language utter-
ance is composed from the meaning of its words and
phrases—and one for semantic interpretation (Ci)—
validates the semantic constructions based on a given
semantic model (i.e., a domain ontology). These two prop-
erties make LWFGs a type of syntactic-semantic grammars.

The lexicon in LWFG consists of words paired with
elementary syntactic-semantic representations. The lexicon
in LWFG is not learned. Unlike other lexicalized grammar
formalisms for deep understanding, such as Combinatorial
Categorial Grammar (Steedman, 1996, 2000) and Lexical-
ized Tree-Adjoining Grammars (Joshi, 1985; Joshi &
Schabes, 1997), the lexicon in LWFG does not specify the
syntactic context in which the word is anchored. That
context will be learned from examples, by learning grammar
rules and compositional constraints. In Figure 3 we show
examples of lexicon entries for the adjective acute and the
noun hepatitis.

Our syntactic-semantic representation is denoted
syn

sem
⎛
⎝⎜

⎞
⎠⎟ ,

where syn encodes the information required for semantic
composition (e.g., the syntactic category of the word or
phrase), and sem is the actual semantic representation of the
string. This representation is simple enough to allow learn-
ing and tractable inferences, but expressive enough for
natural language (Muresan, 2006, 2008). Formally, syn is a
one-level feature structure—that is, the values are atomic—
and has at least two attributes: (1) cat, which encodes the
syntactic category of the associated word or phrase (e.g.,
adjective, noun, noun phrase), and 2) head, which is the
index of the head word of a phrase/sentence/clause/word
(i.e., the head word of a noun phrase is the noun, the head
word of a prepositional phrase is the preposition, the head
word of a sentence is the verb). In addition, feature attributes

for agreement and other grammatical features can be present
(e.g., number [singular of plural], person [first, second, or
third]). The actual semantic representation, sem is a flat
logical form, built as a conjunction of atomic predicates
<concept >.<attr> = <concept>, where variables are either
concepts or slot identifiers in the semantic model. The rich-
ness of the semantic model can range from just a lightweight
ontology—encoding the admissibility relations that we can
find at the level of lexical entries, such as thematic roles of
verbs and prepositions—to a heavyweight ontology with
hierarchy of concepts and roles. This semantic representa-
tion, called OntoSeR (Ontology-based Semantic Represen-
tation) can serve as an ontology-query language (Muresan,
2006, 2008). For example, the adjective acute is represented
as <X1.isa = acute, X2.Y = X1>, which says that the meaning
of an adjective is a concept (X1.isa = acute maps to the
concept #acute in the semantic model), which is a value of a
property of another concept (X2.Y = X1) in the semantic
model. Variable X2 will be instantiated through composition,
when the adjective acute will be combined with a noun, for
example, hepatitis to build a noun phrase acute hepatitis.
Variable Y will be instantiated after the semantic interpreta-
tion based on a given semantic model (e.g., Y = duration).

To combine words to build phrases, clauses, and sen-
tences we need grammar rules. LWFG has a set of constraint
grammar rules, which can be recursive and where the non-
terminals are augmented with pairs of strings and their
syntactic-semantic representations. For example, a simple
grammar rule for noun phrases, such as acute hepatitis is
given in Figure 4.

Grammar rules have two types of constraints: one for
semantic composition Cc, and one for semantic interpreta-
tion Ci. The semantic composition constraints Cc define how
the meaning of a natural language expression (e.g., phrase,
clause, sentence) is composed from the meaning of its parts
(e.g., words, phrases). These constraints are applied to

FIG. 3. Examples of LWFG’s lexicon entries for the adjective “acute” and the noun “hepatitis.” [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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the syn part of the syntactic-semantic representations, the
semantic representations (sem) being just concatenated. The
semantic composition constraints Cc are learned together
with the grammar rules (Muresan, 2006, 2010).

The semantic interpretation constraints Ci represent the
validation based on a semantic model and are not learned.
These constraints serve as a local semantic interpreter at the
grammar rule level. Currently, Ci is a predicate that can
succeed or fail—when it succeeds, it instantiates the variables
of the semantic representation with concepts/slots in the
semantic model (Muresan, 2006, 2008). For example, given
the phrase acute hepatitis, Ci succeeds and returns <X1.isa =
acute, X.duration = X1, X.isa = hepatitis>, whereas given the
phrase blonde hepatitis it fails.

The constraints Cc and Ci are important for the disam-
biguation required for some phenomena (e.g., prepositional
phrase attachment, coordination) and for the semantic inter-
pretation of phenomena not usually analyzed by current
broad-coverage grammars or statistical syntactic parsers
(e.g., prepositions, noun-noun compounds).

Before describing how a LWFG grammar in association
with a semantic parser and semantic interpreter can be used to
map utterances to knowledge, we briefly present the grammar
learning model (how can we learn grammars from data).

Grammar learning model. LWFG’s learning is a relational
learning framework, which characterizes the “importance” of
substructures in the model not simply by frequency, as in
most previous work (Charniak, 2000; Collins 1999; Klein &
Manning, 2003), but rather linguistically, by defining a
notion of “representative examples” that drives the acquisi-
tion process. Informally, representative examples are “build-
ing blocks” from which larger structures can be inferred via

reference to a larger unannotated or weakly annotated corpus
(called the generalization corpus, see Figure 2). For example,
effect, the effect, and adverse effect, annotated similarly to
hepatitis and acute hepatitis shown above, might all be
representative examples for the English nominal system;
adverse annotated similarly to acute, might be a representa-
tive example for English adjectives; and the unannotated
generalization corpus might contain the major adverse effect.
With this information, it is possible to learn grammar rules
permitting English noun heads to be modified by a determiner
and multiple adjectives (learning recursive grammar rules).

We have implement three algorithms for LWFG learning
and have studied their efficiency and annotation effort
required for the training data. In this article, we only give a
summary of our findings, referring the reader to Muresan
(2006, 2011) for details of these algorithms.

Learning from representative examples. In this case, the
learning algorithm is presented with an ordered set of repre-
sentative examples, that is, learning from simpler examples
first, and then gradually from more complex examples
(similar to how a child acquires language being exposed first
to simpler utterances). The annotation effort is reduced
because only the representative examples need to be anno-
tated, whereas the generalization corpus can be unannotated.
The order of magnitude for the representative examples is
hundreds of examples, whereas the generalization corpus can
be several thousands (see Results where we discuss the data
used for learning a grammar of definitions).

Learning from unordered representative examples. A
practical problem with the previous algorithm is that in some
cases it is hard to determine a priori the right order of the

FIG. 4. LWFG grammar rule and semantic composition and semantic interpretation constraints. [Color figure can be viewed in the online issue, which is
available atwileyonlinelibrary.com.]
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representative examples (should relative clauses be learned
before noun phrases?). Thus, we implemented a second
algorithm, which learns a grammar from unordered repre-
sentative examples using an iterative method with theory
revision. We proved that the grammar converges to the same
target grammar as the previous algorithm (Muresan, 2006).
This algorithm is polynomial, but less efficient than the first
algorithm.

Learning from the entire generalization corpus. A
potential problem with the previous two algorithms is that
sometimes it is hard to know a priori which are the repre-
sentative examples. We implemented an algorithm for learn-
ing from the entire generalization corpus, proving that the
algorithm is still polynomial, but less efficient than the pre-
vious two (Muresan, 2011). The annotation effort is bigger
than for the previous two algorithms, because now we need
to annotate the entire generalization corpus with syntactic-
semantic information.

Annotation of training data. To learn a LWFG, annota-
tions for phrases, clauses, and sentences are required, in the
form of syntactic-semantic representation discussed above.
It is clear that even for a small corpus, which our learning
model needs, writing by hand these annotations might be a
difficult task. We have developed an annotation tool that,
through interaction with the LWFG parser and lexicon,
replaces manual assignment of full semantic representations
with the manual specification of unlabeled dependencies

between words (or chunks). This could be accomplished
because in our framework the lexicon is given and the
semantic representation of a phrase is just a concatenation of
the semantic representations of its words together with vari-
able bindings that indicate dependencies. Description of the
annotation tool is left for a future publication.

In DEFINDER Evaluation we give details of learning a
grammar for definitions that is used in our knowledge acqui-
sition and querying experiments.

Semantic Parsing and Semantic Interpretation

Once a grammar for definitions is learned, we use our
semantic parser and semantic interpreter to transform defini-
tional sentences to terminological knowledge. We have the
following three levels of semantic representation: the utter-
ance level, the text level, and the ontology/terminology level
(see Figure 5).

The semantic parser in conjunction with the learned
grammar gives us directly the semantic representa-
tion (OntoSeR) of each utterance. This is the utterance
level representation. During parsing, we have two types
of representations: OntoSeR-—the semantic representation
obtained before the semantic interpretation constraint Ci is
applied; and OntoSeR+—the semantic representation after
the semantic interpretation constraint Ci is applied. Thus, the
semantic interpretation constraints Ci can be seen as provid-
ing a local level semantic interpretation. In Figure 5, we
show an example of OntoSeR- and OntoSeR+ for the

FIG. 5. Levels of representation for the utterance a virus that does not persist in the blood serum.
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utterance a virus that does not persist in the blood serum. At
OntoSeR- the semantic roles of the verb persist, the meaning
of the preposition in, and the relations among the nouns
blood and serum are still unknown (i.e., they are variables):
P1, P2, and P3, respectively. At OntoSeR+, the semantic
interpretation constraint Ci instantiates these variables with
roles from the semantic model—theme, loc and the dummy
of, respectively.

This example shows the semantic representation of
several linguistic phenomena, such as relative clauses (virus
that . . .), negation (does not persist), and noun compounds
(blood serum). For readability, we indicate what part of
OntoSeR corresponds to each lexical item. It can be noticed
that OntoSeR contains representations of both ontological
meaning (concepts and relations among concepts) as well
as extra-ontological meaning, such as the verb’s tense
(B.tense = pr).

After parsing each definition, their semantic representa-
tions form the text level knowledge representation (TKR).
The variables become constants, and no composition can
happen at this level. In Figure 5, we see that TKR is the same
as OntoSeR+ except that the variables are constants (e.g., A
becomes 1, B becomes 2).

To transform these representations to knowledge
(ontology-level knowledge representation (OKR), we use a
semantic/pragmatic interpreter that implements task-specific
interpretation and filtering. Although the semantic interpre-
tation given by the constraints Ci can be seen as local semantic
interpretation, the interpretation from TKR to OKR can be
seen as a global semantic interpretation. For our task, the
task-specific interpretation is geared toward terminological
interpretation. OKR is a directed acyclic graph (DAG)
G = (V,E). Vertices V are concepts (corresponding to nouns,
verbs, adjectives, adverbs, pronouns, cf. Quine’s criterion
[Sowa, 1999]), or values of extra-ontological properties, such
as y corresponding to the neg property (which in our example
means that the verb is negated). Edges E, are semantic roles
given by verbs, prepositions, adjectives and adverbs, or are
extra-ontological properties, such as neg (negation). In
Figure 5, we give an example of OKR for the same utterance
a virus that does not persist in the blood serum obtained using
our semantic interpreter.

In this article, the semantic interpretation (both local and
global) is based only on a weak semantic model. This model
is given by the admissibility relations that can be found at
the level of lexical entries (i.e., we do not use synonymy,
anaphora, and predefined hierarchies of concepts and roles).
For the verb thematic roles we considered the thematic roles
derived from Dorr’s LCS Database (e.g., ag for agent, th for
theme, prop for proposition) (Dorr, 1997). For adjectives
and adverbs we took the roles (properties) from WordNet
(Miller, 1990). For prepositions we considered the LCS
Database. We also have added specific/dummy semantic
roles when they were not present in these resources (e.g., of
between blood and serum).

The global (task-specific) semantic interpretation is
geared toward terminological interpretation. We filter

determiners, and some verb forms, such as aspect, because
temporal relations appear less in terminological knowledge
than in factual knowledge. However, we treat modals and
negation, as they are relevant for terminological knowledge.
The semantic interpreter considers both concepts (e.g.,
#blood), and instances of concepts (e.g., #virus1, #persist2),
which is key for definition understanding. Concepts are
denoted in OKR by #name_concept.An instance of a concept
is denoted by the name of a concept followed by the instance
number (e.g., #virus1). A concept and an instance of this
concept are two different vertices in OKR, having the same
name. Concepts form a hierarchy based on the subsume
relation (sub), which is the inverse of the isa relation. At the
OKR level we have the principle of concept identity, which
means that there is a bijection between a vertex in OKR and
a referent. For example, if we do not have pronoun resolution,
the pronoun and the noun it refers to will be represented as
two separate vertices in the graph. Currently, our semantic
interpreter implements only a weak concept identity prin-
ciple that facilitates structure sharing and inheritance (we do
not have anaphora resolution, for example).

In DEFINDER Evaluation we discuss how starting with a
weak semantic model and using our learned grammar and
semantic interpreter, which implements the weak concept
identity principle, we can get a step closer to building con-
sumer health terminologies from definitions automatically
extracted from consumer-oriented text.

Results

In this section, we present the results of our two-step
approach. First, we present quantitative and qualitative
evaluations of DEFINDER. Second, we present a case study
for building and querying a medical terminological knowl-
edge base using our learned grammar and our semantic
parser and interpreter for terminological knowledge.

DEFINDER Evaluation

We thoroughly evaluated the DEFINDER system on
several dimensions: performance of the definition extraction
algorithm in terms of precision and recall; quality of the
generated dictionary as judged both by nonspecialists
and by medical specialists; coverage of online dictionaries
(Klavans & Muresan, 2001; Muresan & Klavans, 2002).
The qualitative evaluation builds on the work of Smith and
Fellbaum (2004) who validate the output sentences in terms
of usefulness (for lay users) and correctness (as judged by
medical experts). In our study, we add two other dimensions:
readability (for lay users) and completeness (as judged by
medical experts).

Quantitative evaluation. A standard approach in any
system evaluation is to compare the results against human
performance. We selected four subjects, not trained in the
medical domain and who did not participate in the develop-
ment of the system. Each was provided with a set of 10
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articles from different genres—medical articles (e.g., Car-
diovascular Institute of the South), book chapters (e.g, Merk
Manual Home Edition, Columbia University College of
Physicians and Surgeons Complete Home Medical Guide),
and newspapers (e.g., Reuthers Health). Each subject was
asked to annotate the definitions and their defined terms in
text. Instructions, including examples of how definitions can
be introduced in text, were given to each subject. Because of
this annotation effort, we limited the length of the articles to
two pages. The annotation task was performed in an hour, on
average, by each subject.

The gold-standard against which we compared our system
was determined by the set of definitions marked up by at least
three of the four subjects and consists of 53 definitions. Our
system extracted 46 definitions, out of which 40 were present
in the gold standard, leading to a performance of 86.95%
precision and 75.47% recall, and 80.8% F-measure.

To perform a detailed error analysis of DEFINDER’s
output, we first analyzed the human performance on identi-
fying definitions and their associated terms from text. Besides
the 53 definitions, which were marked by at least three of the
four subjects and which constitute our gold standard, 10
definitions were identified by two of the four subjects and
eight definitions by only one subject.

Four of the six false positives identified by DEFINDER
were also marked by one human subject, whereas two false
positives were marked by none of the human judges.
Examples of these false positives are given in Table 3.

In addition, we also encountered cases of partial matches
between the gold standard and DEFINDER’s output. For
example, in the sentence below DEFINDER identified as
definition for atherosclerosis: the progressive narrowing of
the heart’s own arteries by cholesterol plaque buildups,
which starves the heart itself for oxygen and nutrients.

The most frequent cause of the condition in older patients is
atherosclerosis—the progressive narrowing of the heart’s own
arteries by cholesterol plaque buildups, which starves the heart
itself for oxygen and nutrients.

However, only two of the four subjects marked up the
underlined part, which was not retained as part of the gold
standard definition for atherosclerosis. In computing the
performance of our system, we considered such cases as
correct matches.

The decrease in recall was because several definitions
identified by human judges contain complex linguistic phe-
nomena, such as anaphora, not currently handled by our
system. Table 4 presents some examples of missed hits by
DEFINDER when compared with the gold standard. As can
be seen, the definitions introduced through anaphora in our
corpus show a relatively formulaic pattern: use of the
pronoun this after a headline or list item where a medical
term appeared. Our system could be enhanced to add such
patterns. However, to perform anaphora resolution outside
these patterns would require specialized modules for ana-
phora resolution. Existing systems for anaphora resolution
(supervised and unsupervised) have been developed mostly
for newswire, requiring adaptation techniques to be success-
fully applied to the medical text (Haghighi & Klein, 2009;
Ng, 2008).

The error analysis performed on DEFINDER’s output
shows that the task of identifying definitions in text is
not a trivial task even for humans to perform. Although we
considered the gold standard to consist only of definitions
marked by at least three of the four annotators, we saw that
two thirds of the false positives identified by DEFINDER
were also annotated by one human judge. For missed
hits, most of the issues were related to anaphora (the
medical term was not part of the same sentence as its defi-
nition, the demonstrative pronoun this being used in its
place).

Qualitative evaluation: lay user perspective. As discussed
in Sager (1990) an important aspect of the need for defini-
tions is the user requirements. Satisfying both the specialist
and the layman with a single definition of a technical term is
perhaps an unachievable task. Thus, in our next evaluation,
our aim was to compare the quality of our lay dictionary
against existing specialized dictionaries from the perspec-
tive of nonspecialist users.

TABLE 3. Example of false positives (bold indicates the medical term, and
italics its definition identified by DEFINDER).

Marked also by one
human judge

The dye, or contrast medium, filters into all
parts of the heart or arteries . . .

A recent survey conducted by the National
Abortion Federation (NAF), the
professional association for abortion
providers, found that . . .

Marked by none of the
human judges

This laser therapy, which has been touted
as something that improves angina and
increases exercise capacity, is a very
potent placebo.

Among the most unpleasant of
dysautonomia’s effects are panic attacks
and anxiety—mental states appropriate
to a life-threatening situation, but
unhelpful in the extreme . . .

TABLE 4. Examples of missed hits (bold indicates the medical term, and
italics its definition annotated by human judges).

Anaphora ANGIOGRAPHY [headline]
This x-ray visualization of the arteries and veins is

used to detect abnormalities, such as aneurysms
. . .

Amiadrone. This is a very toxic drug that can
control ventricular tachycardia or fibrillation
after all other drugs have failed. [part of a
bulleted list]

Complex sentence
structure

If cellulitis recurs, an underlying condition—such
as athlete’s foot—that predisposes a person to
cellulitis is likely and must be treated.
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We selected the UMLS Metathesaurus and the On-line
Medical Dictionary (OMD).1 UMLS is one of the leading
knowledge sources in the medical domain developed by the
National Library of Medicine, whereas OMD is a widely used
specialized medical dictionary. Eight subjects, not medical
experts, were provided with a list of 15 randomly chosen
medical terms and their definitions from the UMLS, OMD,
and the definitions extracted by DEFINDER from online
consumer-oriented medical text. The terms were among
those in our gold standard. The source of each definition was
not given in order not to bias the experiment. Also, the order
of definitions was randomly changed for each term. The task
was to assign each definition a quality rating (QR) for use-
fulness and readability on a scale of 1 to 7 (1 very poor, 7
excellent). Usefulness means that the definition can help the
user understand the term, whereas readability means that the
definition is not technical, thus it is easy to read. We want to
mention that when we asked about “understanding,” we did
not administer a comprehension test.

Statistical significance tests were performed for subjects
and terms using Kendall’s coefficient of concordance, W
(Siegel & Castellan, 1988) and the sign test (Siegel & Cas-
tellan, 1988). We first measured the Average Quality Rating
(AQR) for each definition source on these two criteria (see
Figure 6(a)). Our hypotheses were that DEFINDER outper-
forms both UMLS and OMD in terms of usefulness and
readability. For usefulness, our system was rated 6.17,
whereas OMD was rated 4.9 and UMLS was rated 3.93. In
terms of readability, the difference was slightly higher: 6.63
for DEFINDER compared with 5.3 for OMD and 4.18 for
UMLS. To statistically validate our results, we applied the
sign test (Siegel & Castellan, 1988). Our results were statis-
tically significant for both Usefulness and Readability
(p = 0.0003).

One question that arises in computing the AQR is whether
the high scores given by one subject can compensate for the
lower values given by other subject, thus introducing noise in
comparing the results. To address this issue we performed a
second analysis to evaluate the relative ranking of the three
definitional sources. Using Kendall’s coefficient of correla-
tion, W (Siegel & Castellan, 1988), we first measured the
interjudge agreement on each term and for terms with signifi-
cant agreement we compute the level of correlation between
them. If W was significant, we compared the overall mean
ranks of the three sources. We tested the same hypotheses:
DEFINDER is better than UMLS and OMD both in terms
of usefulness and readability. As Figure 6(b) shows,
DEFINDER indeed outperformed the specialized dictionar-
ies. We obtained statistically significant W values (W = 0.54
and W = 0.45 at p = 0.01 and p = 0.05, respectively).

Qualitative evaluation: Medical specialist perspec-
tive. The results of the previous section show that the

definitions extracted from consumer-oriented text by
DEFINDER are more readable and useful for the lay user
than are specialized dictionaries. However, one additional
question that arises is if they are also accurate and complete
from a medical point of view.

To answer this question, we performed a follow-up user-
based evaluation in which we asked medical specialists to
rate DEFINDER’s definitions in terms of accuracy (same as
correctness in Smith & Fellbaum, [2004]), and complete-
ness. Fifteen medical specialists (physician assistants, nurse
practitioners, residents, and medical students) were pro-
vided with the same set of 15 medical terms and the defini-
tions extracted by DEFINDER from text as the one given in
the previous section. They were asked to judge the accuracy
and completeness of the definitions on a scale from 1 to 7
(1 very poor, 7 excellent).

DEFINDER definitions were rated on average 5.87 for
accuracy and 5.38 for completeness. The results indicate that
consumer-oriented text can be a valuable source of high-
accuracy definitions.

Coverage of existing dictionaries. In the introduction, we
claimed that online dictionaries are incomplete and our
system can be used to fill in the gaps. To evaluate this, we
selected two specialized dictionaries (the UMLS Metathe-
saurus and the On-line Medical Dictionary) and one popular
glossary (the Multilingual Glossary of Technical and

1At the time of this evaluation OMD could be found at http://
www.graylab.ac.uk/omd as technical dictionaries.

a

b

FIG. 6. Qualitative evaluations in terms of Usefulness and Readability: a)
Average Quality Rating; b) Ranking.
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Popular Medical Terms [MGTPMT]).2 For this evaluation,
we included the terms from our gold standard used in
DEFINDER Quantitative Evaluation for which DEFINDER
correctly identified the definitions (40 terms) and an addi-
tional set of 53 terms from DEFINDER’s output run on our
development set of consumer-oriented text (these terms and
their associated definitions are part of the sample corpus
used to assess the conceptual and linguistic properties
discussed in DEFINDER: Extracting Definitions from
Consumer-Oriented Text).

Three cases were found:

• the term is listed in one of the online dictionaries and is
defined in that dictionary (defined)

• the term is listed in one of the online dictionaries but does not
have an associated definition (undefined)

• the term is not listed in one of the online dictionaries (absent)

Results are presented in Table 5. Looking at the UMLS
results we noticed that 24% of terms were undefined, which
in the field of lexicography could mean that these terms are
part of the axiomatic vocabulary (i.e., they are basic terms,
which are used to define other terms). But the question is
whether these terms are really known by the lay users (e.g.,
Holter monitor, or coumadin)? In the case of the popular
dictionary (MGTPMT), only 20 of the 93 terms were present,
thus achieving only 21.5% coverage. This lack of coverage
might be explained by the fact that this glossary is focused on
terms that pertain to the domain of medication information.

These results encourage us to believe that automatic-
ally building dictionaries from high-quality consumer-
orientedtext is a valuable enhancement to existing
definitional resources in the medical domain.

Acquisition and Querying of Consumer
Health Terminologies

In the previous section, we showed that DEFINDER can
be used to automatically extract high-quality medical defi-
nitions from consumer-oriented medical text, which some-
times are not present in existing dictionaries. However,
DEFINDER output is only useful to human consumption
(similar to how glosses are used in WordNet, or definitions
in UMLS Metathesaurus). To create resources useful for
consumer health information systems, we need to transform
these definitions into terminological knowledge (to build
consumer health terminologies and ontologies as the ulti-
mate goal).

We conducted an acquisition and querying experiment
whose purpose is two-fold: (1) to show qualitatively that by
learning a syntactic-semantic grammar for definitions and
by using our parser and semantic interpreter, we can acquire
terminological knowledge from natural language definitions
extracted by DEFINDER from text, and can query this
knowledge using natural language questions, obtaining
precise answers at the concept level; and (2) to show that the
local semantic interpretation at the grammar rule level Ci

could help in disambiguation, even if it is based on a weak
semantic model.

Before describing our acquisition and querying experi-
ment, we briefly present our method for learning a syntactic-
semantic grammar for definitions. The grammar was learned
using the LWFG formalism and grammar learning model
described above. We chose the representative examples
guided by the type of phenomena we wanted to model and
which occurred in the sample corpus of medical definitions
we used to assess the conceptual and linguistic properties
presented in DEFINDER: Extracting Definitions from
Consumer-Oriented Text (80 definitions). The phenomena
included complex noun phrases (e.g., noun compounds,
nominalization), prepositional phrases, relative clauses and
reduced relative clauses, finite and nonfinite verbal construc-
tions (including tense, aspect, negation, and subject-verb
agreement), link verb to be, raising and control constructions.
Because our goal is to query the acquired terminological
knowledge using natural language questions, we also learned
grammar rules for wh-questions (including long-distance
dependencies). To learn the grammar, we annotated 151
representative examples, and 448 examples were used as a
generalization corpus. Annotating these examples requires
knowledge about categories and their attributes. We used 31
syntactic categories (e.g., NP, ADJP) and 37 attributes (e.g.,
category, number, person). Regarding the lexical items, we
used a total number of 13 lexical categories (i.e., parts of
speech) and 46 elementary syntactic-semantic templates. For
example, the nouns have three types of elementary syntactic-
semantic templates, which correspond to basic nouns,
modifier nouns (e.g., in case of noun compounds) and nomi-
nalizations (where the semantic representation is similar to
the representation of a verb). For grammar learning only a
reduced lexicon, not domain specific, is needed (e.g., only a
few lexical items are given for every open word class, such as
nouns [20], verbs [13, six of which are for raising and control
verbs], adjectives [14], adverbs [nine], proper nouns [four]).

Once the grammar has been learned, for the acquisition
and querying experiment we automatically built a larger
lexicon from COMLEX (Grishman, Macleod, & Meyers,
1994) and the UMLS lexicon (Lindberg, Humphreys, &
McCray, 1993), which is a medical lexicon. This is because
the definitions extracted from consumer-oriented text
contain both general and technical vocabulary.

The corpus of definitions used in the acquisition and
querying experiment consists of the correctly extracted defi-
nitions by DEFINDER, which were used in DEFINDER’s
evaluation and which were different from our sample corpus2http://allserv.rug.ac.be/\%7Ervdstich/eugloss/welcome.html

TABLE 5. Coverage of online dictionaries.

Term UMLS OMD GPTMT

defined 60% (56) 76% (71) 21.5% (20)
undefined 24% (22) – –
absent 16% (15) 24% (22) 78.5% (73)
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used to assess the conceptual and linguistic properties (used
in building the representative examples for grammar learn-
ing). In the next two sections we present and discuss the
acquisition and querying experiments.

Acquisition of terminological knowledge from consumer
health definitions. In this experiment, we tested the use of
the learned grammar, semantic parser, and the semantic
interpreter based on a weak semantic model to acquire ter-
minological knowledge from consumer health definitions.
Although our grammar covered all the constructions present
in the corpus of definitions, we obtain besides the correct
semantic representations also incorrect semantic representa-
tions, which shows that our weak semantic model is not
enough to remove all erroneous parses. To gain further
insight, we looked at the number of alternative semantic
representations obtained with and without our local seman-
tic interpreter Ci. Without Ci, the average number of repre-
sentations obtained by the parser is 2.53 per definition. After
Ci is applied, the average number of different representa-
tions obtained for a definition is 2.00. This result shows that
even with a weak semantic model our semantic interpreter
helps remove some erroneous parses. However, it is not
enough to obtain only the correct semantic analysis in all
cases. Thus, we developed the system to allow a user to
manually select the correct OKR (i.e., the graph-based rep-
resentation), which was then added to the knowledge base.
The selection of the OKR-level of representation for human
validation is because of the fact that this representation is
much more readable for a user than the OntoSeR levels (as
can be seen from Figure 5).

In order to further discuss the processes of knowledge
acquisition, we present an example of constructing a hierar-
chy of concepts from definitions of hepatitis, Hepatitis A

and Hepatitis B. The definitional text and OKRs are pre-
sented in Figure 7, OKR being shown only for the last
two definitions for readability reasons. The acquisition of
knowledge can be done directly, because we consider both
concepts (#hepatitis, #blood) and instances of concepts
(#virus25, #virus33) in our OKR representation (Nirenburg
& Raskin, 2004).

The defined term is always a concept, and it is part of the
sub hierarchy. The concepts in the sub hierarchy are pre-
sented in bold in Figure 7. All the definitional properties of
concepts are directly linked to the concept vertex (facilitated
by our interpretation of copula be-predicative). For example,
even if in the text we have Hepatitis B is an acute viral
hepatitis}, the properties “acute” and “viral” are linked to
the concept #hepatitisB and not to the concept #hepatitis.
This is obtained because only #hepatitis was previously part
of the sub hierarchy. If the concept #viral_hepatitis is
present, then this most specific concept is selected as the
direct parent of #hepatitisB.

In addition to the concepts that are defined, we can also
have concepts that are referred (i.e., they are part of the
definition of a medical term), if they do not have any
modification (e.g., #blood in definition of Hepatitis A, and
Hepatitis B). If a referred concept has modifications, it is
represented as an instance of a concept in OKR. As a con-
sequence, various verbalizations of concept properties can
be differentiated in OKR, allowing us to obtain direct
answers that are specific to each verbalization. For example,
the term virus appears in the definition of both Hepatitis A
and Hepatitis B. In OKR, they are two different instances of
a concept, #virus25 and #virus33, because they have differ-
ent modifications: persists in the blood serum, and does not
persist in the blood serum, respectively. These modifica-
tions are an essential part of the differentia of the two

1. Hepatitis is a disease caused by infectious or toxic agents and characterized by jaundice, fever and liver enlargement.
2. Hepatitis A is an acute but benign viral hepatitis caused by a virus that does not persist in the blood serum.
3. Hepatitis B is an acute viral hepatitis caused by a virus that tends to persist in the blood serum.

FIG. 7. Terminological knowledge acquired from consumer health definitions.

740 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—April 2013
DOI: 10.1002/asi

 15322890, 2013, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asi.22787 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [12/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



concepts #hepatitisA and #hepatitisB, causing the distinc-
tion between the two. When we ask the question: What is
caused by a virus that persists in the blood serum? (Q1 in
Figure 8), we obtain only the correct answer #hepatitisB
(A1 in Figure 8).

Another important aspect that shows the adequacy of our
representation for direct acquisition and query is the OKR-
equivalences that we obtain for different syntactic forms.
They are related mainly to verbal constructions. Among
OKR-equivalences we have (1) active and passive construc-
tions; (2) -ed and -ing verb forms in reduced relative clauses
are equivalent to passive/active verbal constructions (e.g.,
the question can be formulated in present tense and active
voice: What causes hepatitis A?, whereas the answer is
obtained from a definitional statement involving the
reduced relative clause: hepatitis A is an acute but benign
viral hepatitis caused by a virus . . .; and 3) constructions
involving raising verbs, where we can take advantage of the
fact that the controller is not the semantic argument of the
raising verb (e.g., in the definition of Hepatitis B we have:
“. . . caused by a virus that tends to persist in the blood
serum (virus is not the argument of the raising verb tends
but the argument of the verb persists), whereas the question
can be asked without the raising verb: What is caused by a
virus that persists in the blood serum?).

A consequence of our weak concept identity principle is
that we have structure sharing among OKRs (e.g., the
OKRs of Hepatitis A and Hepatitis B share the representa-
tion corresponding to blood serum [#serum27, #blood]), as
well as hierarchies of concepts and inheritance.

Because in our experiment we only used a weak seman-
tic model given by the admissibility relations that we can
find at the level of lexical entries, our qualitative evaluation

seems to support the intuition that a lexicon can sometimes
be the basis for the development of a practical ontology
(Hirst, 2004). However, although the knowledge we
obtained (OKR) does have properties such as structure
sharing, inheritance, hierarchies of concepts, relations
among concepts, we cannot claim at this point that this
knowledge is an actual ontology, which will imply a deeper
level of formalization, and also application of a strong
concept identity principle dealing with synonymy and ana-
phora. But this experiment shows that our framework
allows us to build consumer health terminological knowl-
edge from definitions extracted from consumer-oriented
medical text.

Natural language querying. Besides acquisition of termi-
nological knowledge, our grammar and semantic interpreter
facilitates natural language querying of the acquired termi-
nological knowledge by treatment of wh-questions. For this
experiment, we created a benchmark of 29 questions. The
type of questions we used are “Who did what to whom?”
that is only questions regarding the verbs’ arguments.
Because in our knowledge base we obtained a hierarchy of
concepts (an example of hierarchy is given in Figure 7), the
questions can be related to this hierarchy, for example, the
question Which are viral diseases? has as answer #hepati-
tisA and #hepatitisB, even if their direct parent is #hepatitis
and not #disease. Because OKR is a direct acyclic graph, the
natural language querying is reduced to a graph matching
problem. A question is a subgraph of the utterance graph
where the wh-word substitutes the answer concept. An
answer is a vertex in the OKR of an utterance, together with
all the edges incident from/to it. We have experimented both
with precise and vague questions. An example of a vague

Q1:  What is caused by a virus that persists in the
blood serum? 

Q2: What is caused by something that does not persist in
the blood serum? 

A1: #hepatitisB A2: #hepatitisA 

FIG. 8. Examples of precise and vague questions, their OKR representations, and the concept-level answers.
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question is the following: What is caused by something that
does not persist in the blood serum?, where something is
considered as a variable concept that will match a vertex in
the OKR. We obtain a precise answer at the concept level
(see example in Figure 8). A practical advantage of being
able to handle vague questions is that we can obtain all the
concepts that are in a particular relation with other concepts,
or that have particular properties. For questions we have an
average of 6.06 semantic representations per question
without Ci validation. After semantic validation, we have an
average of 2.35 semantic representations per question. In
this experiment though, even if the weak semantic model is
not always enough to eliminate incorrect semantic represen-
tations of questions, we only obtain the correct answer(s),
because we match the OKRs of these questions against the
manually validated knowledge base.

Discussion

This article has introduced a new method to automati-
cally acquire consumer health terminological knowledge
from natural language definitions extracted from consumer-
oriented medical text.

Lay Versus Technical Terminology

The main reason for focusing on consumer-oriented
medical articles for our task was that these articles are
written by doctors for lay users and thus terminology must be
defined. If we want to adapt DEFINDER to technical text
(rather than lay text), the question is whether technical
articles, such as medical journals, or books, contain defini-
tions of medical terms, given that their audience consists of
medical experts. We analyzed a set of five technical articles
in cardiology, oncology, and gastroenterology, each ranging
from three pages to 10 pages long (total of 37 pages of
technical text). We found two definitions of medical terms. In
comparison, our quantitative evaluation of DEFINDER
showed that 10 consumer-oriented articles, each limited to
two pages, with a total of 17 pages of consumer-oriented text,
contained 53 definitions. Thus, the ratio of pages to defini-
tions was 37:2 for technical text, compared to the ratio of
17:53 for consumer-oriented text.

However, we estimate that if larger technical corpora are
used, more definitions could be present: either definitions for
new terms, or new definitions for existing terms. The tech-
niques described in this article are general and can be applied
to technical text. DEFINDER relies on shallow pattern
matching, which can be generalized to technical articles.

In order to build medical terminologies from technical
definitions—either extracted from text or from existing tech-
nical dictionaries—the same methodology described in this
paper could be used (learning a syntactic-semantic grammar
and using our semantic parser and semantic interpreter).
Technical definitions differ from lay definitions both in their
syntactic constructions and semantic concepts. As discussed
in the next section, our grammar learning method is general

and can be used to learn additional constructions by simply
annotating a small set of representative examples (using a
general lexicon). The difference in vocabulary between tech-
nical and lay definitions can be addressed by using a spe-
cialized semantic resource (such as the UMLS) instead of
general resources, such as WordNet and the LCS Database,
which were used in our experiments.

General Grammar Learning Versus Task/Domain Specific
Semantic Interpreter

The method for mapping text to knowledge introduced in
this article relies on a general grammar learning framework
and a task-specific semantic interpreter. Learning is done
based on annotated examples that do not contain domain-
specific roles or concepts, and thus our learning framework
is general. We can use any semantic model (domain ontol-
ogy), depending on the application.

The semantic interpreter used in this article is targeted for
terminological knowledge and currently uses a weak seman-
tic model. As we deal only with weak semantic context
given by the admissibility relations that we can find at the
level of lexical entries, our qualitative evaluation supports
the claim in Hirst (2004) that a lexicon can often serve as a
useful basis for the development of a practical ontology. The
weak concept identity guarantees the same OKR represen-
tation for different syntactic forms (e.g., nominalizations vs.
verbal forms; active vs. passive voice; -ing and –ed forms of
reduced relative clauses vs. active/passive forms of verbs),
or different forms of tense and aspect, which are filtered.
Because we focus on terminological knowledge, modals
and negation are important, whereas temporal reasoning is
not. However, if we would not filter tense and aspect, the
semantic interpreter could be further developed towards
temporal reasoning needed for factual knowledge bases. The
weak concept identity principle (structure sharing and use
of both concepts and instances of concepts) allows us to
merge multiple definitions of the same term (e.g., Table 1).
Merging will be a key element in building a terminological
knowledge base from DEFINDER’s output on a large scale.
The reason is that terms can be defined differently depend-
ing on the context of the article, and thus we need to merge
all the information related to this term when creating the
knowledge base.

Conclusions and Future Work

In this article, we presented a two-stage architecture for
building consumer health terminologies from text: (1) auto-
matic extraction of definitions from consumer-oriented
articles and web documents, which reflects language in use,
rather than relying solely on dictionaries, and (2) learning a
grammar that directly maps natural language to graph-based
meaning representations rather than using hand-written pat-
terns or grammars. Grammar learning is done based only on
a small set of annotated examples and a generic lexicon,
which makes our approach appealing for domain adaption.
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We presented a qualitative evaluation that shows that our
learned grammar in conjunction with a semantic interpreter
targeted to terminological interpretation allows us to acquire
consumer-health terminological knowledge from definitions
automatically extracted from consumer-oriented text, and to
query this knowledge using natural language questions,
obtaining precise answers at the concept level. We showed
that the definitions extracted by DEFINDER are fairly accu-
rate and complete as judged by medical specialists and also
more understandable and readable to lay users than technical
medical definitions.

We plan to extend this work in two main directions. The
first direction is to build a larger corpus of annotated defi-
nitions in consumer-oriented medical articles using crowd-
sourcing techniques, such as Amazon Mechanical Turk.
One challenge of using crowdsourcing is the quality of
annotations. We will rely on majority voting and additional
techniques used in the literature to filter noisy annotations.
This larger gold standard corpus will allow us to enhance
DEFINDER with machine learning techniques, as well as to
evaluate our grammar learning, semantic parser and inter-
preter on a larger scale. The second direction is related to our
semantic interpreter. In this article, we used a weak semantic
model for role/property assignment and a weak concept
identity principle, which did not take into account synonymy
or anaphora. We plan to develop the interpreter to handle
semantic equivalences based on synonymy and anaphora
(either by using resources such as WordNet, when appropri-
ate, or by learning these semantic equivalences). We also
plan to enhance the grammar and semantic model with prob-
abilities in order to further remove ambiguities that we
noticed in our experiments.

Based on these two main future steps, our two-step meth-
odology could be further exploited to build a terminological
knowledge base for lay users on a larger scale, thus filling
gaps in existing terminological resources for consumer
health information systems.
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